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Abstract

How a nano-searcher finds its nano-target is a general problem in non-equilibrium statistical physics. It
becomes vital when the searcher is a damaged DNA fragment trying to find its counterpart on the intact
homologous chromosome. If the two copies are paired, that intact homologous sequence serves as a
template to reconstitute the damaged DNA sequence, enabling the cell to survive without genetic
mutations. To succeed, the search must stop only when the perfect homology is found. The biological
process that ensures such a genomic integrity is called Homologous Recombination and is promoted by the
Recombinase proteins. In this article, we use torque-sensitive magnetic tweezers to measure the free-energy
landscape of the human Recombinase hRad51 protein assembled a DNA fragment. Based on our
measurements we model the hRad51/DNA complex as an out-of-equilibrium two-state system and provide a
thermodynamical description of Homologous Recombination. With this dynamical two-state model, we
suggest a mechanism by which the recombinase proteins discriminate between homologous and a non-

homologous sequences.
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Any chemical reaction happens in two phases: a “searching phase”, during which the reactants get in contact
and recognize each other, followed by the reaction itself. Whereas the searching phase is reversible, an
irreversible and dissipative event, occurring during the second phase, is needed to make the overall reaction
irreversible and stabilize the reaction product(s).The nature of this dissipative event is generally clear in
simple chemical reactions, and associated with the following of a reaction path with an energy barrier. For
biochemical reactions involving several partners with multiple conformational degrees of freedom and
spatially extended interactions, however, deciphering the details of the reaction path may be more delicate.
This is for instance the case for Homologous Recombination (HR), which happens in living cells to avoid
irreversible chromosome damage in case of double-strand breaks. HR uses the redundant genetic
information stored in the sister chromatid to accurately reconstruct the damaged DNA. As a major actor of

crossing over in meiosis, HR is also fundamental to maintain genetic diversity".

Contrarily to chemical reactions, which occur between two pools of ~10%* indistinguishable molecules,
Homologous Recombination takes place between two unique individual molecules of very large size and
complexity: the damaged DNA and its homologous counterpart. The recombination with any other sequence
either heterologous or partially homologous must be avoided, as it may lead to genetic instability. Thus, the
dissipative step of Homologous Recombination has to occur when, and only when, the homologous
sequence is found. Clearly, the free energy associated to Watson-Crick pairing between homologous
sequences drives the homology recognition. During this process, the slight energy shift due to the presence
of a homology mismatch has to be detected to hinder unwanted recombination. Recent works provide a
precise experimental determination of the free energy reduction AG during the Recombination-mediated
base pairing” and evaluate the energy cost AAG associated to a given mismatch®. Although the mismatch
cost is surprisingly small, it is sufficient to trigger or not the irreversibility of the HR process. Why HR process
is so sensitive to such small variations of AG is still under debate. Beside these energetic considerations, HR
also requires the crossing of a strong activation energy barrier, associated with the base-pairing of the
target, intact DNA. Recombinases, and in particular for humans hRad51, play a key role in redefining the
reaction path to make it compatible with the energetic quanta associated with individual ATP hydrolysis
steps, and imposing the dissipative step making HR irreversible. We investigate here its key role in the

sensitivity of HR to mismatches, and thus in the final fidelity of the process.

In order to determine the physical mechanism underlying HR high sensitivity to pairing mismatch, we use
new torque-sensitive magnetic tweezers (see schema in Figure 1a) to measure the free energy landscape of
the human Recombinase protein hRad51 in interaction with a single double stranded DNA molecule. The
active unit of HR is a Recombinase/DNA complex, called Nucleoprotein Filament (NpF). The NpF is a helical

filament, with about six proteins per turn®. Each protein binds one ATP molecule and covers three DNA bases



along a single strand DNA. Inside the NpF the DNA molecule is stretched to 150% of its crystallographic
length, and unwound by 43%>. Experiments by van Mameren et al® indicate that in such an extended state,
the DNA is likely to be denatured. This stretched filament is also called active NpF, as it is able to find the
homologous sequence in vitro without ATP hydrolysis’. After ATP hydrolysis, the NpF is converted into the
inactive (ADP-bound) more compact form. Although the inactive form is not able to achieve homology
search, ATP hydrolysis is required to promote the strand exchange and the consequent dismantling of the

NpF8.

In summary, there is a clear correlation between the chemical states of the NpF (ATP/ADP), its structures
(stretched/condensed, unwound/wound), its activity (active/inactive) and, ultimately, its function. As
mentioned above, the specificity of HR, and in particular its high sensitivity to base-pair mismatch down to
the single base-pair, are key features, and must lie in the detailed thermodynamics of the interactions
between recombinases and DNA at the molecular level. It is thus tempting to use the power of single-
molecule experiments to validate potential molecular models of this extremely powerful and still elusive
mechanism. Unfortunately, constructing a full single-molecule experimental model of the three-strands
exchange, while measuring the full set of mechanical parameters (extension, stretching force, torsion and
torque), still raises unsolved experimental difficulties. Elegant optical tweezers experiments allowed direct
observation of strand pairing in a NpF, but they do not give access to all of the above mechanical

1911 In order to nevertheless unravel the

parameters, necessary to describe the system’s thermodynamics
physical/thermodynamical origin of the specificity and reliability of strand exchange, we propose here an
alternate approach. We use in particular the fact, previously demonstrated, that in the absence of external
mechanical constraints, Rad51 adopts the same structure around a single strand and around a double-strand
DNA™. Thanks to experiments performed on a dsDNA, we can thus measure the intrinsic mechanical
features of the protein helix, which would be impossible with ssDNA due to the lack of torsional rigidity of
the latter. We combine these newly measured parameters with already known properties of DNA into a two-

states model for strand-exchange, and finally compare the predictions of this model with the known

properties of Homologous Recombination.

