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Damien Ackerer † Damir Filipović‡ Sergio Pulido§
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Abstract

We introduce a novel stochastic volatility model where the squared volatility of the asset
return follows a Jacobi process. It contains the Heston model as a limit case. We show that the
the joint distribution of any finite sequence of log returns admits a Gram–Charlier A expansion
in closed-form. We use this to derive closed-form series representations for option prices whose
payoff is a function of the underlying asset price trajectory at finitely many time points. This
includes European call, put, and digital options, forward start options, and forward start options
on the underlying return. We derive sharp analytical and numerical bounds on the series
truncation errors. We illustrate the performance by numerical examples, which show that our
approach offers a viable alternative to Fourier transform techniques.
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JEL Classification: C32, G12, G13

1 Introduction

Stochastic volatility models for asset returns are popular among practitioners and academics be-
cause they can generate implied volatility surfaces that match option price data to a great extent.
They resolve the shortcomings of the Black–Scholes model (Black and Scholes 1973), where the
return has constant volatility. Among the the most widely used stochastic volatility models is the
Heston model (Heston 1993), where the squared volatility of the return follows an affine square-root
diffusion. European call and put option prices in the Heston model can be computed using Fourier
transform techniques, which have their numerical strengths and limitations; see for instance (Carr
and Madan 1999), (Bakshi and Madan 2000), (Duffie, Filipović, and Schachermayer 2003), (Fang
and Oosterlee 2009), and (Chen and Joslin 2012).

We introduce a novel stochastic volatility model, henceforth the Jacobi model, where the squared
volatility of the return follows a Jacobi process. The Jacobi model belongs to the class of polynomial
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models studied in (Eriksson and Pistorius 2011), (Cuchiero, Keller-Ressel, and Teichmann 2012),
and (Filipović and Larsson 2015). In particular, the moments of the finite-dimensional distributions
of the log price process are given in closed-form. Depending on the specification, the Jacobi model
includes the Black–Scholes model as a special case and converges weakly in the path space to
the Heston model. The joint distribution of any finite sequence of log returns admits an explicit
multivariate Gram–Charlier A expansion, as defined in (Cramér 1945). Specifically, we show that it
admits a density whose likelihood ratio function with respect to a multivariate Gaussian density lies
in the corresponding Gaussian weighted L2 space. The likelihood ratio function can be expanded
as a generalized Fourier series with respect to the corresponding orthonormal basis of Hermite
polynomials. The Fourier coefficients are the Hermite moments of the sequence of log returns and
thus given in closed-form. In contrast, for the Heston model the Gram–Charlier A series is known
to diverge (see Remark 3.6 below).

As an important application we can price any exotic option whose payoff is a function of a
finite sequence of log returns. If the payoff function lies in the Gaussian weighted L2 space, the
option price can be written as a series in terms of the Fourier coefficients of the payoff function and
the explicit Hermite moments of the corresponding log returns. We derive the Fourier coefficients
of the payoff function in closed-form for European call, put, and digital options, forward start
options, and forward start options on the underlying return. Consequently, the pricing of these
options is extremely efficient and does not require any numerical integration. We derive detailed
analytical and numerical error bounds for the truncation of the option price series. We find that
the relative pricing errors become small within approximation orders that can be achieved in short
CPU time. This is in contrast to the Heston model, for which the pricing of such options using
Fourier transform techniques is cumbersome and creates numerical difficulties as reported in (Kruse
and Nögel 2005), (Kahl and Jäckel 2005), and (Albrecher, Mayer, Schoutens, and Tistaert 2006).
In view of these limitations of the Heston model, the Jacobi model also provides a viable alternative
to approximate prices in the Heston model.

The Jacobi process, also known as Wright–Fisher diffusion, was originally used to model gene
frequencies; see for instance (Karlin and Taylor 1981) and (Ethier and Kurtz 1986). More recently,
the Jacobi process has also been used to model financial factors. For example, (Delbaen and Shi-
rakawa 2002) model interest rates by the Jacobi process and study moment-based techniques for
pricing bonds. In their framework, bond prices admit a series representation in terms of Jacobi
polynomials. These polynomials constitute an orthonormal basis of eigenfunctions of the infinites-
imal generator and the stationary beta distribution of the Jacobi process; additional properties of
the Jacobi process can be found in (Mazet 1997) and (Demni and Zani 2009). The Jacobi process
has been also applied recently to model stochastic correlation matrices in (Ahdida and Alfonsi
2013) and credit default swap indexes in (Bernis and Scotti 2016).

Gram–Charlier A expansions of option prices were pioneered by (Jarrow and Rudd 1982). They
propose expansions of option prices that can be interpreted as corrections to the pricing biases of the
Black–Scholes formula. They study density expansions for the law of underlying prices, not the log
returns, and express them in terms of cumulants. Evidently, since convergence cannot be guaranteed
in general, their study is based on strong assumptions that imply convergence. In subsequent work,
(Corrado and Su 1996) and (Corrado and Su 1997) study Gram–Charlier A expansions of 4th order
for options on the S&P 500 index. These expansions contain skewness and kurtosis adjustments to
option prices and implied volatility with respect to the Black–Scholes formula. The skewness and
kurtosis correction terms, which depend on the cumulants of 3rd and 4th order, are estimated from
data. Due to the instability of the estimation procedure, higher order expansions are not studied.
Similar studies on the biases of the Black–Scholes formula using Gram–Charlier A expansions
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include (Backus, Foresi, and Wu 2004) and (Li and Melnikov 2012). More recently, (Drimus,
Necula, and Farkas 2013) and (Necula, Drimus, and Farkas 2015) study related expansions with
physicist Hermite polynomials instead of probabilist Hermite polynomials. In order to guarantee
the convergence of the Gram–Charlier A expansion for a general class of diffusions, (Ait-Sahalia
2002) develop a technique based on a suitable change of measure. As pointed out in (Filipović,
Mayerhofer, and Schneider 2013), in the affine and polynomial settings this change of measure
usually destroys the polynomial property and the ability to calculate moments efficiently. More
recently a similar study has been carried out by (Xiu 2014). Gram–Charlier A expansions, under a
change of measure, are also mentioned in the work of (Madan and Milne 1994), and the subsequent
studies of (Longstaff 1995), (Abken, Madan, and Ramamurtie 1996) and (Brenner and Eom 1997),
where they use these moment expansions to test the martingale property with financial data and
hence the validity of a given model.

Our paper is similar to (Filipović, Mayerhofer, and Schneider 2013) that provides a generic
framework to perform density expansions using orthonormal polynomial basis in weighted L2 spaces
for affine models. They show that a bilateral Gamma density weight works for the Heston model.
However, that expansion is numerically more cumbersome than the Gram–Charlier A expansion
because the orthonormal basis of polynomials has to be constructed using Gram–Schmidt orthog-
onalization. In a related paper (Heston and Rossi 2015) study polynomial expansions of prices in
the Heston, Hull-White and Variance Gamma models using logistic weight functions.

The remainder of the paper is as follows. In Section 2 we introduce the Jacobi stochastic
volatility model. In Section 3 we derive European option prices method based on Gram–Charlier
A series. In Section 4 we provide analytical bounds for the truncation error in the option price
approximations. In Section 5 we derive the joint distribution of any finite sequence of log returns,
which forms the basis for exotic option pricing and contains the European options as special case.
In Section 6 we give some numerical examples. In Section 7 we conclude. In Appendix A we recap
the basic properties of polynomial processes that form the basis for all statements. All proofs are
collected in Appendix B.

2 Model specification

We study a stochastic volatility model where the squared volatility follows a Jacobi process. Fix
some real parameters 0 ≤ vmin < vmax, and define the quadratic function

Q(v) =
(v − vmin)(vmax − v)

(
√
vmax −

√
vmin)2

.

Inspection shows that v ≥ Q(v), with equality if and only if v =
√
vminvmax, and Q(v) ≥ 0 for all

v ∈ [vmin, vmax], see Figure 1 for an illustration.
We consider the diffusion process (Vt, Xt) given by

dVt = κ(θ − Vt) dt+ σ
√
Q(Vt) dW1t

dXt = (r − δ − Vt/2) dt+ ρ
√
Q(Vt) dW1t +

√
Vt − ρ2Q(Vt) dW2t

(1)

for real parameters κ ≥ 0, θ ∈ [vmin, vmax], σ > 0, interest rate r, dividend yield δ, and ρ ∈ [−1, 1],
and where W1t and W2t are independent standard Brownian motions on some filtered probability
space (Ω,F ,Ft,Q). The following theorem shows that (Vt, Xt) is well defined.
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Theorem 2.1. For any deterministic initial state (V0, X0) ∈ [vmin, vmax]×R there exists a unique
solution (Vt, Xt) of (1) taking values in [vmin, vmax] × R. Moreover, given an initial condition
(V0, X0) ∈ (vmin, vmax)× R, (Vt, Xt) takes values in (vmin, vmax)× R if and only if

σ2(vmax − vmin)

(
√
vmax −

√
vmin)2

≤ 2κmin{vmax − θ, θ − vmin}. (2)

Remark 2.2. Taking vmin = 0 and the limit as vmax →∞, condition (2) coincides with the known
condition that precludes the zero lower bound for the CIR process: σ2 ≤ 2κθ.

We specify the price of a traded asset by St = eXt . Then
√
Vt is the stochastic volatility of the

asset return,
d〈X,X〉t = Vt dt.

The cumulative dividend discounted price process e−(r−δ)tSt is a martingale. In other words, Q
is a risk-neutral measure. The parameter ρ tunes the instantaneous correlation between the asset
return and the squared volatility,

d〈V,X〉t√
d〈V, V 〉t

√
d〈X,X〉t

= ρ
√
Q(Vt)/Vt.

This correlation is equal to ρ if Vt =
√
vminvmax, see Figure 1. In general, we have

√
Q(Vt)/Vt ≤ 1.

Empirical evidences suggest that ρ is negative when St is a stock price or index. This is commonly
referred as the leverage effect, that is, an increase in volatility often goes along with a decrease in
asset value.

Since the instantaneous squared volatility Vt follows a bounded Jacobi process on the interval
[vmin, vmax], we refer to (1) as the Jacobi model. For V0 = θ = vmax we have constant volatility
Vt = V0 for all t ≥ 0 and we obtain the Black–Scholes model

dXt = (r − δ − V0/2) dt+
√
V0 dW2t. (3)

For vmin = 0 and the limit vmax →∞ we have Q(v)→ v, and we formally obtain the Heston model
as limit case of (1),

dVt = κ(θ − Vt) dt+ σ
√
Vt dW1t

dXt = (r − δ − Vt/2) dt+
√
Vt

(
ρ dW1t +

√
(1− ρ2) dW2t

)
.

(4)

In fact, the Jacobi model (1) is robust with respect to perturbations, or mis-specifications, of
the model parameters vmin, vmax and initial state (V0, X0). Specifically, the following theorem
shows that the diffusion (1) is weakly continuous in the space of continuous paths with respect to
vmin, vmax and (V0, X0). In particular, the Heston model (4) is indeed a limit case of our model (1).

