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Abstract 12 

The increasing pressure to satisfy the environmental criteria concerning oil products leads to 13 

the need for developing accurate models to predict the performances of the refining processes. 14 

In the current study, a stochastic two-step procedure using Monte Carlo techniques is applied 15 

to and validated on the hydrotreating of Light Cycle Oil (LCO) gas oils. In the first step, a 16 

mixture of molecules representative of the LCO gas oils is generated using a molecular 17 

reconstruction method termed SR-REM. Subsequently, the Stochastic Simulation Algorithm 18 

(SSA) is applied to simulate the evolution of the mixture composition during hydrotreating. 19 

The results show that an accurate representation of eleven different LCO gas oils was 20 

obtained by the application of the molecular reconstruction method. The hydrotreating 21 

simulations of three LCO gas oils at different operating conditions showed a good agreement 22 

with the experimental data obtained at laboratory scale. The current stochastic procedure has 23 

demonstrated to be a valid tool for the reconstruction of the composition of LCO gas oils and 24 

the simulation of the hydrotreating process. 25 

 26 

Keywords 27 
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1. Introduction 30 

The pressure on the quality and the maximum impurities content of refinery products has been 31 

increased in the last decades due to the environmental concerns associated to their use. The 32 

suitable performance of the processes aimed to remove these impurities is essential to satisfy 33 

the specifications fixed for oil products. Among these processes, hydrotreating (HDT) is one 34 
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of the most mature technologies. The use of hydrogen at high temperature over a catalyst bed 35 

allows to remove sulphur, nitrogen and other undesirable elements from the petroleum 36 

distillates such as naphthas or gas oils. 37 

The correctness in the prediction of HDT process performance directly depends on the 38 

reliability of the used kinetic model. A lumping strategy, in which molecular components are 39 

grouped according to their global properties, has usually been applied in the kinetics models 40 

of complex hydrocarbons 1–3. However, this approach is no longer manageable due to the 41 

elevated number of generated groups and reaction pathways. The limited applicability of 42 

lumped models has resulted in the development of molecular-based kinetic models 2,4–9. In 43 

this latter approach, reactant species and products are described by a selection of molecules or 44 

small groups of them which react following networks formed by reactions at the molecular 45 

level and distinguished by a global kinetic constant. The elemental steps are regrouped within 46 

the global reactions scheme, thereby reducing the number of reactive species and the size of 47 

reaction network. Following this approach, Lopez Garcia et al. 8 have simulated the 48 

hydrotreating of LCO gas oils and, more recently, Pereira et al. 9–11 have proposed a kinetic 49 

methodology for its application on conversion of petroleum cuts based on the Stochastic 50 

Simulation Algorithm (SSA) developed by Gillespie 12. 51 

These kinetics models required a molecular description of the feedstock. However, the high 52 

complexity of the petroleum cuts hinders their molecular characterisation even by using the 53 

most advanced analytical techniques. To surpass this drawback, a molecular representation of 54 

the feedstock can be determined by the application of a molecular reconstruction algorithm. 55 

This kind of algorithms provides a set of molecules from petroleum analyses and chemical 56 

knowledge. Several approaches have been performed in this sense, from the first model 57 

proposed by Liguras and Allen 13 to the stochastic reconstruction (SR) developed by Neurock 58 

et al. 14 in which a Monte Carlo method is used to sample the objective function. 59 

Hudebine 15,16 has characterised different petroleum cuts by the application of a two-steps 60 

algorithm based on SR algorithm and on reconstruction entropy maximisation (REM). The 61 

combination of both methods (SR-REM) overcomes the drawbacks of its separated 62 

application, such as noise of the objective function and computational effort. Posteriorly, 63 

Pereira et al. 17,18 have modified Hudebine’s method to introduce a genetic algorithm which 64 

performs the minimisation of the objective function. 65 
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The current study is focused on the validation of the SR-SEM and SSA algorithms developed 66 

by Pereira et al. on the hydrotreating of Light Cycle Oil (LCO) gas oils. A brief description of 67 

the stochastic methodology applied to both molecular reconstruction and reaction simulation 68 

has been developed. Then, the molecular reconstruction of eleven LCO gas oil has been 69 

carried out and the hydrotreating of three of them has been simulated at different operational 70 

conditions.  71 

2. Methodology 72 

The stochastic methodology applied in the current work consists of two steps. In the first one, 73 

a molecular reconstruction algorithm is used to model the feedstock by means of a set of 74 

molecules which mixture properties are similar to those of the feedstock. This algorithm 75 

comprises two coupled methods: stochastic reconstruction (SR) and reconstruction by entropy 76 

maximization (REM). The application of the SR method enables to obtain a set of molecules 77 

typical for a given type of oil fraction. Then, the molar fraction of molecules is adjusted using 78 

the REM method in order to improve the predicted mixture properties. 79 

Finally, the generated set of molecules is introduced as input in the second step concerning 80 

the molecule-based kinetic modelling of the conversion process. A kinetic Monte Carlo 81 

(kMC) method is applied to model the chemical reaction system at a molecular level. This 82 

approach is an alternative to traditional deterministic kinetic methods in which a serial of 83 

differential equations (ODE) are involved to obtain a temporal evolution of the species in the 84 

system. 85 

2.1. Molecular reconstruction 86 

The SR method, from which a representative set of molecules is generated, uses probability 87 

distributions functions (PDF’s) of structural attributes, such as number of rings or number of 88 

side chains, to characterise the oil fraction to be reconstructed 14,19. Feedstock analyses, which 89 

provide information about atomic abundance (elemental analysis) or structural classes (GC-90 