As the homology search phase is reversible, the total energy is conserved during this phase. This implies that
the free energy of the three-strand synapse (nucleoprotein filament in contact with both ssDNA and dsDNA)
does not depend on the order, by which the ssDNA and the dsDNA molecules interact with the NpF. Within
this hypothesis, we evaluate the synapse formation energy by measuring the mechanical work done by the
hRad51 protein to stretch and to unwind a dsDNA molecule. This mechanical work is deduced by measuring
the torque and the torsion that the hRad51 applies to the dsDNA molecule, as well the extension of the

dsDNA molecule under the effect of an external force, during the transition from the condensed to the



stretched form. We then model the hRad51 protein as a molecule with two mechanically-coupled
conformational states (stretched and condensed), and we determine the free-energy landscape associated
to the transition between the two forms. In addition, we detect at which point of the transition the ATP is
hydrolyzed to ensure the irreversibility of the recombination process. Taken together, our experimental and
modelling work provide a new physical mechanism to explain the high sensitivity of HR to the level of
homology between the two DNA sequences. In particular, we show that the mechanical description of the
hRad51 protein in terms of a two-state switch explains a non-linear response to small variations AAG around
AG. Of course, a description of the reaction at the microscopic level is still necessary to precisely describe the

reaction kinetics.

Results

Mechanically-induced conformational transition of hRad51 nucleoprotein

filaments

In a previous work™, we showed that in the magnetic tweezers the hRad51 protein spontaneously binds to
double-stranded DNA molecules (dsDNA) with two different conformations. When the tweezers unwinds the
dsDNA by 43% as compared to the B-DNA (supercoiling degree ¢ = —0.43), the NpF assembles in the
stretched conformation (relative extension L/Lc = 1.5, L being the crystallographic length of dsDNA). This
conformation is also observed when the hRad51 binds to nicked plasmids, which cannot support a torsional
stress. Hereafter, we will refer to this state as S-state. Conversely, when assembled on dsDNA molecules
constrained at the natural topology of B-DNA (o = 0) the NpF assembles in a condensed state, called C-
state in the following. The C-state is typically observed on un-nicked plasmids, which do not release the

torsional stress.

Figure 1b illustrates the relative DNA elongation in the magnetic tweezers, when the hRad51 proteins are
injected into the observation chamber. After injection of hRad51, with the supercoiling degree clamped at
o = 0 by the tweezers, the molecule is stretched by 5%+1% as compared to the naked DNA (N = 9
molecules, Standard Deviation = 2.5%). When the torsional constraint is progressively released by steps
of Ac = —0.05 (dotted line), we observe a concomitant increase of the NpF length (continuous line). This
indicates that the NpF is mechanically allowed to transit from the C-state to the S-state, by unwinding it from

o=0too0=-0.43.

The extension of the nucleoprotein filament versus its supercoiling degree is summarized in the Figure 2a

(filled circles). When ATP hydrolysis is allowed by the presence of Mg ions, the C < S transition is quasi-



reversible and always occurs along the straight line L(g). This means that the relative extension and the

supercoiling degree are mechanically coupled.
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Figure 1: (a) Schema of hybrid magnetic tweezers. Small magnets on either side of the main hollow
cylindrical magnet are mobile in the vertical direction and able to rotate. The magnetization moment
aligns with the quasi vertical magnetic field which also has a small horizontal component. The field
gradient remains vertical. (b) Transition from the condensed to the stretched state of the hRad51-dsDNA
nucleoprotein filament in ATP and Mg** through torsion modification. The relative extension of the
nucleoprotein filament (continuous line) is shown versus torsion (dotted line). A pulling force higher than
1.4 pN is maintained throughout the whole experiment.

The condensed nucleoprotein filament is a strained and metastable ADP-bound

state

When ATP hydrolysis is impeded by the presence of Ca** ions', the nucleoprotein filament can also
assemble in the C-state. From this state, it undergoes a transition to the S-state when unwound. However
the transition is irreversible and, when rewound to o = 0 (Figure 2a, empty triangles), the NpF remains
partially stretched with a relative extension L/L; = 1.34+0.03 (N = 5 molecules, standard deviation +0.05).
Eventually, as soon as Ca”" ions are replaced by Mg ions the nucleoprotein filament spontaneously shrinks

to the C-state (Figure 2b). This proves that the S = C transition requires ATP hydrolysis.