Consider a sequence of parameters 0 ≤ v(n)
min < v

(n)
max and deterministic initial states (V

(n)
0 , X

(n)
0 ) ∈

[v
(n)
min, v

(n)
max]×R converging to 0 ≤ vmin < vmax ≤ ∞ and (V0, X0) ∈ [0,∞)×R as n→∞, respec-

tively. We denote by (V
(n)
t , X

(n)
t ) and (Vt, Xt) the respective solutions of (1), or (4) if vmax = ∞.

Here is our main convergence result.

Theorem 2.3. The sequence of diffusions (V
(n)
t , X

(n)
t ) converges weakly in the path space to (Vt, Xt)

as n→∞.
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As the discounted put option payoff function fput(x) = e−rT
(
ek − ex

)+
is bounded and contin-

uous on R, it follows from the weak continuity stated in Theorem 2.3 that the put option prices

based on (V
(n)
t , X

(n)
t ) converge to the put option price based on the limiting model (Vt, Xt) as

n → ∞. The put-call parity, πcall − πput = e−rT+k − S0, then implies that also call option prices
converge as n → ∞. This carries over to more complex path-dependent options with bounded
continuous payoff functional.

3 European option pricing

Henceforth we assume that (V0, X0) ∈ [vmin, vmax] × R is a deterministic initial state and fix a
time horizon T > 0. We first establish some key properties of the distribution of XT . Denote the
quadratic variation of the second martingale component of Xt in (1) by

Ct =

∫ t

0

(
Vs − ρ2Q(Vs)

)
ds. (5)

The following theorem is a special case of Theorem 5.1 below.

Theorem 3.1. Let ε < 1/(2vmaxT ). If CT > 0 then the distribution of XT admits a density gT (x)
on R that satisfies ∫

R
eεx

2
gT (x) dx <∞. (6)

If

E
[
CT
−1/2−k

]
<∞ (7)

for some k ∈ N0 then gT (x) and eεx
2
gT (x) are uniformly bounded and gT (x) is k-times continuously

differentiable on R. A sufficient condition for (7) to hold for any k ∈ N is

vmin > 0 and ρ2 < 1.1 (8)

The condition that ε < 1/(2vmaxT ) is sharp for (6) to hold. Indeed, consider the Black–Scholes
model (3) where V0 = θ = vmax. Then Vt = vmax for all t ≥ 0, and XT is Gaussian with variance
CT = vmaxT . Hence the integral in (6) is infinite for any ε ≥ 1/(2vmaxT ).

Remark 3.2. If (6) holds for some ε > 0, then the moment generating function

ĝT (z) =

∫

R
ezxgT (x) dx (9)

extends to an entire function in z ∈ C. But this does not imply that its cumulant generating
function κ(z) = log ĝT (z) extends to an entire function in z ∈ C. Indeed, a density whose moment
generating function extends to an entire function on C may have zeros, and thus may not admit
a logarithm, on C. An example is the density 1[0,1](x). Whence a Gram–Charlier A expansion of
ĝT (z) does not necessarily converge in general. We will show, however, that a Gram–Charlier A
approximation of the density gT (x) does converge in an L2-sense.

Since any uniformly bounded and integrable function on R is square integrable on R, as an
immediate consequence of Theorem 3.1 we have the following corollary.

1We conjecture that (7) also holds in case where vmin = 0 as long as ρ2 < 1 and V0 is large enough. Indeed, note

that CT ≥ (1 − ρ2)
∫ T
0
Vt dt. However, explicit conditions on V0 are left for future research.
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Corollary 3.3. Assume (7) holds for k = 0. Then

∫

R

gT (x)2

w(x)
dx <∞ (10)

for any Gaussian density w(x) with variance σ2
w satisfying

σ2
w >

vmaxT

2
. (11)

Remark 3.4. It follows from the proof that the statements of Theorem 3.1 also hold for the Heston
model (4), with Q(v) = v. However, the Heston model does not satisfy (6) for any ε > 0. Indeed,
otherwise its moment generating function ĝT (z) would extend to an entire function in z ∈ C, as
noted in Remark 3.2. But it is well known that ĝT (z) becomes infinite for large enough z ∈ R,
see (Andersen and Piterbarg 2007). As a consequence, the Heston model does not satisfy (10) for
any finite σw. Indeed, by the Cauchy-Schwarz inequality, (10) implies (6) for any ε < 1/(4σ2

w).

We now compute the price at time t = 0 of a European claim with discounted payoff f(XT ) at
expiry date T > 0. We henceforth assume that (7) holds with k = 0, and we let w(x) be a Gaussian
density with mean µw and variance σ2

w satisfying (11).
We define the weighted Lebesgue space

L2
w =

{
f(x) | ‖f‖2w =

∫

R
f(x)2w(x)dx <∞

}
,

which is a Hilbert space with scalar product

〈f, g〉w =

∫

R
f(x)g(x)w(x)dx.

The space L2
w admits the orthonormal basis of generalized Hermite polynomials Hn(x), n ≥ 0,

given by

Hn(x) =
1√
n!
Hn
(
x− µw
σw

)
(12)

where Hn(x) are the standard probabilist Hermite polynomials defined by

Hn(x) = (−1)ne
x2

2
dn

dxn
e−

x2

2 ,

see (Feller 1960, Section XVI.1). In particular, degHn(x) = n, and 〈Hm, Hn〉w = 1 if m = n and
zero otherwise.

Corollary 3.3 implies that the likelihood ratio function `(x) = gT (x)/w(x) of the density gT (x)
of the log price XT with respect to w(x) belongs to L2

w. We henceforth assume that the discounted
payoff function f(x) ∈ L2

w. This hypothesis is satisfied for instance in the case of European call
and put options. It implies that the price, denoted by πf , is well defined and equals

πf =

∫

R
f(x)gT (x) dx = 〈f, `〉w =

∑

n≥0

fn`n, (13)

for the Fourier coefficients
fn = 〈f,Hn〉w, (14)
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and the Hermite moments

`n = 〈`,Hn〉w =

∫

R
Hn(x)gT (x) dx. (15)

Note that `n is a linear combination of moments of XT , and thus given in closed-form, as we
shall see in Theorem A.2 in Appendix A. This is a consequence of the polynomial property of the
diffusion (Vt, Xt).

We approximate the price πf by truncating the series in (13) at some order N ≥ 1 and write

π
(N)
f =

N∑

n=0

fn`n. (16)

While π
(N)
f → πf as N → ∞ in general, in some cases the proxy is exact as the following lemma

states.

Lemma 3.5. If f(x) is a polynomial then π
(N)
f = πf for all N ≥ deg f(x).

Proof. By orthogonality of the basis polynomials Hn(x) we have that fn = 0 for n > deg f(x).

In general, the computation of the proxy π
(N)
f in (16) boils down to a numerical integration

over the real line,

π
(N)
f =

N∑

n=0

〈f, `nHn〉w =

∫

R
f(x)g

(N)
T (x) dx, (17)

where the Gram–Charlier A approximation

g
(N)
T (x) =

N∑

n=0

`nHn(x)w(x)

serves as a proxy for the density gT (x), which is in closed-form by Theorem A.2. In fact, we

readily see from Lemma 3.5 that g
(N)
T (x) integrates to one and converges to gT (x) in L2

1/w as

N → ∞. Hence, in the Jacobi stochastic volatility model, we formally have L2
1/w-convergence of

the Gram–Charlier A series of the density of the log price XT .

Remark 3.6. In view of Remark 3.2, in the Heston model g
(N)
T (x) does not converge in L2

1/w.

In specific cases, we find recursive formulas for the Fourier coefficients fn in (14), and no
numerical integration is needed, as is the case for call and put options. Similar recursion relations
of the Fourier coefficients for the Physicist Hermite polynomial basis can be found in (Drimus,
Necula, and Farkas 2013).

Theorem 3.7. Consider the discounted payoff function for a call option with log strike k,

f(x) = e−rT
(

ex − ek
)+

. (18)

Its Fourier coefficients fn in (14) are given by

f0 = e−rT+µwI0

(
k − µw
σw

;σw

)
− e−rT+kΦ

(
µw − k
σw

)
;

fn = e−rT+µw 1√
n!
σwIn−1

(
k − µw
σw

;σw

)
, n ≥ 1.

(19)
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The functions In(µ; ν) are defined recursively by

I0(µ; ν) = e
ν2

2 Φ(ν − µ);

In(µ; ν) = Hn−1(µ)eνµφ(µ) + νIn−1(µ; ν), n ≥ 1,
(20)

where Hn(x) are the standard Hermite polynomials, Φ(x) denotes the standard Gaussian distribu-
tion function, and φ(x) its density.

Remark 3.8. The Fourier coefficients of a put option with discounted payoff f̃(x) = e−rT
(
ek − ex

)+
can be obtained from the put-call parity. More precisely, in this case

f̃n = 〈f̃ , Hn〉w

= fn −
(

1√
n!

e−rT+µwIn(−∞;σw)− e−rT+k1{n=0}

)

= fn −
σnw√
n!

e−rT+µw+σ2
w/2 + e−rT+k1{n=0},

with fn as in (19). Here we used the recursive equations (20) to deduce that

In(−∞;σw) = σwIn−1(−∞;σw) = σnweσ
2
w/2.

Alternatively, a similar argument as in the proof of Theorem 3.7 shows that

f̃0 = e−rT+kΦ

(
k − µw
σw

)
− e−rT+µwJ0

(
k − µw
σw

;σw

)

f̃n = −e−rT+µw 1√
n!
σwJn−1

(
k − µw
σw

;σw

)
, n ≥ 1,

where the functions Jn(µ; ν) are defined recursively by

J0(µ; ν) = e
ν2

2 Φ(µ− ν);

Jn(µ; ν) = −Hn−1(µ)eνµφ(µ) + νJn−1(µ; ν), n ≥ 1.

Remark 3.9. If µw = X0 +rT −σ2
w/2, then f0 is the Black–Scholes call option price with volatility

σBS = σw/
√
T . That is,

f0 = eX0Φ(d1)− e−rT+kΦ(d2)

with d1,2 =
X0−k+rT±σ2

BST/2

σBS
√
T

.

Remark 3.10. Using (19) and (20), we could write a more explicit expression for the Fourier
coefficients fn for n ≥ 1

fn = e−rT+kφ

(
k − µw
σw

)
1√
n!

n−2∑

m=0

Hm
(
k − µw
σw

)
σn−1−m
w

+ e−rT+µw+
σ2w
2 Φ

(
σw −

k − µw
σw

)
σnw√
n!
.

(21)

A similar formula can be found in (Heston and Rossi 2015, Appendix A)

For digital options, the formulas for the Fourier coefficients fn are explicit.
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Theorem 3.11. Consider the discounted payoff function for a digital option of the form

f(x) = e−rT1[k,∞](x).

Its Fourier coefficients fn are given by

f0 = e−rTΦ

(
µw − k
σw

)
;

fn =
e−rT√
n!
Hn−1

(
k − µw
σw

)
φ

(
k − µw
σw

)
, n ≥ 1,

(22)

where Hn(x) are the standard Hermite polynomials, Φ(x) denotes the standard Gaussian distribu-
tion function, and φ(x) its density.