MS), and the previous knowledge about petroleum cuts should be taken into account to select 91 

the proper structural attributes. The selected PDF’s are sampled N times using a Monte Carlo 92 

method in order to generate an initial set of N molecules (Figure 1). To carry out the transition 93 

from PDF’s to the set of molecules, the application of a building diagram and a serial of 94 

chemical rules is required to avoid the creation of impossible and unlikely molecules. The 95 

building diagram is a decision tree that defines the sequence in which PDF’s should be 96 

sampled to proceed to the posterior assembly of the different attributes, which provides the 97 
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structure of the molecule. During the assembly process, the application of chemical rules 98 

discards the molecules which do not satisfy the thermodynamic or likelihood criteria. 99 

The application of the Monte Carlo sampling procedure led to the creation of a mixture of N 100 

molecules, each one with a molar fraction equal to 1/N. The average properties of this mixture 101 

are calculated and compared with the experimental data by means of an objective function. 102 

An optimisation method is used to minimise this objective function though the modification 103 

of PDF’s parameters. The simulated annealing 15,19–21 and the genetic algorithms 22–24 are both 104 

usual methods applied to the optimisation of the objective function in the field of the 105 

stochastic reconstruction. However, Schnongs 24 has demonstrated that the genetic algorithms 106 

are more adapted to the stochastic reconstruction than the simulated annealing since the 107 

genetic algorithms are less sensitive to the initial value of the distribution parameters and it 108 

has also showed a lower oscillation of the value of the objective function. 109 

Once the initial set of molecules is obtained, the second step based on the reconstruction by 110 

entropy maximisation (REM) is applied. During this step, the molar fraction of the molecules 111 

in the mixture is modified to obtain a mixture with properties closer to those experimentally 112 

determined 15.To carry out the adjustment of the parameters, the REM method, based on 113 

Shannon’s information theory 25, uses the maximisation of an information entropy criterion 114 

(E(xi)) given by the Eq. (1): 115 

𝐸(𝑥𝑖) = −∑ 𝑥𝑖 ∙ ln (𝑥𝑖)𝑁
𝑖=1          (1) 116 

with 117 

∑ 𝑥𝑖 = 1𝑁
𝑖=1         (2) 118 

where xi corresponds to the molar fraction of molecule i and N is the number of molecules 119 

present in the initial mixture determined by applying the SR method. This criterion guaranties 120 

that, without constrains or available information, a given molecule cannot be preferred to 121 

others, so that the distribution of the predefined set of molecules remains uniform. The 122 

introduction of a matrix of constrains from analytical data, mixing rules and the initial set of 123 

molecules distorts this uniformity in order to match this information. These constrains are 124 

introduced in the entropy maximisation criterion by means of the Lagrange multiplier method. 125 

In the case of linear constrains were used, the problem is reduced to an optimisation of J 126 

parameters of a no-linear equation that can be performed by the conjugate gradient method. 127 
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Once the Lagrange parameters are determined, the molar fraction of the molecules is 128 

calculated in order to obtain the representative mixture of molecules. 129 

2.2. Reaction modelling 130 

The goal of the kMC method is to describe the chemical reaction system at the molecular 131 

level by following the transformations of a discrete population of molecules. Contrary to 132 

deterministic methods, the temporal evolution of the system is not described by a set of 133 

differential equations, but by a single probabilistic function termed the chemical master 134 

equation (CME) 26,27. This equation determines the different status of the system in a 135 

sequence of discrete-time steps. The evolution of the system is a result from chemical 136 

reactions, those have associated a probability function, which depends on the reactant 137 

molecule and the rate constant. 138 

However, CME cannot usually be solved by analytical or numerical methods due to its high 139 

complexity. In this case, a Monte Carlo procedure developed by Gillespie 12 and termed 140 

Stochastic Simulated Algorithm (SSA) is used to solve CME. This method is based on an 141 

event-space approach, i.e., the evolution of the system is followed event by event, resulting in 142 

disparate time intervals between two consecutive events or, in this particular case, reactions. 143 

The scheme followed in the application of the kMC method has been illustrated in Figure 2. 144 

The initial step of the procedure consists in the “molecular discretisation” of the set of 145 

molecules generated by applying the SR-REM method. During this step, the replication of the 146 

molecules in the mixture is performed according to their molar fraction and it is based on the 147 

same principle as the procedure developed by Hudebine and Verstraete 21 for the creation of a 148 

representative set of molecules for gasoline fractions. A replication factor (Frep), defined as 149 

the maximum number of molecules in the discrete mixture, is multiplied by the mole fraction 150 

of each molecule in order to calculate the number of replications. Frep also defines the lowest 151 

mole fraction to be retained since the molecules with a mole fraction lower than 0.5/Frep are 152 

discarded. The factor 0.5 arises from the rounding off to the closest integer. 153 

In the next step of the kMC procedure, all potential reaction events should be identified and 154 

listed taking into account a set of reaction rules that generates the reactions by inspecting the 155 

structure of the molecules. Once all potential reaction events are identified, the normalised 156 

probability for each reaction event is calculated as the ratio of its stochastic rate (Rv) to the 157 

sum of the rates of all reaction events (M), as shown in Eq. (3): 158 
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𝑃𝑣 = 𝑅𝑣
∑ 𝑅𝑖𝑀
𝑖