To clarify the nature of the C-state, we directly assemble the NpF in the presence of ADP and without any
torsional constraint. When assembled in ADP, the NpF is stable and exhibits a relative extension L/L; =
1.20+0.05 (see Supplementary Information). Such a relative extension corresponds to o = -0.15 and is

compatible with the helical pitch of 76A (L/Lc = 1.16) measured by Yu et al* in ADP filaments. Thus, we



believe that the C-state measured here is not the spontaneous ADP-state of the hRad51 protein, but it is
forced by the magnetic tweezers that impose the null topology (o = 0). In vivo the role of magnetic tweezers
may be played by the second DNA molecule that has to unwind to embrace the NpF conformation. In

returns, it induces a torsional stress on the NpF and may occasion the S =2C transition.
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Figure 2: (a) In presence of calcium, the filament remains in the partially extended conformation S/C at
null torsion (0=0), whereas in the presence of magnesium the filament adopts the condensed
conformation C when wound to 0=0. (b) Transition from S/C-state to C-state at null-torsion. The gradual
shortening of the filament was triggered by buffer exchange Ca®>* = Mg** and the consequent hydrolysis
of ATP. During the buffer exchange (minutes 2-12) the DNA length is not measurable, due to the flow in
the chamber. Similarly, the proximity of residual unbound magnetic beads occasionally hinders the
tracking (minutes 24-26 and 28-31)

Taken together, these results indicate that the mechanical conformation of the nucleoprotein filament and
its chemical state are strongly correlated. In particular, our results show that the stretched state is
energetically more favorable in ATP than the condensed one. Conversely, the condensed filament only exists

in ADP, as it cannot be reached through a mechanical strain when ATP hydrolysis is impeded.

Noticeably, the C-state is metastable. The NpF progressively disassembles when forced in the C-state by
turning the magnetic tweezers to o = 0. The disassembly occurs even faster at positive supercoiling degrees,

(o>0).

Torque developed by the Nucleoprotein Filament in the C-2S transition

During the C-S transition the torque applied by the NpF to the dsDNA fragment is elastically transmitted to
the bead. The bead rotates clockwise with a typical speed of 1-2 revolutions per minute in the presence of
ATP and Ca”. To evaluate the work done by the NpF during the C=S transition, we measure the torque in

two different manners. First, by progressively lowering the position of the side-magnets, we increase the



torque applied to the bead until the rotation is arrested. Figure 3a displays the revolutions of the bead as a
function of time. At low external torques (I < 17 pN:-nm) the bead rotation is almost unaffected, whereas it
stalls above 24 pN:-nm. At intermediate torques (17-22 pN-nm) the rotation is partially arrested after every
revolution, when the bead dipole and the magnetic field are aligned, but the NpF still takes advantage of the

thermal fluctuations to cross the energy barrier and complete a revolution.

The second method is inspired by Bryan et al*>. The torque developed by hRad51 proteins is deduced from
the angular velocity of the bead, w, during the transition and in the absence of any external magnetic torque
(no side-magnets). As explained in S.I., the drag coefficient £ of the rotating bead is directly inferred from its
angular fluctuations. Thus, we deduce the NpF torque /(o) = &w by measuring the angular velocity of the
bead at different supercoiling degrees between o =-0.43 and o = 0 (Figure 3, red portions). At one revolution
per minute, the whole C 2 S transition takes more than 10 hours, which is longer than the NpF dissociation
time. Therefore, we use the auxiliary magnets to gradually unwind the filaments (Figure 3b, black segments)
and, thus, measure the torque at different supercoiling degrees. We observe that the tendency to unwind
held true up to approximately 0=-0.43 corresponding to the supercoiling associated to the S-state of the
NpF. Depending on the supercoiling degree of the nucleoprotein filament, the measured torque ranges
between 51 and 2521 pN:nm (N = 26; standard deviation: 3.5 pN-nm) as shown in Figure 3c. In the presence
of Mg* (ATP hydrolysis is permitted) the maximal measured torque is 21+1 pN-nm (N = 24; standard

deviation: 3.5 pN-nm). These values are compatible with those previously measured by Lee et al*.
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Figure 3: (a) Stall torque of the hRad51 NpF. For very small magnetic torques (non-measurable), the
filament drives the bead and the rotation is continuous within the experimental time resolution. At 17
pN.nm, pauses appear. The stronger the torque, the longer are the pauses. The pauses occur when the
bead dipole is aligned with the external magnetic field. Above ~24 pN the rotation is completely stalled.
(b) Rotation of the nucleoprotein filament as a function of time, at different supercoiling degrees. Along
the red portions of the curves, the horizontal magnetic field was kept << 17 pN.nm by raising the lateral
magnets. To quickly change the supercoiling degree of the filament (black portions of the curve) we force
an accelerated bead rotation using the magnetic tweezers. (c) Torque developed by the nucleoprotein
filament as a function of its normalized torsion o. The best fit yields a critical torque I'* = 16 pN - nm ,
for which half of the proteins are in the S-state. This corresponds to a difference of chemical potential
Apc,s =—13.5+ 1 pN  -nm. For a relative extension of 1.05+0.025 (see Figure 1b after hRad51
injection, o = 0), meaning that 10% of the hRad51 are in the S-state, the free-energy is minimal for a
torsional stiffness K y = 400 + 200 pN - nmm. (d) Free Energy associated to the two conformational
states of a single hRad51, deduced using the measured torque, force, and stiffness’s. For this value of K,
a barrier of ~45 pN-nm appears between the C-state and the S-state.