Remark 3.12. For a generic digital option with payoff of the form f(x) = 1[k1,k2)(x) we can derive
its Fourier coefficients using the previous theorem as 1[k1,k2)(x) = 1[k1,∞)(x)− 1[k2,∞)(x).

An alternative dual expression of the price πf in (13) is given by the Fourier integral

πf =
1

2π

∫

µ+iR
f̂(z)ĝT (z)dz, (23)

where f̂(z) and ĝT (z) denote the moment generating functions given by (9), respectively. Here
µ ∈ R is some appropriate dampening parameter such that e−µxf(x) and eµxgT (x) are Lebesgue
integrable and square integrable on R. Indeed, Lebesgue integrability implies that f̂(z) and ĝT (z)
are well defined for z ∈ µ+ iR through (9). Square integrability and the Plancherel Theorem then
yield the representation (23). For example, for the European call option (18) we have µ > 1 and
f̂(z) = e−rT+k(1−z)/(z(z − 1)).

Option pricing via (23) is the approach taken in the Heston model (4), for which there exists
a closed-form expression for ĝT (z). It is given in terms of the solution of a Riccati equation. The
computation of πf boils down to the numerical integration of (23) along with the numerical solution
of a Riccati equation for every argument z ∈ µ+ iR that is needed for the integration. The Heston
model (which entails vmax →∞) does not adhere to the series representation (13) that is based on
condition (10), see Remark 3.4.

The Jacobi model, on the other hand, does not admit a closed-form expression for ĝT (z). But
the Fourier coefficients `n are readily available as shown in Theorem A.2. In conjunction with
Theorem 3.7, the (truncated) series representation (13) thus provides a valuable alternative to the
(numerical) Fourier integral approach (23) for option pricing.

We will show in Section 6 that the numerical performance of the Jacobi model for European
call option pricing is comparable to the Heston model. Moreover, our solution method can be
applied to any discounted payoff function f(x) ∈ L2

w. The computation of the price at most boils
down to the numerical integration of (17). This includes functions f(x) that do not necessarily
admit closed-form moment generating function f̂(z) as is required in the Heston model approach.
Additionally, as we will see in Section 5, the density approximation technique in the Jacobi model
can be used to price path dependent options which could be a cumbersome task using Fourier
transform techniques in the Heston model.

Remark 3.13. The proposed option pricing approach in the Jacobi model can also be applied to
price spread options of assets with stochastic correlation. More precisely, suppose that X1 and X2
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are the log prices of two assets whose dynamics with respect to a risk-neutral measure are

dX1t = (r − σ2
1/2) dt+ σ1 dW1t

dX2t = (r − σ2
2/2) dt+ σ2(ρt dW1t +

√
1− ρ2

tdW2t)

dρt = κ(θ − ρt) dt+ σ
√

1− ρ2
tdW2t

for real parameters κ ≥ 0, θ ∈ [−1, 1], σ, σ1, σ2 ∈ (0,∞), interest rate r, and where W1t and W2t are
independent standard Brownian motions on some filtered probability space (Ω,F ,Ft,Q). This is a
Black-Sholes-Merton model of two assets with stochastic correlation ρt ∈ [−1, 1]. In this framework,
we can write the price a spread option with payoff (eX2T −KeX1T )+ at maturity T as

e−rTE[(eX2T −KeX1T )+] = eX1,0Ê[(eXT −K)+], (24)

with dXt = dX2t − dX1t, X0 = X2,0 − X1,0, and where Ê denotes the expectation with respect to

the probability measure Q̂ defined by dQ̂
dQ = eX1T−rT−X1,0. We have that

dXt = (σ1σ2ρt − σ2
1/2− σ2

2/2) dt+ (σ2ρt − σ1) dŴ1t + σ2

√
1− ρ2

tdŴ2t

dρt = κ(θ − ρt) dt+ σ
√

1− ρ2
tdŴ2t

where Ŵ1t and Ŵ2t are independent standard Brownian motions with respect to the measure Q̂.
In particular, using similar arguments to those presented in Appendix A, it can be shown that the
diffusion (Xt, ρt) has the polynomial property with respect to Q̂. In addition, a similar argument as
in the proof of Theorem 5.1 shows that the density function of XT has suitable decaying properties.
These properties guarantee that the Gram–Charlier A expansion techniques discussed in this section
can be used to approximate the expectation in (24).2

The following result, which is a special case of Theorem 5.4, provides universal upper and lower
bounds on the implied volatility of a European option with discounted payoff f(XT ) at T and
price πf in the Jacobi model. The implied volatility σIV is defined as the volatility parameter that
renders the corresponding Black–Scholes option price equal to πf .

Theorem 3.14. Assume that the discounted payoff function f(log(s)) is non-affine and convex in
s > 0. Then the implied volatility is well-defined and satisfies

√
vmin ≤ σIV ≤

√
vmax.

4 Analytical error bounds

In this section we discuss how to control analytically the error of the price approximation scheme (16).
An alternative numerical approach will be discussed in Section 6.2. For a fixed level N , the error
in the approximation is

ε(N) = πf − π(N)
f =

∞∑

n=N+1

fn`n.

Cauchy-Schwarz inequality implies that

|ε(N)| ≤
( ∞∑

n=N+1

f2
n

) 1
2
( ∞∑

n=N+1

`2n

) 1
2

.

To control the approximation error it is therefore sufficient to obtain estimates of the Hermite
moments `n and the Fourier coefficients fn.

2We thank Peter Tankov for pointing out this fact.
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4.1 Estimates for the Hermite moments

The following proposition, together with Theorem A.2, describe the main analytical properties of
the Hermite moments `n as defined in (15).

Proposition 4.1. Assume (7) holds with k = 0 and let w(x) be a Gaussian density with mean µw
and variance σ2

w satisfying (11). Then:

1. The Hermite moments `n as defined in (15) can be expressed as

`n = (n!)1/2

bn/2c∑

m=0

1

m!(n− 2m)!

1

2m
E
[
(α2 − 1)mβn−2m

]
, (25)

where b·c denotes the integer part and

α =

√
CT
σw

; β =
MT − µw

σw
, (26)

with CT as in (5) and

MT = X0 +

∫ T

0
(r − δ − Vt/2) dt+

ρ

σ

(
VT − V0 −

∫ T

0
κ (θ − Vt) dt

)
. (27)

2. If α2 < 1 a.s. then

`n = (n!)−1/2E
[
(1− α2)

n
2Hn((1− α2)−

1
2β)
]
. (28)

Additionally, in this case for all k ∈ N

`2n ≤ E


k!K2e

β2(1+α2/γ)
2

(α2n)k
√

1− α2


 , (29)

where K ≤ 1.086435 is a constant. Moreover, if K̃ is a constant such that |β| ≤ K̃ a.s. and
there exist constants ε, δ > 0 such that 0 < ε ≤ α2 ≤ δ < 1, then for all N ≥ 1

∞∑

n=N+1

`2n ≤ K2 exp(K̃2/(2(1− δ)))(1− ε)N+1

ε
. (30)

3. We have

‖`‖2w =
∞∑

n=0

`2n ≤ σwE
[

1√
∆

exp

(
(MT − µw)2

4σ2
w∆

)]
E




exp
(

(MT−µw)2

4σ2
w∆

)

√
CT


 , (31)

with ∆ = 1− α2/2.

Remark 4.2. If the right side of equation (29) is finite, it shows what is known as the superpoly-
nomial decay of the Hermite moments `n.

The following proposition, together with Proposition 4.1 (see in particular (28), (29) and (31)),
is useful to bound the error in the approximation. It allows us to bound the variable MT defined
in (27) in terms of functions that depend only on CT , which is a random variable that takes values
on the interval [T (1− ρ2)vmin, vmaxT ].
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Proposition 4.3. Suppose that |ρ| < 1. We have that

CT ≤
∫ T

0
Vt dt ≤

CT
1− ρ2

. (32)

Moreover, if ρ2(vmax + vmin) < (
√
vmax −

√
vmin)2, then

CT ≤
∫ T

0
Vt dt ≤

(
√
vmax −

√
vmin)2CT − ρ2Tvmin(vmax + vmin)

((
√
vmax −

√
vmin)2 − ρ2(vmax + vmin))

. (33)

With the inequalities (32)–(33) we can bound MT (and hence β as defined in (26)) from above
and below by functions in CT because

MT = X0 +

(
r − δ − ρκθ

σ

)
T +

ρ

σ
(VT − V0) +

(
ρκ

σ
− 1

2

)∫ T

0
Vtdt.

4.2 Estimates for the Fourier coefficients

The following proposition provides analytical estimates of the Fourier coefficients defined in (14)
for a call option. These estimates could be used to to obtain estimates for the tails

∞∑

n=N+1

f2
n = ‖f‖2w −

N∑

n=0

f2
n.

Remark 4.4. In general, since we can always approximate the value ‖f‖w via numerical integra-
tion, if we can efficiently compute the Fourier coefficients (14) (e.g. Call, Put and Digital options)
this error can always be efficiently calculated.

Proposition 4.5. If f(x) = e−rT (ex − ek)+, the Fourier coefficients fn in (14) satisfy for n ≥ 6

|fn| ≤ e
−rT+k− (k−µw)2

4σ2w
+σ2

w/2KK̃σw(2π)−1/2

√
n(n− 1)

+ e−rT+µw+
σ2w
2 Φ

(
σw −

k − µw
σw

)
σnw√
n!
,

(34)

where K ≤ 1.086435 and K̃ ≤
√

3 are constants, and Φ denotes the standard Gaussian distribution
function.

Remark 4.6. We know that
∑

n f
2
n = ‖f‖2w <∞, in particular limn→0 fn = 0. The estimate (34)

gives a more precise idea of the rate of decay of the Fourier coefficients fn.

5 Exotic option pricing

Pricing exotic options with stochastic volatility models is a challenging task. We show that the
price of an exotic option whose payoff is a function of a finite sequence of log returns admits a
polynomial series representation in the Jacobi model.

Henceforth we assume that (V0, X0) ∈ [vmin, vmax]×R is a deterministic initial state. Consider
time points 0 ≤ t0 < t1 < t2 < · · · < tn and denote the log returns Yti = Xti−Xti−1 for i = 1, . . . , n.
The following theorem contains Theorem 3.1 as special case where n = 1 and t0 = 0.
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Theorem 5.1. Let ε1, . . . , εn ∈ R be such that εi < 1/(2vmax(ti − ti−1)) for i = 1, . . . , n. If
Cti −Cti−1 > 0 for i = 1, . . . , n then the random vector (Yti , . . . , Ytn) admits a density gt0,...,tn(y) =
gt0,...,tn(y1, . . . , yn) on Rn satisfying

∫

Rn
e
∑n
i=1 εiy

2
i gt0,...,tn(y) dy <∞. (35)

If

E

[∏

i

(Cti − Cti−1)−1/2−αi

]
<∞ (36)

for all (α1 . . . , αn) ∈ Nn0 with
∑

i αi ≤ k ∈ N0, for some k ∈ N0, then gt0,...,tn(y) and e
∑n
i=1 εiy

2
i gt0,...,tn(y)

are uniformly bounded and gt0,...,tn(y) is k-times continuously differentiable on Rn. Property (8)
implies (36) for any k ∈ N.