          (3) 159 

with 160 

𝑅𝑣 = ℎ𝑣 ∙ 𝑐𝑣        (4) 161 

where hv is the number of distinguishable combinations of the reactant molecule and cv is the 162 

stochastic rate parameter. For monomolecular reactions, the number of distinguishable 163 

combinations of the reactant molecules hv equals 1, while for bimolecular reactions, it is equal 164 

to the number of available molecules of the second reactant. The stochastic rate parameter cv 165 

is closely linked to the deterministic rate parameter (kv) of each reaction. In the case of 166 

monomolecular reactions, kv and cv are equal, while for bimolecular reactions, cv is equal to 167 

the ratio of kv by reaction volume V.12 168 

The effect of the reaction temperature on the stochastic rate is taking into account by means of 169 

the Arrhenius expression reflected in Eq. (5): 170 

𝑐𝑣 = 𝑐𝑣(𝑇𝑟𝑒𝑓) ∙ exp (−𝐸𝑎
𝑅
∙ (1

𝑇
− 1

𝑇𝑟𝑒𝑓
))        (5) 171 

where cv(Tref) is the stochastic rate constant of the reaction type v at the reference temperature 172 

Tref, Ea is the activation energy, R is the ideal gas constant, T is the system temperature and 173 

Tref is the reference temperature. 174 

The subsequent step of the algorithm is aimed to the determination of the cumulative reaction 175 

probability distribution (DR), which grouped all M reactions that can take place in the mixture 176 

at a given time t.  177 

A first random number (RN1) is obtained to determine the reaction time step (∆t) according to 178 

the Eq. (6), as proposed Gillespie 12: 179 

∆𝑡 = − ln (𝑅𝑁1)
∑ 𝑅𝑖𝑀
𝑖

          (6) 180 

The distribution DR is randomly sampled in order to select the next reaction (µ) to be 181 

executed in the next reaction time step. For this purpose, a second random number between 0 182 

and 1 is drawn (RN2) and used to select the next reaction from the cumulative distribution DR, 183 

as shown in Eq. (7): 184 

𝐷𝑅(𝜇 − 1) < 𝑅𝑁2 ≤ 𝐷𝑅(𝜇)         (7) 185 
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Once the reaction and the time step have been defined, the system is updated by the execution 186 

of the selected reaction, which implies the replace of the reactant(s) by the product(s) and the 187 

increase of simulation time in ∆t. The simulation continues reaction by reaction until the final 188 

simulation time is reached and a set of product molecules is obtained. 189 

Due to its stochastic nature, the algorithm should be executed several times in order to 190 

provide several sets of molecules which average can be a proper representation of the 191 

molecules in the reaction system. 192 

3. Application to the molecular reconstruction of LCO gas oils 193 

LCO gas oils are gas oil fractions obtained from the catalytic cracking process and composed 194 

by a mixture of saturates (paraffins and naphthenes), olefins and aromatic hydrocarbons8. 195 

These mixtures also show a marginal presence of nitrogen but an important content in 196 

sulphur, which is present in heterocyclic structures, such as thiophenes and 197 

benzothiophenes28. Their boiling point is in the range of 120°C to 450°C, which corresponds 198 

to the molecules with a number of carbons between C8 and C30 29. According to this data and 199 

the mass spectrum, LCO gas oils are formed by molecules with none or one poly-aromatic 200 

structure with a number of rings which usually ranges from 0 to 4 30–32. 201 

In the current work, it has been performed the molecular reconstruction of eleven LCO gas 202 

oils using the SR and REM algorithms. The PDF’s of molecular attributes in Table 1 is used 203 

to generated the set of molecules that would represent the LCO gas oils. Two kind of PDF’s 204 

(histograms and gamma functions) were used to defined molecular attributes. The use of 205 

histograms is limited to the attributes with a narrow range of possible values (less than three) 206 

while the gamma functions describe the attributes with a higher number of possible values. 207 

These PDF’s have been defined taking into account the previous knowledge about LCO gas 208 

oils composition. Firstly, it is considered that the molecules in mixture are only constituted by 209 

carbon , hydrogen and sulphur due to the negligible presence of nitrogen species. Then, 210 

nitrogen content is fully assigned to carbon fraction, the most abundant element in mixture. 211 

Another hypothesis is that paraffins, which would also include the marginal olefins fraction, 212 

are formed by alkyl chains with at least 8 carbons. It is also considered that, according to 213 

experimental data, each molecule is formed by a maximum of 4 cycles, in which linear alkyl 214 

chains can be the unique substituents, and that the sulphur containing compounds present in 215 

the mixture only belong to the thiophenes family and its derivatives. 216 
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In order to define the relationships between distributions and also identify the sampling steps, 217 

a building diagram is needed for the reconstruction of the molecules in LCO gas oils (Figure 218 

3). First, the type of molecule to be constructed (saturate or aromatic) is determined by 219 

distribution 1. In the case of saturate molecules, distribution 3 allows to determine the number 220 

of cyclohexane rings (ranged from 0 to 4). When the number of rings present is null, the 221 

molecule to be constructed is a paraffin, which chain length is determined by the application 222 

of distribution 8. Contrary, in the case of a naphthenic units with between 1 and 4 223 

cyclohexane rings, it is necessary to determine the number (distribution 6) and type 224 