Two-state mechanical model of hRad51 nucleoprotein filament

Both electron microscopy observations® and magnetic tweezers experiments suggest that the hRad51
assembles on the dsDNA either in the condensed or stretched state. Thus, we assume that only those two
states exist and propose a quantitative two-state elastic model of the NpF. Using this model, we estimate
the difference of internal energy Au that drives the spontaneous C-S transition in the absence of external

stress.

In the following, we consider the NpF as a polymer made of N hRad51 monomers, among which n; are in the
S-state. (see Figure SI1). When perturbed by torsion or traction, the hRad51 protein helix either deforms
elastically or switch from one state to the other (S & C). For small mechanical strains, we hypothesize that
the NpF responds linearly, with torsional and longitudinal stiffness’s Ky/N and K, /N respectively, Kg and K,

being the single protein contribution to the torsional and longitudinal stiffness of the helix.

Within this framework, the free energy is the sum of the elastic energy stored in the strained NpF
(extension/torsion), the energy injected by the tweezers, the entropic contribution due to the fact that ng/N

hRad51 are in the S-state, and the energy ngs-Au released by the ns proteins in the C=>S transition:

NpF Extension (elastic) NpF Torsion (elastic)
K K Tweezers
G(L,O,ng) = ﬁ [L — (N€c + ngA®)]? + %[@ — (N9 +nsA9)]2 = F-L —T-0

+NkBT[% ln(%)+ (1—%) ln(l—%)]+ n - Au

i Pot.
Entropy Chemical Pot

(1)
Here L and @ are respectively the full extension and the torsional angle of the NpF under a force F and a
torque I. £, and 9. are respectively the extension and the torsion of hRad51 in the C-state, which
correspond to those of B-DNA. Each protein in the S-state evokes an additional extension Af and a negative

torsion AY.

The elastic stiffness K, of a single hRad51 protein bound to dsDNA may be evaluated using the force-
extension curve measured by van Mameren et al."” to K, = 800 + 60 pN - nm~'. We are thus left with two
unknown parameters: Ky and Apuc_s that have to be deduced from our experiments. All the parameters

introduced in equation (1) are summarized in Table 1.



NpF torsional stiffness and Energy released in the C-2S transition.
The partial derivatives of the free energy G(L, ®,ng) with respect to L, ® and ns vanish at the equilibrium

state. From equation (1), we derive that (see details in SI):

Ng _ 1
N T 1te-(TAO+F-AZ—Ap)/KgT
L F Ng
S e+
1\ Nk, ¢y

= L 49, +20.
Ky N

r
Z|o

(2)

In Figure 1b, we show that the dsDNA exhibits a spontaneous elongation of 5+1% (L/L° = 1.05) when it gets in
contact with hRad51 proteins, if its topology is kept locked to o = 0. From the second expression of equation
(2), we deduce that this length corresponds to ny/N = 9+2% of hRad51 proteins in the S-state. Remarkably,
at low force, the value of ny/N only slightly depends on the elastic constant of the protein K,, which has
been semi-quantitatively deduced from the publication by Van Mameren et al*’. With a stretching force F = 2

pN, a variation of K, by a factor of four leads to a change smaller than 0.8% in the estimation of ny/N.

The ratio ng/N is thermodynamically determined by the balance between the energy Au released by one
hRad51 molecule undergoing the C-2S transition and the elastic energy stored in the filament of stiffness Ks
during the transition, if the latter does not release the torsional stress (the tweezers impose o = 0). By
combining equations (1) and (3) (see SI) and considering that ng/N = 9%2% at ¢ = 0, we deduce a torsional
stiffness Ky = 400+150 pN-nm. This stiffness is compatible with that previously measured by Lee et al*® and

only slightly depends on the absolute value Au (an error of £3 pN-nm in Au affects Ky by less than 50 pN-nm).

We precisely determine Au from the torque (o) developed by the nucleoprotein filament at different
supercoiling degrees (Figure 3c). The analytical function o(f) is obtained by combining the first and the third

expression of equation (2) :

(¢S] 1T A9
o) = Noc 1= 9 [K_a + 1+e—(F~AS+F»A{’—Au)/kBT]

(3)

Both Au and Ky can be estimated by fitting equation (3) to the experimental data. However, K5 has a little
impact on Torque-Supercoiling curve (Figure 3c) and, in practice, an uncertainty of +200 pN-nm on Kj, gives

an error of £0.6 pN-nm on Au.
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By recursively fitting equation (2b) the Extension-Supercoiling curve (Figure 1b) and equation (3) to the
Torque-Supercoiling curve (Figure 3c), we obtain the best agreement for Ks = 390110 pN:-nm and Au = -

13.5+1 pN-nm.

Critical torque of the S2C transition

AL— A .
u, at which the

The first expression of equation (2) indicates that there is a critical torque I'* = — 5

hRad51 proteins are half in the S-state and half in the C-state. In terms of energy, * is the torque at which
the mechanical energy introduced by the tweezers AW* = A9 -[* exactly compensates the difference of

internal energy Au.With our values of Ky and Au we find I* = 16 pN-nm-Rad™.