Since any uniformly bounded and integrable function on Rn is square integrable on Rn, as an
immediate consequence we have the following corollary.

Corollary 5.2. Assume (36) holds for k = 0. Then

∫

Rn

gt0,...,tn(y)2

∏n
i=1wi(yi)

dy <∞ (37)

for all Gaussian densities wi(yi) with variances σwi satisfying

σ2
wi >

vmax(ti − ti−1)

2
, i = 1, . . . , n. (38)

Remark 5.3. Assume that t0 = 0, then there is a one-to-one correspondence between the vector of
log returns (Yt1 , . . . , Ytn) and the vector of log prices (Xt1 , . . . , Xtn). Indeed,

Xti = X0 +
i∑

j=1

Ytj .

Hence, a crucial consequence of Theorem 5.1 is that the finite-dimensional distributions of the
process Xt admit densities with nice decay properties. More precisely, the density of (Xt1 , . . . , Xtn)
is gt0,...,tn(x1 −X0, . . . , xn − xn−1).

Suppose that the discounted payoff of an exotic option is of the form f(Xt1 , ..., Xtn). Let t0 = 0
and assume that (36) holds with k = 0. Set w(y) = w(y1, . . . , yn) =

∏n
i=1wi(yi), where wi(y) is a

Gaussian density with variance σwi satisfying (38). Define

f̃(y) = f̃(y1, . . . , yn) = f(X0 + y1, X0 + y1 + y2, . . . , X0 + y1 + · · ·+ yn).

Then by similar arguments as in Section 3 the price of the option is

πf = E[f(Xt1 , ..., Xtn)] =
∑

m1,...,mn≥0

f̃m1,...,mn`m1,...,mn

where the Fourier coefficients f̃m1,...,mn are given by

f̃m1,...,mn = 〈f̃ , Hm1,...,mn〉w =

∫

Rn
f̃(y)Hm1,...,mn(y)w(y) dy
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with Hm1,...,mn(y1, . . . , yn) =
∏n
i=1Hmi(yi) and where the Hermite moments are

`m1,...,mn = E

[
n∏

i=1

Hmi(Xti −Xti−1)

]
. (39)

In the expressions above we assume that for each i, Hmi(yi) is a generalized Hermite polynomial
associated to parameters µwi and σwi satisfying (38). This observation highlights the potential
advantages of our proposed density expansion algorithm over the traditional Fourier transform
technique used in the affine case for pricing exotic options.

We provide some examples of exotic options on the asset with price St = eXt for which the
above methodology applies. In all but the first example we set t0 = 0.

• The payoff of a forward start call option on the underlying return between dates t and T , and
with strike K is (

ST
St
−K

)+

and its discounted payoff function is given by

f̃(y) = e−rT (ey1 −K)+

with the times t0 = t and t1 = T . In this case, the Fourier coefficients f̃n coincide with those
of a call option and, as we shall see in Theroem A.4 in Appendix A, the forward Hermite
moments `∗n = E[Hn(Xt1 −Xt0)] can be computed efficiently.

• The payoff of a forward start call option with maturity T , strike fixing date t and proportional
strike K is

(ST −KSt)+

and its discounted payoff function is given by

f̃(y) = e−rT
(
eX0+y1+y2 −KeX0+y1

)+

with the times t1 = t and t2 = T . In this case the Fourier coefficients have the form

f̃m1,m2 = eX0−rT
∫

R2

ey1Hm1(y1)w1(y1)(ey2 −K)+Hm2(y2)w2(y2) dy1 dy2

= eX0−rT f (0,−∞)
m1

f (0,logK)
m2

= f (0,logK)
m2

σm1
w√
m1!

eX0−rT+µw1+σ2
w1
/2,

(40)

where f
(r,k)
n denotes the Fourier coefficient of a call option for interest rate r and log strike k

as in (19). Here we have used (19)–(20) to deduce that

f (0,−∞)
m1

=
σm1
w√
m1!

eµw1+σ2
w1
/2.

In particular no numerical integration is needed. Additionally, the Hermite moments

`m1,m2 = E[Hm1(Yt1)Hm2(Yt2)] (41)

can be calculated efficiently as explained in Theorem A.4 in Appendix A.
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The pricing of forward-starting options in the Black–Scholes model is straightforward. Ex-
plicit analytical expressions have been provided in the Heston model by (Kruse and Nögel
2005). Note that a series of consecutive forward start options forms a cliquet option. In
Section 6.6 we give a numerical illustration of the density approximation method to price
forward start options.

• The payoff of an Asian call option with maturity T , discrete monitoring dates t1 < · · · <
tn = T , and fixed strike K is (

1

n

n∑

i=1

Sti −K
)+

and its discounted payoff function is given by

f̃(y) = e−rT

(
1

n

n∑

i=1

eX0+
∑i
j=1 yi −K

)+

.

Similarly, the payoff of an Asian call option with floating strike is
(
ST −

K

n

n∑

i=1

Sti

)+

and its discounted payoff function is given by

f̃(y) = e−rT

(
eX0+

∑n
j=1 yj − K

n

n∑

i=1

eX0+
∑i
j=1 yj

)+

.

The valuation of Asian options with continuously monitoring in the Black–Scholes model has
been studied in (Rogers and Shi 1995) and (Yor 2001) among others.

• The payoff of a reset call option with maturity T , reset dates t1 < · · · < tn ≤ T and initial
strike K is

(ST −min (K, St1 , . . . , Stn))+

and its discounted payoff function is given by

f̃(y) = e−rT
(

eX0+
∑n+1
i=1 yi −min

(
K, eX0+y1 , . . . , eX0+

∑n
i=1 yi

))+
.

The pricing of reset options in the Black–Scholes model has been studied in (Liao and Wang
2003). The payoff of lookback options3 with a finite number of observation dates can also be
represented in terms of a finite sequence of log returns.

We now derive universal upper and lower bounds on the implied volatility for the exotic option
with discounted payoff function f(Xt1 , ..., Xtn) and time-0 price πf . We denote by

dSBS
t = SBS

t (r − δ) dt+ SBS
t σBS dBt

the Black–Scholes price process with volatility σBS > 0 where Bt is some Brownian motion inde-
pendent of (W1t,W2t). For any ti−1 ≤ t < ti and given a realization Xt1 , . . . , Xti−1 , the time-t
Black–Scholes price of the option is a function πσBS

f (t, St) of t and the spot price St defined by

e−rtπσBS
f (t, s) = E

[
f(Xt1 , . . . , Xti−1 , logSBS

ti , . . . , logSBS
tn ) | Ft, SBS

t = s
]
,

3(Andreasen 1998) approximate the prices of lookback options in Black–Scholes model
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for s > 0. The implied volatility σIV is the volatility parameter σBS that renders the time-0 Black–
Scholes option price πσIVf (0, S0) = πf . The following theorem provides bounds on the values that
σIV may take.

Theorem 5.4. Assume that the Black–Scholes option gamma is nonnegative,

∂2πσBS
f (t, s)

∂s2
≥ 0, (42)

for all t ∈ [ti−1, ti) and s > 0, for any σBS > 0 and given any realization Xt1 , . . . , Xti−1, i = 1, . . . , n.
Assume that the inequality in (42) is strict for t = 0 and s > 0. Then the implied volatility σIV is
well-defined and satisfies √

vmin ≤ σIV ≤
√
vmax.

Theorem 5.4 applies in particular to the implied volatility of a forward start call option on the
underlying return. This is in contrast to the Heston model for which the implied volatility explodes
(except at the money) when the time to maturity of the underlying call option decreases to zero,
T → t, see (Jacquier and Roome 2015) for more details.

6 Numerical analysis

The price of a call option has a series representation in the Jacobi stochastic volatility model. We
investigate the quality of the approximation obtained by truncating this series at a finite order
N . This approach is shown to be reliable and efficiently implementable. Numerical experiments
suggest that the order does not need to exceed N = 100 to accurately approximate option prices for
a large range of parameter values and option moneyness. A smaller order may actually be sufficient
in practice. The empirical fit of the Jacobi model to a sample of S&P 500 implied volatility surface
is shown to be equivalent to the Heston model fit. We also explore in this section the call price
approximation error, the computational time, and the forward start call option approximation.
Unless otherwise stated, we use the following specification for weighted space and drift parameters:
σw =

√
vmaxT/2 + 10−4, µw = E[XT ], and r = q = 0.

6.1 Option price approximation

Figure 2 displays the Hermite moments, the Fourier coefficients, and the option price approximation
sequence for different volatility upper bounds. We observe that the `n and fn sequences oscillate
and converge toward zero. The amplitudes of these oscillations negatively impact the speed at which

the price series π
(n)
f converge. The behavior of the coefficients clearly depends on the parameter

values. For example, in Figure 2 we see that the magnitude of the oscillations is directly impacted
by the choice of vmax. In this case, the weighted space variance parameter σw also changes, which
further impacts the approximation. However, the moments of the random variable XT and the true
option price πf are actually not significantly affected by an increase in vmax beyond some level.

One way to think about the price approximation is to recall from Remark 3.9 that f0`0 is the
Black–Scholes call option price with volatility σBS = σw/

√
T . The additional terms fn`n may then

be understood as higher order adjustments for the true distribution mean, scale, and non-normality.
This explains why the initial approximation largely overshoots the true option price when vmax is
significantly larger than the expected variance.

The parameter σ2
w may take any value strictly larger than vmaxT/2. For the same reason as

above, we conjecture that the price series π
(n)
f will in general converge faster when σw is closer
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to the standard deviation of XT . Indeed, the density approximation g
(n)
T is expected to be more

accurate when the Gaussian density w is closer to the true density gT . Figure 3 displays the density
approximation and the corresponding price series of a call option for the Jacobi model with various
valid choices of σw >

√
vmaxT/2. Because the parameter vmax is large, the smallest σw offers the

best price approximation for any given order n.
We also emphasize that the relative contribution of the increment fn`n to the price approxima-

tion depends on the moneyness. Far out of the money options with close to zero value will benefit
more from expanding the option price to a higher order than deep in the money options, as can be
seen in Figure 4.

6.2 Numerical error bounds

We numerically bound the pricing error ε(N) = πf − π(N)
f hereinbelow. From Section 4 we know

that the pricing error can be bounded as follows

|ε(N)| ≤
(
‖f‖2w −

N∑

n=0

f2
n

) 1
2
(
‖`‖2w −

N∑

n=0

`2n

) 1
2

.

In order to provide the sharpest value possible for this illustration, we numerically approximate the
L2
w-norms of f and `. The norm ‖f‖w has an explicit expression that can be computed by means

of quadrature

‖f‖2w =

∫

R
f(x)2w(x)dx ≈ bquad.