(distribution 7) of the side chains. In the case of aromatic molecules, the number of benzenes, 225 

cyclohexanes and thiophenes is determined by distributions 2, 3 and 4, respectively. These 226 

three distributions are sampled until the total number of rings is inferior or equal to 4. The 227 

number of benzenes is always 1 or higher to avoid the creation of naphthenic molecules in 228 

this route. Besides, according to experimental data, most of the thiophene rings do not contain 229 

cyclohexane rings, so that distribution 3 is not sampled when thiophene rings are present. 230 

Once the number and type of cycles is defined, the distributions 5 and 6 are used to find the 231 

number of side chains in naphthenic and aromatic rings, respectively, and the distribution 7 is 232 

applied to determine the type of chain. 233 

Elemental analysis (carbon, hydrogen, sulphur and nitrogen), average molecular weight, 234 

specific gravity, simulated distillation, mass spectrometry (MS), 1H NMR and 13C NMR were 235 

used to characterise the LCO gas oils analytically. Elemental analysis is used to remove the 236 

molecules which are composed by an element with a null experimental value. For example, if 237 

sulphur presence has not been detected, all sulphureted molecules (benzothiophenes and 238 

dibenzothiophenes) are eliminated. In a similar way, all molecules belonging to a 239 

spectrometric family which has not been found in mass spectrometry analyses are suppressed. 240 

Spectrometric families are determined according to the number of aromatic and thiophene 241 

rings in compounds. Thus the following families can be distinguished: saturates (paraffins and 242 

cycloparaffins), monoaromatics (alkylbenzenes, tetralins…), diaromatics (naphthalenes, 243 

diphenyls…), triaromatics and compounds with more than three aromatic rings (anthracenes, 244 

phenanthrenes…), benzothiophenes and dibenzothiophenes. Meanwhile, simulated distillation 245 

enables to discard the molecules with a boiling temperature 5°C under the initial or 5°C over 246 

the final boiling point. This correction is introduced due to the bias between the real boiling 247 

point and the value obtained from simulated distillation curve 33. The “experimental” 248 
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molecular weight was calculated using an API correlation based on specific gravity and 249 

simulated distillation 34. 250 

3.1. Sensitivity of the stochastic method 251 

The average properties of the simulated mixture of molecules are calculated by the application 252 

of a number of linear mixing rules. An objective function (OF) is used to perform the 253 

comparison between calculated and measured properties. This function is the sum of the 254 

relative deviations between calculated and experimental data and it is given by Eq. (8): 255 

𝑂𝐹 =  1
𝑁𝑝
∙ ∑ 𝛿𝑖

𝑁𝑝
𝑖=1                     (8) 256 

where Np is the number of properties present in objective function and δi is the relative 257 

deviation between the calculated and experimental values of property i which is calculated 258 

following Eq. (9): 259 

𝛿𝑖 =  1
𝑁𝑀,𝑖

∙ ∑
�𝑋𝑗,𝑖

𝑒𝑥𝑝−𝑋𝑗,𝑖
𝑐𝑎𝑙𝑐�

𝑋𝑗,𝑖
𝑒𝑥𝑝

𝑁𝑀,𝑗
𝑗=1            (9) 260 

where NM,i is the number of measurements of property i (for example, the number of points in 261 

the simulated distillation) and Xj,i
exp and Xj,i

calc are, respectively, the experimental and 262 

calculated values of measurement j of property i.  263 

An elitist genetic algorithm developed by Pereira et al. 18 was applied in order to minimise 264 

this objective function by the modification of the parameters of the PDF’s for the structural 265 

attributes. Genetic algorithms 22–24, as well as simulated annealing 15,19–21 and particle swarm 266 

optimization 35, are robust global optimizers, a characteristic required for their application in 267 

stochastic models. Besides, according to its elitist nature, the applied methodology allows to a 268 

certain percentage of individuals to move to the following generation (in this case, a 269 

percentage of 50% was considered), with which the best individuals (i.e. those with the lowest 270 

OF values) remain in the next generation. 271 

The number of molecules is an important parameter in molecular reconstruction since an 272 

excessively low number would lead to an inadequate representation of the attributes of the 273 

represented mixture. Otherwise, the use of a large number of molecules would imply a 274 

significant increase in calculation time. In order to determine the optimal value for this 275 

parameter, the sensibility of the stochastic method has been tested by the generation of 100 276 

mixtures of N molecules from a set of parameter distributions determined for a LCO gas oil. 277 
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N value was varied in a range between 10 and 20000 molecules and the average, minimum, 278 

maximum and standard deviation values were determined for the objective function in each 279 

point (Figure 4). In addition, the time necessary to perform the calculation was also 280 

represented. 281 

It was observed that the increase of the size of the mixture leads to a drop of the objective 282 

function until attaining an asymptotic value at N = 5000 (Figure 4.a). The increase of the 283 

number of molecules also implies a rapprochement of the minimum and maximum values and 284 

a reduction in the standard deviation of the objective function. However, the drop of the 285 

standard deviation is very mild at N > 5000, while the calculation time continues to rise 286 

linearly with the size of the mixture (Figure 4.b). Then, a set of 5000 molecules was 287 

considered as optimal to perform the stochastic reconstruction of LCO gas oils. 288 

3.2. Construction of the molecular representation of LCO gas oils 289 

The analyses used in this case for the molecular reconstruction were the elemental analysis, 290 