For a little perturbation of torque around * the proportion of hRad51 proteins ng/N in the S-state varies
very quickly. In this perspective, the NpF is a mechano-sensitive complex, whose maximal sensitivity is at [*:
slightly above M most of the hRad51 proteins undergo the S-=C transition; just below they remain in the S-

state.

Energy landscape of the Nucleoprotein Filament

In Homologous Recombination, the nucleoprotein filament is first assembled on a single-stranded DNA
molecule. Then, it gets in contact with the homologous double-stranded DNA to initiate the homology
search and, eventually, the strand exchange. Even though non-physiological, all the experiments shown
above are performed on nucleoprotein filaments directly assembled onto a dsDNA. Indeed, this is the only

way to apply torsion to the nucleoprotein filament.

As during homology search the ATP is not hydrolyzed (the reaction remains reversible) the total free-energy
is conserved during this phase. As stated before, the free-energy conservation implies that the energy of the
three-strand synapse (nucleoprotein filament in contact with both ssDNA and dsDNA) does not depend on

the order by which the ssDNA and the dsDNA molecules interact with the NpF. In practice, the energy

difference AuS”ds between C-state and S-state in the three-strand synapse can be written as:

dsDNA first ssDNA first
—_ —_
Auss+ds — Aﬂds‘l‘ AWSS g Aﬂss‘l' AWdS ,

(4)

where Au®*® and Ayds are the energy difference between C-state and S-state of a nucleoprotein filament
assembled on a ssDNA and on a dsDNA respectively, and AW S and AW S the work required to extend and

unwind the dsDNA and the ssDNA in the NpF.

11



When the NpF is assembled on the dsDNA molecule, we measure an energy difference A,uds =-13.5 pN:-nm
(see Figure 3d). Bustamante et al"® estimate AWSS to be around 5 pN-nm, which leads to A,uss+d5 =
A + AWSS ~ -85 pN - nm. This negative value means that in the three strand synapse the S-state
remains favorable as compared to the C-state, even considering the additional energy required to extend

also the third DNA strand (ssDNA). With ApSSt%S = —8.5 pN - nm, 90% of hRad51 remain in the S-state, as

illustrated in Figure 4 (b).

From the right hand of equation (4) and with AW estimated to about 33 pN-nm (Léger et al*°), we evaluate
the energy needed to compact the nucleoprotein filament assembled on ssDNA molecule Au®*® ~
—41.5 pN - nm. With such a large energy difference, the stretched form of the nucleoprotein filament is

extremely favored (see Figure 5a, black line), as consensually reported in the literature.

Using the first expression of equation (2), we estimate the ratio of hRad51 protein in the S-state, as well as
the extension and the topological state of the nucleoprotein filament as a function of the mechanical energy
brought by the two DNA molecules (see Figure 4). Whereas the filament is fully stretched in the presence of
the ssDNA molecule (point “a”, in Figure 4), the critical free energy at which ng/N =1/2 is almost reached

when the dsDNA molecule is added (b) to form the three strand synapse.

12
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Figured: Ratio of hRad51 proteins in the S-state, as a function of the energy required to interact with the
DNA fragments. Zero Energy it chosen where S-state and C-state are equally probable. In interaction with
both ssDNA and dsDNA, the S-state is statistically favored (ns/N > 90%). Conversely, the S-state becomes

”n u

penalized (nsy/N < 0.5%) when the full homology is found (“Homologous”, “d”). In this case, the filament is
almost fully converted in the ADP state. Interestingly, one single mismatch per hRad51 (“1/3
Heterologous”, “c”) costs enough energy to impede the transition into the condensed state and maintains
the Nucleoprotein Filament in a reversible state. Below: supercoiling degree (black) and normalized
extension (red) of the Nucleoprotein Filament.

High sensitivity and irreversibility

The main result of the two-state model is that the NpF responds in a non-linear manner to the stress due to
the compression and torsion induced by the ssDNA and dsDNA molecules. At the critical torque (or critical
energy) '*, the response of the nucleoprotein filament is maximal and a little external energy difference has
a strong influence on the direction of the C < § transition. In Homologous Recombination, there is a little
energy difference between pairing a perfectly matching sequence and one containing a mismatch. Whereas

2021 the denaturation bubble due

the pairing of a homologous sequence brings 8 to 12 pN-nm per base-pair
to a single mismatch gives an energy penalty of about -10 pN-nm?. The latter case (single mismatch in a
triplet) corresponds to the energy landscape shown by the black curve in Figure 5c, where the two states are

equally probable (point “c” in Figure 4) and the supercoiling degree is 0 =~ — 0.3. Noticeably, at 0 = - 0.3 we
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never observe the depolymerization, as this is below the supercoiling degree associated to the stable ADP-
state of the nucleoprotein filament (o = — 0.15). As a consequence, the reaction remains reversible if there is

no full homology because the total energy is not sufficient to incorporate the second DNA molecule.

Conversely, the case of full homology corresponds to the energy landscape shown in Figure 5d (black curve).
Here the S2C transition is thermodynamically favorable and of 98-99.9% of the hRad51 proteins switch in
the C-state (point “d” in Figure 4). The ATP hydrolysis associated to the S =2C transition (experiment shown in
Figure 2) leads to the consequent of the NpF?. If the last part of the reaction happens faster than the
reverse transition C2S (see Discussion), the reaction becomes irreversible and the final products are (old

ssDNA + new dsDNA) are delivered.