The norm ‖`‖w can be written

‖`‖2w =

∫

R

gT (x)2

w(x)
dx = E

[
gT (XT )

w(XT )

]
= E



φ

(
XT ; M̃T ,

√
C̃T

)

φ (XT , µw, σw)




where φ(x, µ, σ) is the normal density function in x with mean µ and variance σ2, and the pair

of random variables (M̃T , C̃T ) is independent from XT and has the same distribution as (MT , CT )
defined in (27) and (5). We simulate Nmc = 106 triplets and take the 99% confidence interval upper
bound, that is

bmc =
1

Nmc

Nmc∑

i=1

φ

(
X

(i)
T ; M̃

(i)
T ,

√
C̃

(i)
T

)

φ
(
X

(i)
T , µw, σw

) + Φ−1(0.99)
σmc√
Nmc

where σmc is the standard deviation of the generated sample, and Φ is the standard normal cu-
mulative distribution function. We define the approximation of the absolute error bound |ε(N)| as
follows

b(N) =

(
bquad −

N∑

n=0

f2
n

) 1
2
(
bmc −

N∑

n=0

`2n

) 1
2

. (43)

Figure 5 displays the approximate relative absolute error bound b(n)/π
(n)
f on the left panel, and the

absolute confidence interval on the right panel narrowed around the terminal price approximation
for an at the money option. The error bound decreases rapidly with the order n such that at
n = 100 it is about 0.25% of the price approximation. This is a non-tight upper bound and the
price approximation is likely to be more accurate than what the computed bound may suggest.
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6.3 Implied volatility smile

Figure 6 displays the implied volatility smile for different vmin and vmax parameters, and for the
Heston model whose dynamics are given by (4). We observe that the smile of the Jacobi model
approaches the Heston smile when vmin is small and vmax is large. Somewhat surprisingly, a
relatively small value for vmax seems to be sufficient for the two smiles to coincide for options
around the money. Indeed, although the variance process has an unbounded support in the Heston
model, the probability that it will visit values beyond some large threshold can be extremely small.

Figure 6 also illustrates how the implied volatility smile flattens when the variance support
shrinks. In the limit, when this support converges to a singleton, we obtain the flat implied volatility
smile of the Black–Scholes model. This shows that the Jacobi model lies between the Black–Scholes
model and the Heston model and that the parameters vmin and vmax offer additional degrees of
flexibility to model the volatility surface.

6.4 Calibration

We calibrate the Jacobi and Heston models to a sample of S&P 500 option prices. First we select all
the call and put options available on January 2th 2014 with maturity in 1, 2, 3, or 4 weeks from the
OptionMetrics database. With a linear regression we extract using the put-call parity the risk-free
rate parameter r = 0.5676% and the dividend yield parameter d = 1.1324%. For each maturity 25
calls with Black–Scholes option delta ranging from 5% to 95% are selected to construct the data
sample. We denote here πij , σij , and νij the j-th option price, implied volatility, and Black–Scholes
option vega with maturity of i weeks. Similarly π̂ij and σ̂ij denote the model, Jacobi or Heston,
option price and implied volatility. We calibrate the two models to the implied volatility surface
by minimizing the following weighted root-mean-square-error (RMSE),

√√√√ 1

100

4∑

i=1

25∑

j=1

(
πij − π̂ij
νij

)2

.

This criterion is a computationally efficient approximation of the implied volatility surface RMSE
criterion which follows from observing that

σij − σ̂ij ≈
πij − π̂ij
νij

when πij ≈ π̂ij .

We first calibrate the Heston model and use its parameters as an initial guess to calibrate
the Jacobi model along with vmin = 1e−4 and vmax = 1. Table 1 reports the fitted parameters
and Figure 7 displays the corresponding implied volatility surfaces. We observe that the common
parameter values are almost identical, with the exception of the vol-of-vol parameter. The fitted
volatility support goes from 5% to 45% which seems reasonable given the observed surface. With
two additional parameters, the Jacobi model is able to fit slightly better the implied volatility
surface than the Heston model. Yet, the two models have the same difficulties in capturing the
steep short-term skew.

The appropriate truncation order to accurately price options in the Jacobi model depends on
the model parameters. Therefore, a genuine calibration procedure should also adapt the truncation
order and avoid the evaluation of aberrant specifications.

6.5 Computational performance

The pricing approximation methodology may be divided into two tasks, the computation of the
Fourier coefficients fn and the computation of the Hermite moments `n, both having roughly a
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linear cost in n. The same Fourier coefficients can be used for different model parameters, and
the same Hermite moments can be used to price multiple options. The computational burden
decreases rapidly with the total number of options, the number of maturities, and the number
of observations dates. For example, it takes on average 15 milliseconds to price an option with
N = 100 for a portfolio of 1000 calls equally split over 10 different maturities on a standard
desktop computer with a 3.5 Ghz 64 bits CPU and implemented in the R programming language.

The Fourier coefficients can be computed efficiently thanks to the recursive scheme (19)-(20),
as shown on the right panel of Figure 8. For example, it takes a couple of milliseconds to compute
all the coefficients up to the order n = 100. The Fourier coefficients depend only on the weighted
space parameters µw and σw, and the payoff. The same fn therefore applies to different models
when the density gT is expanded in the same weighted space.

The computation of the Hermite moments can also be divided into two mains tasks, the con-
struction of the matrix representation GN and the computation of the matrix exponential. The
most expensive task seems to be the construction of the matrix GN which takes about 150 millisec-
onds on a standard desktop computer implemented in the scientific programming language R, see
the left panel of Figure 8. However, this matrix is constructed only once, and an implementation in
another programming language may perform better. We recall that the matrix GN is of dimension
(N + 1)(N + 2)/2 and extremely sparse with at most 7 non-null elements per column. For the
calculation of the matrix exponential, we remark that only the action of the matrix exponential is
needed, that is the vector vn,T = eGnTeπ(0,n), which can be used to compute the Hermite moments
for any initial state (X0, V0). Specific numerical methods have been developed to perform these
computations which can also be found in Physics and Biology, for examples see (Al-Mohy and
Higham 2011) (Hochbruck and Lubich 1997) and references therein.

6.6 Forward start call option

Figure 9 displays the doubly indexed Fourier coefficients f̃m1,m2 in (40) and Hermite coefficients
`m1,m2 in (41) for the orders 0 ≤ m1,m2 ≤ 30. In a similar way as for the simple call option,
the coefficients oscillate on the bivariate plane. The oscillations are possibly more pronounced in
certain directions than others but always flatten to zero as the cumulative order m1 +m2 increases.
We therefore consider on the third row of Figure 9 a price approximation of order n with the
truncation defined as follow

π
(n)
FS =

m1+m2≤n∑

m1,m2≥0

f̃m1,m2`m1,m2 .

The behavior of the price series is similar to the one for the vanilla call option. The main differ-
ence is that approximating the forward start call option is computationally more costly. A price
approximation of order n indeed requires to compute n+1 actions of a vector on a matrix exponen-
tial. However, this per option cost also decreases when multiple options have to be approximated
because the Hermite coefficients do not depend on the discounted payoff function. In addition,
the bivariate Fourier coefficients are in this case simply the cross product of two univariate Fourier
coefficient sequences.

7 Conclusion

The Jacobi model is a highly tractable and versatile stochastic volatility model. It contains the
Heston stochastic volatility model as a limit case. The series approximation techniques based on
the Gram–Charlier A expansions of the joint distributions of finite sequences of log returns allow
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us to efficiently compute prices of options whose payoff depends on the underlying asset price at
finitely many points. Compared to the Heston model, the Jacobi model offers additional flexibility
to fit a large range of Black–Scholes implied volatility surfaces. Our numerical analysis shows that
the series approximations of European call, put and digital option prices in the Jacobi model are
computationally comparable to the widely used Fourier transform techniques for option pricing
in the Heston model. The truncated series of prices, whose computation does not require any
numerical integration, can be implemented efficiently and reliably up to orders that guarantee
accurate approximations as shown by our numerical error analysis. The pricing of forward start
options, which does not involve any numerical integration, is significantly simpler and faster than
the iterative numerical integration method used in the Heston model. The minimal and maximal
volatility parameters are universal bounds for the implied volatility and provide additional stability
to the model. In particular, implied volatilities of forward start options in the Jacobi model do not
experience the explosions observed in the Heston model.
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A Polynomial property

We denote the generator of the Jacobi model (1) by

Gf(v, x) = b(v)>∇f(v, x) +
1

2
Tr(a(v)∇2f(v, x)),

where the drift vector, b(v), and the diffusion matrix, a(v), are given by

b(v) =

[
κ(θ − v)

r − δ − v/2

]
, a(v) =

[
σ2Q(v) ρσQ(v)
ρσQ(v) v

]
. (44)

The diffusion matrix function a(v) is continuous in the parameters vmin, vmax. In particular, for
vmin = 0 and vmax →∞, we obtain

a(v)→
[
σ2v ρσv
ρσv v

]
,

which corresponds to the generator of the Heston model (4).
We denote by Poln the vector space of polynomials in (v, x) of degree less than or equal to n. It

then follows by inspection that the components of b(v) and a(v) lie in Pol1 and Pol2, respectively. As
a consequence, the generator G of the Jacobi model (1), and of the Heston model (4), is polynomial.
That is, G maps any polynomial of degree n onto a polynomial of degree n or less, G Poln ⊂ Poln,
see also (Filipović and Larsson 2015, Lemma 2.2). From this we can easily calculate the moments
of (VT , XT ) as follows. For N ∈ N, let M = (N + 2)(N + 1)/2 be the dimension of the vector space
PolN . Suppose that

h1(v, x), . . . , hM (v, x)

is a basis of PolN . Denote by G the matrix of the linear map G restricted to PolN with respect to
this basis. The following theorem gives an algorithm to calculate the moments.

Theorem A.1. For any polynomial p(v, x) ∈ PolN and 0 ≤ t ≤ T we have

E[p(VT , XT )|Ft] = [h1(Vt, Xt), . . . , hM (Vt, Xt)]e
(T−t)G #»p

where #»p ∈ RM is the coordinate representation of the polynomial p(v, x) with respect to the basis
h1(v, x), . . . , hM (v, x). In particular, all moments of (VT , XT ) are finite.

Proof. See (Filipović and Larsson 2015, Theorem 3.1).

We now apply Theorem A.1 to describe more explicitly how the coefficients `0, . . . , `N in (15)
can be efficiently computed for any fixed truncation order N ≥ 1. We let π : E → {1, . . . ,M} be
an enumeration of the set of exponents

E = {(m,n) : m,n ≥ 0; m+ n ≤ N}.