MS and simulated distillation. The elemental analysis provides information on the number of 291 

thiophenes, while the information on the chemical structure is provided by MS and by 292 

simulated distillation in the case of the average molecule size and size distribution. The 293 

experimental and simulated properties were compared in Table 2 for a LCO gas oil. 294 

Properties that were not used in reconstruction step (specific gravity, molecular weight, 1H 295 

NMR and 13C NMR) were calculated from the predicted molecular mixture and also 296 

compared with the corresponding experimental values. 297 

The properties of the mixture obtained after the application of the SR step are mostly in good 298 

agreement with the analytical results. Some deviations are nevertheless observed in the 299 

simulated distillation curve. These differences may be explained by the fact that the 300 

distillation curve is calculated under the assumption that all molecules are perfectly separated 301 

by the use of increasing boiling points. However, this is not strictly true (especially in the 302 

region near the initial and final distillation points), since the chromatographic columns are not 303 

completely apolar and separation is influenced by the polarity of the molecules 29. 304 

On the other hand, the coupled application of SR and SEM schemes led to a significant 305 

improvement in the agreement between predicted and experimental data for most of the 306 

properties (Table 2). The most meaningful effects were observed on more specific and 307 

detailed analyses, such as NMR and MS, while only small improvements could be detected in 308 

the more global measurements, such as in the case of elemental analysis. 309 
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On the following step, a total of eleven LCO gas oils have been reconstructed, and the 310 

properties of the predicted mixtures have been compared with the corresponding experimental 311 

data in order to perform the validation of the current methodology (Figure 5). It was found a 312 

good agreement with the analytical results for most of the evaluated properties. However, a 313 

deviation was detected for the predicted average molecular weight, which was mostly placed 314 

below the value calculated from experimental data. This may be explained by the alterations 315 

in the determination of the distillation curve, which imply a reduction in the boiling point of 316 

the molecules with respect to their normal value. It leads to the prediction of molecules 317 

smaller than their counterpart and, consequently, to reduce the average molecular weight of 318 

the mixture. 319 

These results show that the predicted set of molecules are proper molecular representations of 320 

the corresponding LCO gas oils. Some of these simulated mixtures have been used as inputs 321 

for the kinetic model of the hydrotreating of LCO gas oil. 322 

4. Application to the hydrotreating of LCO gas oils 323 

Once the representative set of molecules has been generated for each LCO gas oil, the 324 

hydrotreating reactions are simulated by applying the kMC method. The experimental data 325 

used in this step has been collected from previous studies developed at IFP Energies nouvelles 326 

about the hydrotreating of these oil fractions 36.  327 

Three main type of reactions are involved in the hydrotreating process: hydrodesulphurisation 328 

(HDS), hydrodenitrogenation (HDN) and hydrogenation of benzene and cyclohexane rings 329 

and of olefins. However, the reactions of hydrodenitrogenation and hydrogenation of olefins 330 

will be neglected due to the lack of nitrogen and olefins in the mixture. Similarly, the HDS 331 

reactions are limited to heterocyclic structures since it has been considered that sulphur is 332 

only present in the mixture as thiophenes and their derivatives. 333 

Hydrogenation of aromatic rings (HDA), an exothermic and reversible reaction, is 334 

thermodynamically limited at typical hydrotreating conditions, so that the reverse reaction of 335 

dehydrogenation should also be considered. Korre et al. 37 have indicated that no partially 336 

hydrogenated ring compounds, such as dihydronaphthalene and hexahydrophenanthrene, were 337 

found in the product stream, which shows that hydrogenation proceeds in a ring-by-ring 338 

manner. Besides it was detected that the higher number of aromatic rings, the higher reactivity 339 

of the molecule. This fact implies that polyaromatic species, such as pyrene, would be the 340 

most reactive whereas that the HDA of monoaromatics, such as alkyl benzenes and tetralines, 341 
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would be the slowest. Other qualitative trend observed during the process was that, for the 342 

molecules with more than two aromatic rings, the hydrogenation of the rings in the middle of 343 

the molecule goes faster than in the case of the external rings 38,39. To this, it should be added 344 

the fact that the present of alkyl substituents and of cyclohexane rings increases the 345 

hydrogenation rate 37. 346 

HDS is an exothermic and basically irreversible reaction at the hydrotreating conditions 40 347 

through which sulphur is removed from the petroleum cuts in form of hydrogen sulphide. The 348 

removal of this element is one of the main aims of hydrotreating process due to its catalyst 349 

poisoning and pollution potential 11. The HDS reactivity of sulphureted species closely 350 

depends on their structure. According with this, non-heterocyclic compounds present a very 351 

higher reactivity at hydrotreating conditions than heterocyclic species, such as thiophenes 352 

family and derivatives. Different reactivities are also found within this last compounds family, 353 

in which thiophenes (Ts) and benzothiophenes (BTs) show a higher reactivity than 354 

dibenzothiophenes (DBTs) 41. The hydrotreating rates of the heterocyclic species are also 355 

influenced by the presence of substituent groups in the positions adjacent to the sulphur 356 

atom 9. The desulphurisation process in these species goes through two different pathways: 357 

(1) the direct removal of the sulphur atom without ring hydrogenation (hydrogenolysis 358 

pathway) or (2) the saturation of the thiophene and the fused benzene rings prior to the 359 

removal of the sulphur atom from the thiophene ring (hydrogenation pathway). The HDS of 360 