N
o
o

s / [ ‘ ‘ S
a \ —Single Protein  / sspNA b \ ssDNA + dsDNA
| —Pentamer /

/ ’

\\ ///’ E § \\ /+ :
l‘ = // + \ I

Free Energy difference [pN-nm]
=)
o

Free Energy difference [pN-nm]

06 04 02 0 02 06 -04 02 0 0.2
Supercoiling degree [o] Supercoiling degree [c]

Figure 5: Free-Energy Landscape of the transition between S-state and C-state in different conditions. The
energy is normalized to one hRad51 unit, associated to three base-pairs. (a) Nucleoprotein filament
assembled on ssDNA molecules. (b) NpF in interaction with three DNA strands (synapse before strand
invasion). (c) Free-Energy landscapes after strand invasion with 67% and (d) with perfect homology. The
black curves correspond to the free energy associated to one single unit, while the red curves correspond
to the free energy required to compact a pentameter.

Activation barrier and homology length selectivity
There is strong evidence for a cooperative behavior of hRad51. In the absence of DNA, hRad51 partially

assemble in oligomeric rings. Also in the presence of ssDNA, NpF nucleation requires the simultaneous
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binding of 4-6 hRad51*** and its depolymerization happens by unbinding of several hRad51 proteins at a
time”®. All these findings suggest that the active unit of HR is not the single hRad51, but a complex of 4-6

proteins.

In terms of mechanics, a complex of several proteins is intrinsically more compliant than a single protein. As
a toy model, one needs two times less energy to stretch two springs in series by a length Ax, as compared to
a single string of same stiffness. In fact, the strain Ax/x, of the double spring is twice smaller for a given Ax.
This plays an interesting role in our two-state model. As schematized in Figure 6a, a given extension of a two-
state spring can be reached either in the S-state or in the C-state, but with different internal mechanical
energies. Thermodynamically, the system would evolve toward the state of low energy. However, the
mechanical stress accumulated in the spring creates an energy barrier AG;* between the two states, which
hinders (or slows down) the transition. Interestingly, the enhanced compliance of a “dimer” (Figure 6b) has
the effect of lowering the elastic barrier to AG,* = AG,*/2 and facilitates the transition of the single units,

one by one. The barrier vanishes for an increasing number of “two-state springs” in series.

N
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- »
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Figure 6: Potential energy of a two-state spring (A) compared to the energy of 2 two-state springs in
series (B). Whereas in both cases C-state is energetically more favorable than S-state, the height of
transition barrier AG* decreases inversely to the number of two-state springs.

Translated to hRad51 proteins, we use the two-state model to compute the barrier height, both for a single
protein and for a pentamer. With a torsional stiffness Ky = 400pN - nm, AG;* is in the order of 50 pn-nm
(see black line in Figure 5). Such a barrier (12.5 kgT ) is high compared to the thermal energy and the
dynamics of the transition may be slow in comparison to the lifetime of a three strand synapse, also in case
of perfect homology. On the contrary, the Free Energy Landscape of a hRad51-pentamer (red curves in

Figure 5) shows five activation barriers, but their height AGs* almost vanishes in case of perfect homology
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(Figure 5d). In the latter case, the S 2C transition occurs instantaneously once the homology is found and the

reaction becomes immediately irreversible.

The above model could provide a quantitative explanation of the recent experiments reported by Qi et al.
The authors point the fundamental role of microhomologies (8-15 consecutive homologous base-pairs) in
facilitating the homology recognition and the exchange process. The fact that HR requires 15 consecutive
homologous base pairs (3-5 hRad51 adjacent proteins) to succeed, and never happens with a single
homologous triplet, is commonly interpreted as an evolutional way to avoid homology traps. The presence
of activation barriers, whose height is inversely proportional to the number of hRad51 units involved in the
process, explains why the functional cooperativity of the hRad51 complex penalizes the short homologies

and why Homologous Recombination requires 8-15 consecutive homologous base-pairs to succeed.
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Discussion

We measured that the NpF torsional Young’s modulus (Kg =390 £ 110 pN - nm) is two orders of
magnitude smaller than the typical torsional stiffness of globular proteins®. It is notable that the NpF made
of RecA protein, the bacterial homolog of hRad51, also exhibits a relatively small torsional stiffness.
Interestingly, the torsional stiffness of the NpF is very close to that of bare dsDNA, which is in the range of
300-480 pN-nm*’. Such a low torsional stiffness of the NpF suggests that its torsional stress is indeed mainly
stored in the dsDNA molecule and not in the hRad51 structure. With this hypothesis, hRad51 proteins would
only stretch the DNA molecule, and the DNA undercoiling would result from the fact that the double helix
spontaneously unwinds under tension. The hRad51 protein adapts to the topology of the dsDNA molecule by

switching between the ADP-bound C-state and the ATP-bound S-state.