The polynomials
hπ(m,n)(v, x) = vmHn(x), (m,n) ∈ E (45)

then form a basis of PolN . In view of the elementary property

H ′n(x) =

√
n

σw
Hn−1(x), n ≥ 1,
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we obtain that the M ×M–matrix G representing G on PolN has at most 7 nonzero elements in
column π(m,n) with (m,n) ∈ E given by

Gπ(m−2,n),π(m,n) = −σ
2m(m− 1)vmaxvmin
2(
√
vmax −

√
vmin)2

, m ≥ 2;

Gπ(m−1,n−1),π(m,n) = − σρm
√
nvmaxvmin

σw(
√
vmax −

√
vmin)2

, m, n ≥ 1;

Gπ(m−1,n),π(m,n) = κθm+
σ2m(m− 1)(vmax + vmin)

2(
√
vmax −

√
vmin)2

, m ≥ 1;

Gπ(m,n−1),π(m,n) =
(r − δ)√n

σw
+
σρm

√
n(vmax + vmin)

σw(
√
vmax −

√
vmin)2

, n ≥ 1;

Gπ(m+1,n−2),π(m,n) =

√
n(n− 1)

2σ2
w

, n ≥ 2;

Gπ(m,n),π(m,n) = −κm− σ2m(m− 1)

2(
√
vmax −

√
vmin)2

Gπ(m+1,n−1),π(m,n) = −
√
n

2σw
− σρm

√
n

σw(
√
vmax −

√
vmin)2

, n ≥ 1.

(46)

Theorem A.1 now implies the following result.

Theorem A.2. The coefficients `n are given by

`n = [h1(V0, X0), . . . , hM (V0, X0)] eTG eπ(0,n), 0 ≤ n ≤ N, (47)

where ei is the i–th standard basis vector in RM . In particular,

`0 = 1;

`1 =
1

σw

(
(r − δ)T − θ

2

(
T +

e−κT − 1

κ

)
+

e−κT − 1

2κ
V0 +X0 − µw

)
.

Remark A.3. The choice of the basis polynomials hπ(m,n) in (45) is convenient for our purposes
because: 1) each column of the M × M -matrix G has at most seven nonzero entries. 2) The
coefficients `n in the expansion of prices (13), can be obtained directly from the action of eGnT on
eπ(0,n) as specified in (47). In practice, it is more efficient to compute directly this action, rather

than computing the matrix exponential eGnT and then selecting the π(0,n)-column.

We can extend the previous results to a multi-dimensional setting. The following theorem
provides an efficient way to calculate multi-dimensional Hermite moments as defined in (39). More
precisely, Hermite moments of the form `m1,...,mn = E

[∏n
i=1Hmi(Xti −Xti−1)

]
where 0 = t0 <

· · · < tn < ∞ and for each i, Hmi(yi) is a generalized Hermite polynomial associated to the
parameters µwi and σwi satisfying (38).

Before stating the theorem we fix some notation. Set N =
∑n

i=1mi and M = (N+2)(N+1)/2.

Let G
(i)
N be the M ×M–matrix representation of the infinitesimal generator G associated to the

generalized Hermite basis with parameters µwi and σwi satisfying (38). We denote this basis in
vector form as follows

h(i)(v, x) = [h
(i)
1 (v, x), . . . , h

(i)
M (v, x)], (48)
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with h
(i)
π(m,n)(v, x) = vmH

(i)
n (x) and H

(i)
n the n-order generalized Hermite polynomial associated to

the parameters µwi and σwi . Define the M ×M -matrix A(k,l) by

A
(k,l)
i,j =

{
H

(l)
n (0) if i = π(m, k) and j = π(m,n) for some m,n ∈ N

0 otherwise.
(49)

Theorem A.4. Suppose that 0 ≤ t0 < · · · < tn < ∞. Then for m1, . . . ,mn ∈ N0 the multi-
dimensional Hermite moment as defined in (39) can be computed through

`m1,...,mn = h(1)(V0, 0)>eG
(1)
N ∆t1A(m1,1) · · · eG

(n−1)
N ∆tn−1A(mn−1,n−1)eG

(n)
N ∆tneπ(0,mn),

where A(mi,i) is the matrix defined in (49), h(1)(v, x) is defined by (48) and ∆ti = ti − ti−1.

Proof. By an inductive argument it is sufficient to illustrate the case n = 2. In this case the result
follows from the following chain of identities

`m1,m2 = E[Hm1(Xt1 −Xt0)Et1 [Hm2(Xt2) | Xt1 = 0]]

= E
[
Hm1(Xt1 −Xt0)h(2)(Vt1 , 0)>eG

(2)
N ∆t2eπ(0,m2)

]

= h(1)(V0, 0)>eG
(1)
N ∆t1A(m1,1)eG

(2)
N ∆t2eπ(0,m2).

B Proofs

This appendix contains the proofs of all theorems and propositions in the main text.

Proof of Theorem 2.1

As the system of SDEs (1) is not coupled, it is sufficient to show strong existence and path-wise
uniqueness for solutions of the SDE

dVt = κ(θ − Vt) dt+ σ
√
Q(Vt) dW1t, (50)

where κ ≥ 0, θ ∈ [vmin, vmax], σ > 0 and W1t is a one-dimensional Brownian motion. Since
the interval [0, 1] is an affine transformation of the unit ball in R, weak existence can be de-
duced from (Larsson and Pulido 2015, Theorem 2.1). Path-wise uniqueness of solutions follows
from (Yamada and Watanabe 1971, Theorem 1). Strong existence of solutions for the SDE (50) is
a consequence of path-wise uniqueness and weak existence of solutions, see for instance (Yamada
and Watanabe 1971, Corollary 1).

To conclude, Proposition 2.2 in (Larsson and Pulido 2015) shows that the interior of the interval
[vmin, vmax] is invariant for V (i.e. Vt ∈ (vmin, vmax)) if and only if condition (2) holds.

Proof of Theorem 2.3

The proof of Theorem 2.3 builds on the following four lemmas.
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Lemma B.1. Suppose that Y and Y (n), n ≥ 1, are random variables in Rd for which all moments
exist. Assume further that

lim
n

E[p(Y (n))] = E[p(Y )], (51)

for any polynomial p(y) and that the distribution of Y is determined by its moments. Then the
sequence Y (n) converges weakly to Y as n→∞.

Proof. Theorem 30.2 in (Billingsley 1995) proves this result for the case d = 1. Inspection shows
that the proof is still valid for the general case.

Lemma B.2. The moments of the finite-dimensional distributions of the diffusions (V
(n)
t , X

(n)
t )

converge to the respective moments of the finite-dimensional distributions of (Vt, Xt). That is, for
any 0 ≤ t1 < · · · < td <∞ and for any polynomials p1(v, x), . . . , pd(v, x) we have

lim
n

E

[
d∏

i=1

pi(V
(n)
ti

, X
(n)
ti

)

]
= E

[
d∏

i=1

pi(Vti , Xti)

]
. (52)

Proof. Let N =
∑d

i=1 deg pi. Throughout the proof we fix a basis

h1(v, x), . . . , hM (v, x)

of PolN , where M = dim PolN , and for any polynomial p(v, x) we denote by #»p its coordinates with
respect to this basis. We denote by G and G(n) the respective M×M -matrix representations of the

generators restricted to PolN of (Vt, Xt) and (V
(n)
t , X

(n)
t ), respectively. We then define recursively

the polynomials qi(v, x) and q
(n)
i (v, x) for 1 ≤ i ≤ d by

qd(v, x) = q
(n)
d (v, x) = pd(v, x),

qi(v, x) = pi(v, x)[h1(v, x), . . . , hM (v, x)]e(ti+1−ti)G #     »qi+1, 1 ≤ i < d,

q
(n)
i (v, x) = pi(v, x)[h1(v, x), . . . , hM (v, x)]e(ti+1−ti)G(n)

#     »

q
(n)
i+1, 1 ≤ i < d.

A successive application of Theorem A.1 implies that

E

[
d∏

i=1

pi(Vti , Xti)

]
= E

[
d−1∏

i=1

pi(Vti , Xti)E
[
pd(Vtd , Xtd) | Ftd−1

]
]

= · · · = [h1(V0, X0), . . . , hM (V0, X0)] et1G #»q1.

and similarly,

E

[
d∏

i=1

pi(V
(n)
ti

, X
(n)
ti

)

]
=
[
h1(V

(n)
0 , X

(n)
0 ), . . . , hM (V

(n)
0 , X

(n)
0 )

]
et1G

(n)
#    »

q
(n)
1 .

We deduce from (44) that
lim
n
G(n) = G. (53)

Note that this is valid also for the limit case vmax =∞, that is, Q(v) = v−vmin. This fact together
with an inductive argument shows that

lim
n

#    »

q
(n)
1 = #»q1.

This combined with (53) proves (52).
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Lemma B.3. The finite-dimensional distributions of (Vt, Xt) are determined by their moments.

Proof. The proof of this result is contained in the proof of (Filipović and Larsson 2015, Theorem
4.2).

Lemma B.4. The family of diffusions (V
(n)
t , X

(n)
t ) is tight.

Proof. Fix a time horizon N ∈ N. We first observe that by (Karatzas and Shreve 1991, Problem
V.3.15) there is a constant K independent of n such that

E[‖(V (n)
t , X

(n)
t )− (V (n)

s , X(n)
s )‖4] ≤ K|t− s|2, 0 ≤ s < t ≤ N. (54)

Now fix any positive α < 1/4. Kolmogorov’s continuity theorem (see (Revuz and Yor 1999, Theorem
I.2.1)) implies that

E



(

sup
0≤s<t≤N

‖(V (n)
t , X

(n)
t )− (V

(n)
s , X

(n)
s )‖

|t− s|α

)4

 ≤ J

for a finite constant J that is independent of n. The modulus of continuity

∆(δ, n) = sup
{
‖(V (n)

t , X
(n)
t )− (V (n)

s , X(n)
s )‖ | 0 ≤ s < t ≤ N, |t− s| < δ

}

thus satisfies
E[∆(δ, n)4] ≤ δαJ.

Using Chebyshev’s inequality we conclude that, for every ε > 0,

Q[∆(δ, n) > ε] ≤ E[∆(δ, n)4]

ε4
≤ δαJ

ε4
,

and thus supnQ[∆(δ, n) > ε]→ 0 as δ → 0. This together with the property that the initial states

(V
(n)

0 , X
(n)
0 ) converge to (V0, X0) as n → ∞ proves the lemma, see (Rogers and Williams 2000,

Theorem II.85.3).4

Remark B.5. Kolmogorov’s continuity theorem (see (Revuz and Yor 1999, Theorem I.2.1)) and
(54) imply that the paths of (Vt, Xt) are α-Hölder continuous for any α < 1/4.

Lemmas B.1–B.3 imply that the finite-dimensional distributions of the diffusions (V
(n)
t , X

(n)
t )

converge weakly to those of (Vt, Xt) as n → ∞. Theorem 2.3 thus follows from Lemma B.4 and
(Rogers and Williams 2000, Lemma II.87.3).