Ts, BTs and unsubstituted DBTs mostly follows the hydrogenolysis pathway whereas 361 

hydrogenation becomes the preferred pathway for DBTs at the same time that the degree of 362 

substitution increases 40,41. 363 

Taking into account the above information, the reaction types reflected in Table 3 has been 364 

considered during the stochastic modelling of LCO hydrotreating. A set of reaction rules is 365 

also established in order to identify the reaction events from the structure of the molecule. 366 

Hydrogenation of aromatic rings and dehydrogenation of saturated rings have been included 367 

in the current model as ring-by-ring reactions while it have been considered that sulphur is 368 

removed from thiophene rings as H2S. Besides, the rate constants of the HDT reactions must 369 

be specified. 370 

In the case of hydrogenation and dehydrogenation reactions, their reaction rates can be 371 

calculated from Eq. (10) and (11), respectively: 372 

𝑅𝐻𝑦𝑑𝑟𝑜 = 𝑐𝐻𝑦𝑑𝑟𝑜 ∙ 𝑝𝐻2      (10) 373 
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𝑅𝐷𝑒ℎ𝑦𝑑𝑟𝑜 = 𝑐𝐷𝑒ℎ𝑦𝑑𝑟𝑜 = 𝑐𝐻𝑦𝑑𝑟𝑜
𝐾𝑒𝑞

          (11) 374 

where cHydro and cDehydro are the stochastic reaction constants for hydrogenation and 375 

dehydrogenation (s-1), Keq is the equilibrium constant (mol∙(mol∙atm)-1), and pH2 is the partial 376 

pressure of hydrogen (atm). 377 

The expressions for the calculation of hydrogenation rate constants and the equilibrium 378 

constants have been developed in previous studies 17, starting from the quantitative 379 

structure/reactivity correlations (QS/RCs) proposed by Korre et al.37. They are given in Eq. 380 

(12) and (13), respectively: 381 

ln�𝑐𝐻𝑦𝑑𝑟𝑜� = −4.65 − 7.06 ∙ 𝑛𝐻1.18 − 1.08 ∙ �∆𝐻𝑅
0

𝑅
�

+0.616 ∙ 𝑁𝐴𝑅 + 0.330 ∙ 𝑁𝑆𝑅 − 2.80 ∙ 𝑁𝑇𝑅
− 𝐸𝑎

𝑅
∙ �1

𝑇
− 1

𝑇𝑅𝑒𝑓
�

           (12) 382 

ln�𝐾𝑒𝑞� = 2.952 − 13.215 ∙ 𝑛𝐻 + 5.196 ∙ 10−3 ∙ �∆𝐻𝑅
0

𝑅
�

−0.784 ∙ 𝑁𝑆𝑅
− ∆𝐻𝑅

𝑅
∙ �1

𝑇
− 1

𝑇𝑅𝑒𝑓
�

           (13) 383 

where nH is the stoichiometric coefficient for molecular hydrogen, ∆HR
0 is the heat of 384 

reaction at 25°C (J∙mol-1), NAR is the number of aromatic rings in the molecule, NSR is the 385 

number of saturated rings, NTR is the number of thiophenes fused to the aromatic ring, Ea is 386 

the activation energy (J∙mol-1), R is the ideal gas constant (J∙(K∙mol)-1), T is the temperature of 387 

the system (K), and Tref is the reference temperature (K). 388 

The values of the coefficients in the Keq expression proposed by Korre et al. 37 have been 389 

modified in order to obtain a better agreement between predicted and experimental 390 

equilibrium data. The experimental data of a set of 21 compounds, including anthracene, 391 

phenanthrene and benzene, have been used to determine the new constants. For the 392 

hydrogenation rate constant cHydro, the NTR term was added to reflect the effect of the presence 393 

of thiophene rings on the hydrogenation of aromatic rings, as observed in 394 

hydrodesulphurisation kinetics 40. An exponential coefficient was also added to the nH term to 395 

improve the prediction of the kinetics of benzoic compounds. The hydrogen exponential 396 

coefficient, the coefficient for the thiophene correction and the independent term in the 397 

expression for kSR were determined by minimising the difference between the predicted and 398 
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experimental data for the gas oil LCO1 (Table 4) during its hydrotreating at 300 °C (Figure 399 

6.a). 400 

A very good agreement between experimental and predicted data was obtained for 401 

monoaromatic compounds. Besides, the fast hydrogenation of the aromatic compounds with 402 

more than two aromatic rings was also properly reflected but some differences could still be 403 

observed for saturates and diaromatic compounds. Despite they followed the same tendency 404 

than the predicted data, the experimental data showed a larger removal of diaromatic 405 

compounds and also a higher concentration of saturated compounds. The introduction of 406 

hydrogen exponential coefficient may be the cause for this deviation since, although it 407 

provides a better prediction of benzoic compounds kinetics, it worsens the results for other 408 

molecules, such as naphthalenes. 409 

HDS reactions have been classified in five families according to the structure of the reacting 410 

molecule and a rate parameter was assigned to each one (Table 4). The reaction rates are the 411 

component directly given by the corresponding rate constant following Eq. (15): 412 

𝑅𝐻𝐷𝑆 = 𝑐𝐻𝐷𝑆        (15) 413 

The rate constants cHDS were obtained from the fit to the experimental data of the LCO gas oil 414 

which was previously used to determine the coefficients in Eq. (15) (Figure 6.b). In this case, 415 

the predicted curves perfectly fit to experimental data of both BT and DBT compounds. 416 