According to the above, the NpF works as a mechanical sensor, in which the ATP/ADP conversion is
mechanically triggered above/below a critical energy (or torque). The ATP hydrolysis is not used to bias a
mechanical transition, as typically happens in molecular motors, but it is used to dissipate the energy and to
trigger the irreversibility of a chemical exchange after homology recognition. More specifically, the NpF
bears many similarities with the F1-ATPase/synthase, a quasi-reversible molecular motor. In fact, the dsDNA
molecule acts as a rotor inside the hRad51 NpF, like the y-subunit does in the F1-ATPase. In both cases a
counterclockwise rotation of this central pivot (the dsDNA molecule or the y-subunit) triggers a change in
the chemical state of the complex from ATP to ADP, and vice-versa for a clockwise rotation. This similar
behavior is indeed also associated with striking structural similarities. In particular, the F1-ATPase is a ring
constituted of three heterodimers and the NpF is a helix constituted of three homodimers per turn.
Interestingly, in the absence of DNA the recombinase also assemble in rings, suggesting that the helical

2930 The loops that bind DNA in recombinase

geometry of the NpF is dictated by the presence of the DNA
proteins are topologically similar to those that bind the coiled-coil y-subunit in the F1-ATPase®. Eventually,
the nucleotide-binding sites of the two proteins are structurally homologous®. Due to the proximity
between the L1 loop and the ATP-binding site in hRad51, the ATP binding can naturally lead to changes of

33,34

filament architecture resulting in the intercalation-like insertion into the dsDNA”**" and in the consequent

stretching.

In conclusion, we measured the dynamics and the thermodynamics of a nucleoprotein filament assembled
on dsDNA molecules, during its transitions between the stretched and the condensed forms. Our
observations suggest that, in the absence of external mechanical constraints, the conformational and the
chemical states of hRad51 proteins are strongly correlated (S = ATP; C = ADP). We also prove that the switch
between S and C states is mechanically triggered by an external torsion induced by the magnetic tweezers.

We evaluate that a similar torsional stress is occasioned by the dsDNA molecule, suggesting that hRad51

17



proteins only stretches the DNA molecule. The DNA undercoiling would result from the spontaneous
unwinding of a DNA double helix under tension, and the hRad51 protein adapts to the topology of the
dsDNA molecule by switching between the ADP-bound C-state and the ATP-bound S-state. However, we
measure that the simple interaction between the hRad51 helix and the two DNA molecules does not release
enough energy to stretch, unwind and denature the DNA fragments. The additional chemical energy
released during the pairing of homologous bases is required to stretch the dsDNA molecules, to occasion the
concomitant transition of the nucleoprotein filament into the C-state and to trigger its disassembly. Unlike
conventional molecular motors, the recombinase proteins work as a non-linear mechanical sensor and use
the ATP hydrolysis to make the reaction irreversible when the homologous DNA sequence is found, by
dismantling the nucleoprotein filament. Eventually, we provide a physical mechanism to explain how the
little free energy gain, due to the pairing between homologous sequences, is sufficient to trigger the

irreversibility of the HR process.

Table
Parameter Description Value Reference
K, NpF elastic constant (per hRad51) 800 pN/nm [17]
NpF pitch in the C-state (per hRad51) 3 bp of B-
tc 1.02 nm 2
DNA
A? NpF pitch increase from C to S-state (per hRad51) 0.53 nm [4]
Ky NpF torsional stiffness (per hRad51) To be determined Fitted + [16]
I NpF torsion in the C-state (per hRad51) 1.81 Rad 3 bp of B-DNA
A9 NpF torsion increase from C to S-state (per hRad51) -0.78 Rad [16]
Apc_g Energy difference between C and S-state (per hRad51) To be determined Fitted
F External force (applied by the tweezers) 0-10 pN Measured
L Measured length of the DNA molecule 0-8 um Measured
r External torque (applied by the tweezers) 0-30 pN:nm Measured
0 Measured torsion of the DNA molecule 5000-10000 Rad Measured

Table 1: List of the parameters introduced in equation (1), which describes the two-state elastic model . In

bold, the undetermined ones.
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Methods

Production and purification of Rad51 protein

Human Rad51 gene was inserted at the Ndel site of the pET15b expression vector (Novagen) and expressed
in the Escherichia coli JIM109 (DE3) strain that also carried an expression vector for the minor transfer RNAs
[Codon(+)RIL®, Novagen]. The protein was purified on Nickel-nitrilotriacetic acid agarose (Invitrogen,
France). The hexahistidine tag was then removed from the human Rad51 protein sequence by incubation
with 1.5 units of thrombin protease (Amersham Biosciences) per mg of Rad51 during 18 h. The tag-free
protein was further purified by chromatography on a MonoQ column (Amersham Biosciences). The Rad51-
containing fractions were dialysed against storage buffer (20mM Tris—=HCI, pH 8, 0.25mM
ethylenediaminetetraacetic acid (EDTA), 20% glycerol, 5mM dithiothreitol (DTT) and 200mM KCI) and kept at
-802C. Protein concentrations were determined using the Bio Rad protein assay kit with bovine serum

albumin (Pierce) as a standard.