Proof of Theorem 3.7

We claim that the solution of the recursion (20) is given by

In(µ; ν) =

∫ ∞

µ
Hn(x)eνxφ(x) dx, n ≥ 0. (55)

4The derivation of the tightness of (V
(n)
t , X

(n)
t ) from (54) is also stated without proof in (Rogers and Williams

2000, Theorem II.85.5). For the sake of completeness we give a short self-contained argument here.
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Indeed, for n = 0 the right hand side of (55) equals
∫ ∞

µ
H0(x)eνxφ(x) dx = e

ν2

2

∫ ∞

µ−ν
φ(x) dx,

which is I0(µ; ν). For n ≥ 1, we recall that the standard Hermite polynomials Hn(x) satisfy

Hn(x) = xHn−1(x)−H′n−1(x). (56)

Integration by parts and (56) then show that
∫ ∞

µ
Hn(x)eνxφ(x) dx =

∫ ∞

µ
Hn−1(x)eνxxφ(x) dx−

∫ ∞

µ
H′n−1(x)eνxφ(x) dx

= −Hn−1(x)eνxφ(x)
∣∣∞
µ

+

∫ ∞

µ
Hn−1(x)νeνxφ(x) dx.

= Hn−1(µ)eνµφ(µ) + ν

∫ ∞

µ
Hn−1(x)eνxφ(x) dx,

which proves (55).
A change of variables, using (12) and (55), shows

fn = e−rT
∫ ∞

k

(
ex − ek

)
Hn(x)w(x) dx

= e−rT
∫ ∞
k−µw
σw

(
eµw+σwz − ek

)
Hn(µw + σwz)w(µw + σwz)σw dz

= e−rT
1√
n!

∫ ∞
k−µw
σw

(
eµw+σwz − ek

)
Hn(z)φ(z) dz

= e−rT+µw 1√
n!
In

(
k − µw
σw

;σw

)
− e−rT+k 1√

n!
In

(
k − µw
σw

; 0

)
.

Formulas (19) follow from the recursion formula (20).

Proof of Theorem 3.11

As before, a change of variables, using (12) and (55), shows

fn = e−rT
∫ ∞

k
Hn(x)w(x) dx

=
e−rT√
n!

∫ ∞
k−µw
σw

Hn(z)φ(z) dz

=
e−rT√
n!
In

(
k − µw
σw

; 0

)
.

Formulas (22) follow directly from (20).

Proof of Theorem 3.14

For any t < T , the time-t Black–Scholes option price with volatility σBS as function of the spot
price St = s satisfies

e−rtπσBS
f (t, s) = E [f(log(sY ))]
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where Y is some log-normal random variable independent of Ft. By convexity of the payoff function
we have that

αf(log(s1Y )) + (1− α)f(log(s2Y )) ≥ f(log(s3Y ))

with s3 = αs1 + (1 − α)s2. Since f(log(s)) is non-affine, the previous inequality is strict with a
strict positive probability. This implies that πσBS

f (t, s) is strictly convex in s > 0 and the theorem
now follows from Theorem 5.4.

Proof of Proposition 4.1

We use similar notation as in the proof of Theorem 5.1. In particular, with CT as in (5) and MT

as in (27), we denote

GT (x) = (2πCT )−
1
2 exp

(
−(x−MT )2

2CT

)

the density of XT conditional on {Vt : t ∈ [0, T ]} and gT (x) = E[GT (x)] the density of XT .

1. We first recall that by Cramér’s inequality for all n ≥ 0

e−(x−µw)2/4σ2
w |Hn(x)| = (n!)−1/2e−(x−µw)2/4σ2

w

∣∣∣∣Hn
(
x− µw
σw

)∣∣∣∣ ≤ K, (57)

with K ≤ 1.086435 a constant; see for instance (Hille 1926). On the other hand, as in the
proof Theorem 5.1, since 1/4σ2

w < 1/(2vmaxT ),

E
[∫

R
e(x−µw)2/4σ2

wGT (x) dx

]
<∞.

Hence

E
[∫

R
|Hn(x)|GT (x) dx

]
= E

[∫

R
|Hn(x)|e−(x−µw)2/4σ2

we(x−µw)2/4σ2
wGT (x) dx

]

≤ KE
[∫

R
e(x−µw)2/4σ2

wGT (x) dx

]
<∞,

and we can use Fubini’s theorem to deduce that

`n =

∫

R
Hn(x)gT (x) dx = E

[∫

R
Hn(x)GT (x) dx

]
= E[Yn]. (58)

We now analyze the term inside the expectation in (58). A change of variables shows

Yn =

∫

R
Hn(x)GT (x) dx = (2πn!)−1/2

∫

R
Hn(αy + β)e−y

2/2 dy, (59)

with α =
√
CT
σw

and β = MT−µw
σw

. Define

xn = (2π)−1/2

∫

R
Hn(αy + β)e−y

2/2 dy,

so that

Yn =

∫

R
Hn(x)GT (x) dx = (n!)−1/2xn. (60)
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An integration by parts argument using (56) and the identity

H′n(x) = nHn−1(x)

shows the following recursion formula

xn = βxn−1 − (n− 1)(1− α2)xn−2,

with x0 = 1 and x1 = β. This recursion formula is closely related to the recursion formula of
the Hermite polynomials which helps us deduce the following explicit expression

xn = n!

bn/2c∑

m=0

(α2 − 1)m

m!(n− 2m)!

βn−2m

2m
. (61)

By (58), (60), (61), we derive the expression for the Hermite moments ln given by (25).

2. Suppose that α2 < 1 a.s. We first recall that

Hn(x) = n!

bn/2c∑

m=0

(−1)m

m!(n− 2m)!

xn−2m

2m
. (62)

By (61) and (62) we have

xn = n!(1− α2)
n
2

bn/2c∑

m=0

(−1)m

m!(n− 2m)!

((1− α2)−
1
2β)n−2m

2m

= (1− α2)
n
2Hn((1− α2)−

1
2β).

(63)

Formula (28) follows from (58), (60) and (63). Iteratively using integration by parts in (59)
we conclude that for all k ≥ 1

Yn =
(2π(n+ k)!)−1/2

αk
√

(n+ 1)(n+ 2) · · · (n+ k)

∫

R
Hk(y)e−y

2/2Hn+k(αy + β) dy.

Since (2π)−1/2
∫
RHk(y)2e−y

2/2 dy = k!, Cauchy-Schwarz inequality implies that

|Yn|2 ≤
(2π)−1/2k!

(α2n)k

∫

R
(n+ k)!−1H2

n+k(αy + β)e−y
2/2 dy.

By (57) we obtain

|Yn|2 ≤
(2π)−1/2k!K2

(α2n)k

∫

R
e−y

2/2+(αy+β)2/2 dy =
k!K2e

β2(1+α2/γ)
2

(α2n)k
√
γ

, (64)

with
γ = 1− α2.

The inequality (29) follows from Jensen’s inequality, (58) and (64). If α2 ≤ δ < 1 with δ a
constant, since K̃ is a constant such that |β| ≤ K̃, by Cauchy-Schwarz inequality and (57)

`2n ≤ E[(1− α2)n]E[(n!−
1
2Hn((1− α2)−

1
2β))2]

≤ E[(1− α2)n]K2E[exp(β2/(2(1− α2)))]

≤ K2 exp(K̃2/(2(1− δ)))E[(1− α2)n].

(65)

Hence, if in addition α2 ≥ ε > 0, the inequality (30) follows.
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3. Observe that
∞∑

n=0

`2n = ‖`‖2w =

∫

R

g2
T (x)

w(x)
dx.

Additionally we have
∫

R

g2
T (x)

w(x)
dx =

√
2πσw

∫

R
e(x−µw)2/(2σ2

w)g2
T (x)dx

=
√

2πσw

∫

R
(ex

2/4σ2
wgT (x+ µw))2 dx.

Following the proof of Theorem 5.1 we have
∫

R
ex

2/4σ2
wgT (x+ µw) dx = E

[
1√
∆

exp

(
(MT − µw)2

4σ2
w∆

)]

ex
2/4σ2

wgT (x+ µw) ≤ E




exp
(

(MT−µw)2

4σ2
w∆

)

√
2πCT


 ,

where

∆ = 1− CT
2σ2

w

.

This readily implies (31). Observe that ∆ > 0 because by (11) CT
2σ2
w
≤ vmaxT

2σ2
w

< 1.

Proof of Proposition 4.3

From the definition of CT it is obvious that CT ≤
∫ T

0 Vt dt. Since Q(v) ≤ v, the inequality (32)
follows. The inequality (33) is a consequence of

CT =

(
1− ρ2(vmax + vmin)

(
√
vmax −

√
vmin)2

)∫ T

0
Vt dt

+
ρ2

(
√
vmax −

√
vmin)2

∫ T

0
(vmaxvmin + V 2

t ) dt.

Proof of Proposition 4.5

By (21), (57) and the Cauchy-Schwarz inequality we have for n ≥ 1

|fn| ≤ e−rT+k
σwφ

(
k−µw
σw

)

√
n(n− 1)

n−2∑

m=0

∣∣∣∣Hm
(
k − µw
σw

)∣∣∣∣m!−1/2 σn−2−m
w√

(n− 2−m)!

(
n− 2

m

)−1/2

+ e−rT+µw+
σ2w
2 Φ

(
σw −

k − µw
σw

)
σnw√
n!

≤ e
−rT+k− (k−µw)2

4σ2w
Kσw(2π)−1/2

√
n(n− 1)

(
n−2∑

m=0

(σ2
w)m

m!

)1/2(n−2∑

m=0

(
n− 2

m

)−1
)1/2

+ e−rT+µw+
σ2w
2 Φ

(
σw −

k − µw
σw

)
σnw√
n!

≤ e
−rT+k− (k−µw)2

4σ2w
+σ2

w/2KK̃σw(2π)−1/2

√
n(n− 1)

+ e−rT+µw+
σ2w
2 Φ

(
σw −

k − µw
σw

)
σnw√
n!
,
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where
(∑n−2

m=0

(
n−2
m

)−1
)1/2

≤ K̃. Note that for n ≥ 6 and 2 ≤ m ≤ n−4, we have
(
n−2
m

)
≥
(
n−2

2

)
=

(n−2)(n−3)
2 , hence for n ≥ 6

2 ≤
n−2∑

m=0

(
n− 2

m

)−1

≤ 2 +
2

n− 2
+

2(n− 5)

(n− 2)(n− 3)
.

This implies that limn→∞
∑n−2

m=0

(
n−2
m

)−1
= 2 and in particular we have the existence of K̃, e.g.

K̃ =
√

3.

Proof of Theorem 5.1

In order to shorten the notation throughout the proof, given a stochastic process Zt we set ∆Zti =
Zti − Zti−1 . From (1) we infer that the log price Xt can be written as

Xt = Mt +

∫ t

0

√
Vs − ρ2Q(Vs) dW2s

where as in (27) we denote

Mt = X0 +

∫ t

0
(r − δ − Vs/2) ds+

ρ

σ

(
Vt − V0 −

∫ t

0
κ (θ − Vs) ds

)
.

In particular the log returns Yti = ∆Xti have the form

Yti = ∆Mti +

∫ ti

ti−1

√
Vs − ρ2Q(Vs) dW2s.

Assume ∆Cti > 0 for i = 1, . . . , n. Motivated by (Broadie and Kaya 2006), we notice that in
this case, conditional on {Vt, t ∈ [0, T ]}, the random variable (Yt1 , . . . , Ytn) is Gaussian with mean
vector

µ = (∆Mt1 , . . . ,∆Mtn)

and covariance matrix
Σ = diag(∆Ct1 , . . . ,∆Ctn).