In order to validate the current modelling methodology, the hydrotreating of the three LCO 417 

gas oils in Table 4 has been simulated at different conditions of temperature and partial H2 418 

pressure. These LCO gas oils present different composition profiles. LCO1 and LCO2 both 419 

present a significant content in sulphur aromatics (mainly DBT in LCO1 and BT in LCO2) 420 

while, in the case of LCO3, the content in these compounds is very lower (less than 1.5% wt) 421 

and the addition of sulphides such as dimethyl disulphide (DMDS) is required in order to 422 

reach an adequate partial pressure of H2S over the process. Besides, LCO3 is mainly 423 

composed by saturated compounds (almost 60% wt) unlike the other two gas oils, in which 424 

diaromatics are the most abundant compounds.  425 

The predicted results after 1 h of operation have been compared with analytical data in the 426 

parity plots depicted in Figure 7. A good agreement with experimental data was found for 427 

saturated and monoaromatic compounds with an average relative error lower than 14%. The 428 

prediction of the species with three or more aromatic rings was accurate in most of the 429 
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experimental points and a very good fit was also found for sulphur aromatic compounds. 430 

Performance variations due to modifications in operational conditions, i.e. temperature and 431 

hydrogen partial pressure, were contemplated and well-reflected on the current model. On the 432 

other hand, as in the case of LCO1, some differences were also detected for diaromatic 433 

compounds in LCO3. High complexity of mixtures, which leads to the use of correlations to 434 

determine the reactivity of each molecule in hydrogenation/dehydrogenation processes, 435 

implies a greater difficulty to accurately predict the content in all aromatic species, although a 436 

good global agreement between predicted and experimental data was reached.  437 

5. Conclusions 438 

A stochastic two-steps procedure has been described and validated on the hydrotreating of 439 

three LCO gas oils at different operational conditions. In the first step, a molecular 440 

reconstruction algorithm is used to represent the feedstock by means of a set of molecules 441 

which mixture properties are similar to those of feedstock. This algorithm is formed by the 442 

combination of two methods: stochastic reconstruction (SR) and reconstruction by entropy 443 

maximization (REM). The SR method leads to obtain a set of molecules typical of a given 444 

feedstock while the molar fraction of molecules is adjusted using the REM method in order to 445 

improve the predicted mixture properties. Then, the generated set of molecules is used as 446 

input in the second step concerning the molecule-based kinetic modelling of the hydrotreating 447 

process and in which a kinetic Monte Carlo (kMC) method is applied. The expressions for the 448 

calculation of adsorption, equilibrium and hydrogenation/dehydrogenation rate constants have 449 

been obtained by applying the quantitative structure/reactivity correlations (QS/RCs). 450 

The current stochastic methodology has demonstrated to be a valid tool for the reconstruction 451 

of LCO gas oils by combining their available analytical data. This procedure can be used not 452 

only to get the molecular information that is not provided by analytical data but also to obtain 453 

an accurate molecular representation which can be used as input in kinetic models. Monte 454 

Carlo techniques have also given good results in their application on the kinetic simulation of 455 

the hydrotreating of LCO gas oils. Moreover, the simulation of the reactions does not require 456 

a pre-defined kinetic network due to it is generated as the reactions proceed. Besides, the use 457 

of the corrected QS/RCs led to a good prediction of molecular reactivities in complex 458 

mixtures of hydrocarbons such as LCO gas oils. 459 

 460 

  461 
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Figure captions 564 

Figure 1. Flowchart of the SR-REM algorithm 565 

Figure 2. Flowchart of the kMC method 566 

Figure 3. Building diagram for LCO gas oils 567 

Figure 4. Evolution as a function of the number of molecules in the predicted mixture of (a) 568 

the average value of the objective function (white diamonds) and the maximum (black 569 

triangles) and minimum (black squares) values (b) the CPU time required (white diamonds) 570 

and the standard deviation of the objective function (black crosses) 571 

Figure 5. Parity plots for the predicted properties of eleven gas oils after SR-REM 572 

application: (a) density (g/cm3), (b) molecular weight (g/mol), (c) 13C NMR signatures (% 573 

mole): primary saturated CH3 (black diamonds), secondary saturated CH2 (white squares), 574 

tertiary saturated CH (white rounds), aromatic CH (black crosses), condensed aromatic C 575 

(white triangles) and substituted aromatic C (black rounds), and (d) 1H NMR signatures (% 576 

mole): diaromatic H (black diamonds), monoaromatic H (white squares), H alpha (white 577 

rounds), H beta (black crosses) and H gamma (white triangles) 578 

Figure 6. Comparison between experimental (points) and predicted values (lines) for LCO1: 579 

(a) for aromatic families: saturates (black diamonds and black continuous line), 580 

monoaromatics (black squares and black discontinuous line), diaromatics (white squares and 581 

grey discontinuous line) and compounds with more than two aromatic rings (white diamonds 582 

and grey continuous line); and (b) for sulphur families: benzothiophenes (black squares and 583 

continuous line) and dibenzothiophenes (white squares and discontinuous line). All data are 584 

expressed as weight fraction (%) 585 

Figure 7. Parity plots for the compounds concentration predicted by means of kMC method 586 

after 1 h of hydrotreating: (a) saturates, (b) monoaromatics, (c) diaromatics, (d) compounds 587 

with more than two aromatic rings and (e) sulphur compounds: benzothiophenes (black 588 

diamonds) and dibenzothiophenes (white rounds). In the case of benzothiophenes all points 589 

overlap each other due to their similar values close to point (0.0, 0.0) 590 

 591 
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Table 1. Structural attributes of LCO gas oil molecules 