DNA construction

Two different DNA constructs were used. The first DNA construct was composed of a 14435bp central
fragment ligated at one end to a multidigoxigenin-labelled DNA fragment of 672bp and at the other end to a
multibiotin-labelled fragment of 834+81bp. All fragments were obtained by polymerase chain reaction of the
A-phage DNA; the central fragment was amplified between the positions 22180 and 37096 (Expand Long
Template PCR System, Roche) and digested by Mlul and Eagl (New England Biolabs) at respectively 22220
and 36654; the biotin fragment was amplified between positions 35901 and 37568 with biotin-modified
dUTP (Roche) and digested by Eagl at 36554; the digoxigenin fragment was amplified between positions
20281 and 20962 with digoxigenin-modified dUTP (Roche) and digested by Mlul at 20952.

The second DNA construct was composed of a 10338bp central fragment ligated at one end to a
multidigoxigenin-labelled DNA fragment of 907+172bp and at the other end to a multibiotin-labelled
fragment of 696+496bp. The central fragment was obtained by transformation of the pREP4 vector in E.Coli
cells (Turbo Competent E.Coli cells, New England Biolabs) which was linearized through digestion by Hindlll
and Notl (New England Biolabs) at respectively positions 592 and 603. The digoxigenin and biotin fragments
were obtained by PCR with digoxigenin-modified or biotin-modified dUTP (Roche). The digoxigenin fragment
was amplified between positions 43063 and 44875 of the A-phage DNA and digested by Hindlll at 44141; the
biotin fragment was amplified between positions 4557 and 5947 of the pTYB4 vector and digested by Notl at
5748.

PCR products were purified on spin columns (BD Chroma Spin 1000 or 100) and fragment ligation (T4 DNA

ligase, New England Biolabs) was conducted with excess multidigoxigenin and multibiotin fragments to
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ensure optimal reaction of most of the central fragments. Ligation products were then purified and selected
through gel extraction (QiaQUICK Gel extraction kit, QIAGEN). The final products were unnicked DNA
molecules of respectively 5.42+0.03um and 4.0620.23um with multiple biotin labels on one end and multiple

digoxigenin labels on the other end.

Microfluidic setup

The biotin-labeled ends of DNA molecules were bound to streptavidin-coated 2.8um magnetic beads
(Dynabeads® M-280 Streptavidin) in a binding buffer (10mM Tris—HCI, pH 7.5, 1ImM EDTA, 50mM NaCl) by
interaction of the biotin label with the streptavidin. The DNA-bound bead suspension was then introduced at
a controlled flow rate into a polydimethylsiloxane (PDMS) microchannel. After 30 min of incubation, most of
the unbound beads were washed out of the channel with TE buffer (10mM Tris—HCI, 1mM EDTA, pH 7.5).
Flow chamber, a PDMS microchannel 2cm x 2mm x 110um (total volume: 4.4ul), was placed on a glass
coverslip of 24x40mm (Erie Scientific Company, France) treated with Sigmacote® (Sigma-Aldrich) followed by
anti-digoxigenin (Roche, France) for subsequent binding of digoxigenin-labelled DNA molecules. Before first
use of the channel, Pluronic F-127® (Sigma-Aldrich) was injected into it and incubated overnight at 4°C to

minimize adsorption of hRad51 onto the glass surface and onto the PDMS walls.

Setup description

Custom hybrid magnetic tweezers were used with a configuration including a centered main ring magnet
coupled with auxiliary cylindrical magnets on the sides. The main magnet was composed of the stacking of
three ring magnets of 6x2mm with holes of 2mm in diameter (R-06-02-02-G, Supermagnete). The auxiliary
magnets were composed of two 4x7mm cylindrical magnets (S-04-07-N, Supermagnete) which were placed
on either side of the main ring magnet with opposite polarities. The use of five step by step motors allowed
the user to control the XYZ position of the main magnet, the auxiliary magnets’ rotation and their height
relatively to the main magnet. The main ring magnet applied a vertical magnetic field with a vertical
gradient, pulling the beads upwards without hindering their rotation. The auxiliary magnets could be used to
apply null to increasingly strong horizontal magnetic fields. The magnetic torques thus applied could then be

measured through the analysis of the beads’ angular Brownian motion.

Torque Calibration

l.36

The experimental setup used here was an improvement of the one proposed by Lipfert et al.™. It aims at

Ill »37

easily switching between “classical” and “free-orbiting”>’ magnetic tweezers. The first are useful to impose
the supercoiling degree, while the second ones allow a free rotation of the beads around the vertical axis.
The setup is constituted by a main hollow cylindrical magnet (white in Figure 1a) coupled with a pair of side
cylindrical magnets (black). The cylinder imposes a vertical gradient of the magnetic field that depends on its

distance from the bead. This gradient is used to pull the bead up with a defined force. The side magnets can
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be raised or lowered at will. When lowered, the smaller magnets add a horizontal component to the
magnetic field that hinders rotations of the beads. If raised, the contribution of the smaller magnets is

negligible and thus equivalent to free-orbiting magnetic tweezers.

The torque applied by the magnetic tweezers is calibrated by monitoring the angular fluctuations of the
beads. Through the Boltzmann equation, we experimentally deduce the potential energy of the bead as a
function of its angular position (Figure SI2A). For small angular fluctuations, the potential is approximatively
harmonic. By fitting the power spectrum of the bead fluctuations to a Lorentzian function (Figure SI2B), we
simultaneously evaluate the angular stiffness of the tweezers and the viscous drag of the bead. The
calibration is repeated for each bead and for different heights of the magnets, before or after the

experiment.
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