Its density Gt0,...,tn(y) = Gt0,...,tn(y1, . . . , yn) has the form

Gt0,...,tn(y) = (2π)−n/2
∏

i

(∆Cti)
−1/2 exp

[
−
∑

i

(yi −∆Mti)
2

2∆Cti

]
.

Fubini’s theorem implies that
gt0,...,tn(y) = E [Gt0,...,tn(y)]

is measurable and satisfies, for any bounded measurable function f(y)

E [f(Yt1 , . . . , Ytn)] = E
[∫

Rn
f(y)Gt0,...,tn(y) dy

]
=

∫

Rn
f(y)gt0,...,tn(y) dy.

Hence the distribution of (Yt1 , . . . , Ytn) admits the density gt0,...,tn(y) on Rn. Observe that the mean
vector and covariance matrix of Gt0,...,tn(y) admit the uniform bounds

|µi| ≤ K, |Σii| ≤ vmax(ti − ti−1),
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for some finite constant K. Dominated convergence implies that gt0,...,tn(y) is uniformly bounded
and k–times continuously differentiable on Rn if (36) holds.

We can assume without loss of generality that εi > 0 for i = 1, . . . , n. Define ∆i = 1− 2εi∆Cti
and δi = 1− 2εivmax(ti − ti−1). Then δi ∈ (0, 1) and ∆i ≥ δi. Completing the square implies

e
∑
i εiy

2
iGt0,...,tn(y) =

∏

i

(2π∆Cti)
− 1

2 exp

[
εiy

2
i −

(yi −∆Mti)
2

2∆Cti

]

=
∏

i

(2π∆Cti)
− 1

2 exp

[
− ∆i

2∆Cti

(
yi −

∆Mti

∆i

)2

+
∆M2

ti

2∆Cti

(
1

∆i
− 1

)]

=
∏

i

(2π∆Cti)
− 1

2 exp

[
− ∆i

2∆Cti

(
yi −

∆Mti

∆i

)2

+
εi∆M

2
ti

∆i

]
.

(66)

Integration of (66) then gives

∫

Rn
e
∑
i εiy

2
iGt0,...,tn(y) dy =

∏

i

1√
∆i

exp

[
εi∆M

2
ti

∆i

]
≤
∏

i

1√
δi

exp

[
εiK

2

δi

]
.

Hence (6) follows by Fubini’s theorem after taking expectation on both sides. We also derive from
(66) that

e
∑
i εiy

2
i gt0,...,tn(y) = E

[
e
∑
i εiy

2
iGt0,...,tn(y)

]
≤ E

[∏

i

(2π∆Cti)
− 1

2

]∏

i

exp

[
εiK

2

δi

]
.

Hence e
∑
i εiy

2
i gt0,...,tn(y) is uniformly bounded and continuous on Rn if (36) holds. In fact, for

this to hold it is enough suppose that (36) holds with k = 0. Moreover, (8) implies that ∆Cti ≥
(ti − ti−1)(1− ρ2)vmin > 0 and (36) follows.

Proof of Theorem 5.4

We denote by πf,t the time-t price of the exotic option in the Jacobi model. For t ∈ (ti−1, ti) and
given Xt1 , . . . , Xti−1 , the Black–Scholes price function πσBS

f (t, s) satisfies the following PDE

rπσBS
f (t, s) =

∂πσBS
f (t, s)

∂t
+ (r − δ)s

∂πσBS
f (t, s)

∂s
+

1

2
σ2

BSs
2
∂2πσBS

f (t, s)

∂s2
(67)

and has terminal value satisfying πσBS
f (T, ST ) = πf,T . Write

πσBS
f,t = πσBS

f (t, St), ΘσBS
f,t = −

∂πσBS
f (t, St)

∂t
, ∆σBS

f,t =
∂πσBS

f (t, St)

∂s
, ΓσBS

f,t =
∂2πσBS

f (t, St)

∂s2

and dNt = ρ
√
Q(Vt) dW1t+

√
Vt − ρ2Q(Vt) dW2t for the martingale driving the asset return in (1)

such that, using (67),

d(e−rtπσBS
f,t ) = e−rt

(
−rπσBS

f,t −ΘσBS
f,t + (r − δ)St∆σBS

f,t +
1

2
VtS

2
t ΓσBS

f,t

)
dt+ e−rt∆σBS

f,t St dNt

=
1

2
e−rt(Vt − σ2

BS)S2
t ΓσBS

f,t dt+ e−rt∆σBS
f,t St dNt.
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Consider the self-financing portfolio with zero initial value, long one unit of the exotic option,
and short ∆σBS

f,t units of the underlying asset. Let Πt denote the time-t value of this portfolio. Its
discounted price dynamics then satisfies

d(e−rtΠt) = d(e−rtπf,t)−∆σBS
f,t

(
d(e−rtSt) + e−rtStδ dt

)

= d(e−rtπf,t)−∆σBS
f,t e

−rtSt dNt

= d(e−rtπf,t)− d(e−rtπσBS
f,t ) +

1

2
e−rt(Vt − σ2

BS)S2
t ΓσBS

f,t dt.

Integrating in t gives

e−rTΠT = −πf,0 + πσBS
f,0 +

1

2

∫ T

0
e−rt(Vt − σ2

BS)S2
t ΓσBS

f,t dt (68)

as πf,T − πσBS
f,T = 0. We now claim that the time-0 option price πf,0 = πf lies between the Black–

Scholes option prices for σBS =
√
vmin and σBS =

√
vmax,

π
√
vmin

f,0 ≤ πf ≤ π
√
vmax

f,0 . (69)

Indeed, let σBS =
√
vmin. Because ΓBS

f,t ≥ 0 by assumption, it follows from (68) that e−rTΠT ≥
−πf,0 +π

√
vmin

f,0 . Absence of arbitrage implies that ΠT must not be bounded away from zero, hence

−πf,0 + π
√
vmin

f,0 ≤ 0. This proves the left inequality in (69). The right inequality follows similarly,
whence the claim (69) is proved.

It remains to prove that the time-0 Black–Scholes price πσBS
f,0 is strictly increasing in σBS.

Applying the same arguments as above to the two Black–Scholes models with volatilities σa > σb
implies

e−rTΠT = −πσaf,0 + πσbf,0 +
1

2

∫ T

0
e−rt

(
σ2
a − σ2

b

)
StΓ

σb
f,t dt > −πσaf,0 + πσbf,0,

where we used that Γσbf,0 > 0. Absence of arbitrage then implies that πσaf,0 > πσbf,0, as desired. Hence
the implied volatility σIV at t = 0 is well defined and satisfies the bounds as claimed in the theorem.
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√
θ κ σ ρ

√
V0

√
Vmin

√
Vmax RMSE

Jacobi 0.3660 0.7507 1.0072 -0.6057 0.1178 0.0499 0.4476 0.8461
Heston 0.3655 0.7498 0.8573 -0.6047 0.1178 0.9447

Table 1: Calibrated parameters.
The Jacobi and Heston models fitted parameters are reported as well as the implied volatility
surface root-mean-squared-error (RMSE). The models were calibrated on a subset of S&P 500
options with maturity less than one month observed on January 2nd 2014.
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vmin v∗ vmax

0

ρ

Figure 1: Variance and correlation.
The quadratic variation of the Jacobi model (black line) and of the Heston model (gray line) are
displayed in the left panel as a function of the instantaneous variance. The right panel displays
the instantaneous correlation between the processes Xt and Vt as a function of the instantaneous
variance. We denote v∗ =

√
vminvmax and assumed that ρ < 0.
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Figure 2: Coefficients and price approximation.
The Fourier coefficients (first row), the Hermite coefficients (second row), and the price expansion
(third row) are displayed as a function of the order n. The parameters values are T = 1/12,
x0 = k = 0, κ = 0.5, θ = v0 = (0.25)2, σ = 0.25, vmin = (0.10)2, ρ = −0.5, and vmax ∈ {0.3, 1, 5}.
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Figure 3: Impact of the weighted space variance parameter.
The left panel displays the expanded density of the process XT truncated at the order n = 50,
and the right panel displays the price expansion as a function of the order n. The different lines
correspond to different weighted space variance parameter, that is σw = ν (black line), σw = 1.5ν
(gray line), and σw = 2ν (light gray line) with ν =

√
(vmaxT/2) + ε. The parameters values are

ε = 10−4, T = 1/12, x0 = k = 0, κ = 0.5, θ = v0 = (0.25)2, σ = 0.25, vmin = (0.10)2, ρ = −0.5,
and vmax = 1.
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Figure 4: Relative increment contribution.
The contribution of an increment is defined as the product of the Fourier and Hermite coefficients
normalized by the price approximation of order n = 100. The contribution to the final price
(first row), and the price expansion (second row) are displayed as a function of the order n. The
parameters values are T = 1/12, x0 = 0, κ = 0.5, θ = v0 = (0.25)2, σ = 0.25, vmin = (0.10)2,
ρ = −0.5, and vmax = 1. Note that the option with strike k = 0.10 is a far out of the money option
with approximate value of 23.3 basis points.
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Figure 5: Relative and Absolute error bound.

The left panel displays the relative error bound b(n)/π
(n)
f in percentage as a function of n. The

right panel displays the price approximation convergence (black line) and an absolute confidence
interval (gray lines). The parameters values are T = 1/12, x0 = k = 0, κ = 0.5, θ = v0 = (0.25)2,
σ = 0.25, vmin = (0.10)2, vmax = 1, and ρ = −0.5.
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Figure 6: Implied volatility smile: from Heston to Black–Scholes.
The first row displays the variance process’ diffusion function in the Jacobi model (black line) and
in the Heston model (gray line). The second row displays the implied volatility as a function of the
log strike k in the Jacobi model (black line) and in the Heston model (gray line). The parameters
values are T = 1/12, x0 = 0, κ = 0.5, θ = v0 = (0.25)2, σ = 0.75, ρ = −0.5, and vmax = θ2/vmin
such that v∗ = θ.
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Figure 7: Implied volatility fits.
The true (light-gray), the Heston (gray), and the Jacobi (black) implied volatility surfaces are
displayed for each maturity as a function of the strike price. The data sample is a subset of S&P
500 options with maturity less than one month observed on January 2nd 2014.
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Figure 8: Computational performance.
The left panel displays the computing time to derive the Hermite moments `n (black line) and the
matrix Gn (gray line) as a function of the order n. The right panel displays the same relation
for the Fourier coefficients fn (black line). The calculations have been run on a standard personal
computer with a 3.5 Ghz 64 bits CPU and implemented in the R programming language.
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Figure 9: Forward start call option.
The Fourier coefficients (first row) and Hermite coefficients (second row) are displayed as a function
of the double index (m1,m2). The third row displays the price approximation as a function of the
order n which utilizes all the coefficients with order m1 + m2 ≤ n. The parameters values are
t = 1/12, T − t = 1/52, x0 = k = 0, κ = 0.5, v0 = θ = (0.25)2, σ = 0.25, vmin = 10−4, vmax = 1,
and ρ = −0.5.
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