 Structural attribute Values Distribution Parameter names 
     
1 Type of molecule 0 or 1 Histogram 0 

2 Number of benzene rings per core 1, …, 4 Gamma 1 and 2 

3 Number of naphthenic rings per core 0, …, 4 Gamma 3 and 4 

4 Number of thiophenes per core 0 or 1 Histogram 5 

5 Acceptance probability for aromatic carbon CH 0 or 1 Histogram 6 

6 Acceptance probability for naphthenic carbon CH2 0 or 1 Histogram 7 

7 Type of the side chains 0, 1 or 2 Histogram 8 and 9 

8 Length of the paraffinic chains > 0 Gamma 10 and 11 
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Table 2. Comparison between experimental and calculated properties after the SR and REM 

steps 

  
Experimental Simulated 

(after SR) 

Simulated 
(after SR-

REM) 
     

Elemental analysis (%wt) 
Carbon 89.95 89.85 89.99 
Hydrogen 9.21  9.33 9.15 
Sulphur 0.84 0.82 0.86 

     

Simulated distillation 
(°C) 

Initial boiling point 143 143 143 
5%  214 175 211 
10% 231 211 232 
20% 250 250 250 
30% 259 268 267 
40% 273 288 270 
50% 284 314 284 
60% 299 334 299 
70% 314 351 315 
80% 330 369 334 
90% 349 385 355 
95% 363 393 383 
Final boiling point 398 403 403 

     

Mass spectrometry (%wt) 

Saturates 11.00 10.49 11.12 
Monoaromatics 12.90 17.07 12.98 
Diaromatics 58.40 49.25 58.36 
Triaromatics 8.50 16.40 8.48 
Tetraaromatics 3.00 1.53 2.97 
Benzothiophenes 4.00 1.39 3.96 
Dibenzothiophenes 2.20 3.86 2.13 

     

C NMR (%wt) 

Aromatic CH 39.10 34.23 36.62 
Fused aromatic C 8.00 12.17 12.03 
Substituted aromatic C 15.30 14.69 14.95 
Saturated CH3 15.20 15.62 14.96 
Saturated CH2 19.60 19.35 18.19 
Saturated CH 2.70 3.93 3.25 

     
 Diaromatic H 25.70 24.26 27.64 
 Monoaromatic H 2.30 3.40 2.59 
H NMR (%wt) Saturated alpha H 33.90 27.39 27.61 
 Saturated beta H 27.30 29.33 27.80 
 Saturated gamma H 10.80 15.61 14.37 
     
 Molecular weight (g/mol) 192 194 184 
Others     
 Density 20°C (g/cm3) 0.9701 0.9710 0.9729 
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Table 3. Reaction types and their parameters (c) 

Type of reaction Reaction c (s-1) 

Hydrogenation 
 

+ H22

 
 

Eq. (10) 

Dehydrogenation 

 
+ H22

 
 
 

Eq. (11) 

Hydrodesulphurisation 

Hydrogenolysis of thiophene and their derivatives 

S

CH3

+ SH2H24+
 

138.90 

Hydrogenolysis of BT and their derivatives 

S

H23+
CH3 + SH2

 
55.60 

Hydrogenolysis of DBT and their derivatives 

S

+ SH2+ H22

 
19.40 

Hydrogenolysis of 4-alkyl-DBT and their derivatives 

+ H22

SR R

+ SH2

 

0.56 

Hydrogenolysis of 4,6-dialkyl-DBT and their 
derivatives 

R R

+ SH2

SR R

+ H22

 

0.06 
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Table 4. Hydrotreating conditions (partial H2 pressure and temperature) and properties from 

SR-REM algorithm for the three LCO gas oils used as input in the kMC method 

 LCO1 LCO2 LCO3 
    
Hydrotreating conditions    

pH2 (atm) 69.1 95.1 46.1 
T (°C) 300/330 300/330 300/310/320 

Composition    
C (%wt) 88.01 88.57 87.23 
H (%wt) 10.51 9.74 12.57 
S (%wt) 1.48 1.69 1.45 
Saturates (%wt) 28.58 19.85 59.84 
Monoaromatics (%wt) 16.14 22.23 9.55 
Diaromatics (%wt) 34.24 38.96 26.20 
Triaromatics and more (%wt) 11.49 8.95 3.19 
BT (%wt) 2.70 6.39 0.67 
DBT (%wt) 6.86 3.61 0.56 
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Figure 1.  
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Figure 2.  

 

 

 

 

 

 

 

 

 

 

 

 

Initial conditions
tinitial, tfinal…

t < tfinal

Reactant molecules

Update reaction 
probabilities

Calculation of reaction 
probabilities

Reaction probabilities 
distribution (DR)

Generation two random 
numbers (RN1 and RN2)

Execute reaction event

No

Reactant rules and rate 
constants

Choose reaction event by 
sampling of the DR

Determination of the reaction 
time step (∆t)

Product molecules
Yes

26 
 



Figure 3. 
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Figure 4. 
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Figure 5. 
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Figure 6. 
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Figure 7.  
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