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Abstract Recently, interest of aerospace and automotive in-
dustries on medium-frequency vibrational behavior of com-
posite shell structures has grown due to their high specific
stiffness and fatigue resistance. Conventional methods such
as the Finite Element Method (FEM) and the Statistical En-
ergy Analysis(SEA) are not suitable for the medium-frequency
bandwidth. Conversely, the Variational Theory of Complex
Rays (VTCR) is taking place as an ad-hoc technique to tackle
such frequency band. It is a Trefftz method based on a weak
variational formulation. Equilibrium equations are met us-
ing exact solutions as shape functions. The variational prob-
lem imposes boundary conditions in weak form. The present
paper extends VTCR to orthotropic shell structures. More-
over, several new enhancements are introduced. Now, we
use a quasi-symmetric ray distribution which can greatly
reduce computational costs, and addresses in-plane inertia
which was neglected in previous works. Some relevant nu-
merical examples are presented to show the strategy and re-
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sults are compared with a FEM reference to study perfor-
mances.
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1 Introduction

In recent years, aerospace and automotive industries have
greatly increased use of composite shell structures due to
their high specific stiffness and fatigue resistance. This has
fostered a focused interest towards virtual testing of their
vibrational behavior over a large frequency band. Since the
qualitative behavior of a structure drastically varies with fre-
quency, there are many optimized methods in literature to
study a vibrational problem over a specific part of the fre-
quency range. The Modal Overlap Factor (MOF) [28] iden-
tifies three zones: low, mid and high frequency range.

The low-frequency range can be effectively tackled by
deterministic methods such as the Finite Element Method
(FEM) [18] or the Boundary Element Method (BEM) [15].
These methods are limited to low-frequency since at mid-
and high-frequency the phenomena variation length is very
small if compared to characteristic dimensions of the struc-
ture [9]. This produces numerical instability known as pollu-
tion effect. In order to counteract it, Ihlenburg in [20] proved
that the parameter k3h2 must be kept constant where k is the
wave number and h is the element size. For this reason, in
medium-frequency range computational costs become pro-
hibitive. Yet, many approaches were presented to overcome
these difficulties such as the isogeometric analysis (IGA)
[16, 34], the Galerkin Least-Squares FEM (GLS-FEM) [13],
the Finite Element Tearing and Interconnecting (FETI) [11],
and the variational multiscale FEM [17].

The high-frequency range can be addressed by the Sta-
tistical Energy Analysis (SEA) [28, 29] and its developments
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such as the Wave Intensity Analysis (WIA)[26] or Beam
Tracing (BT) [40]. These techniques study the energy flux
among subdomains neglecting almost entirely spatial quan-
tities. These approaches are based on assumptions that the
wave field is reverberant and that the modal density is high
enough. These hypothesis are usually assured only in the
high-frequency range. Nevertheless, a lot of work has been
done to extend such theories to medium-frequency range
[11, 27, 37].

A class of methods has been specifically developed for
the medium-frequency range such as the partition of unity
method[36, 1], the ultra-weak variational method [4, 19],
the least-squares method [30], the asymptotic scaled modal
analysis [6], the energy operator eigenmodes [35], the dis-
continuous enrichment method [12], the element-free Galerkin
method [3], the wave boundary element method [31] or the
wave-based method [10, 14, 7, 8]. The present work fur-
ther develops one of them: the Variational Theory of Com-
plex Rays (VTCR) [24]. This method approximates the vi-
brational problem solution as a sum of shape functions that
identically satisfy equilibrium equations and addresses bound-
ary conditions in weak form. This approach allows a pri-
ori independent approximations among subdomains. Thus,
different (in number and type) shape functions can be cho-
sen for each subdomain providing great flexibility. Since
its first introduction in [24] where it were applied on plate
theory, VTCR has been implemented in a lot of different
fields such as transient dynamics [5], 3D acoustic [22], and
on a wide frequency band [2]. In particular, Riou in [32]
applied VTCR to general shell theory neglecting in-plane
inertia and Kovalevsky in [23] extended the method to or-
thotropic plates. This work merges and further develops such
studies in three ways:

1. orthotropic materials are included in the VTCR formu-
lation for the general shell theory,

2. in-plane inertia is addressed adding two type of prop-
agative waves that carry in-plane stresses and displace-
ments,

3. a quasi-symmetric ray distribution is introduced to dras-
tically reduce computational costs.

After the theory is introduced, some relevant numerical
examples are presented to validate the strategy. The first one
focuses on a comparison among VTCR with and without in-
plane inertia and a FEM reference. Performances and con-
vergence ratios are studied over a frequency band. The sec-
ond example involves orthotropic materials: the VTCR so-
lution is compared with a FEM one at a fixed frequency and
performances are investigated.

2 General shell theory

In this Section are examined the equilibrium and bound-
ary equations of the general kirchhoff-Love theory for or-
thotropic shells. The present development is akin to the one
provided in [39] and [38].

2.1 Equilibrium equations

The general reference example is presented in 1. The fo-
cus is on a generic subdomain Ωi of the frame structure
in Figure 1. For the sake of clarity various boundary, cor-
ner, coupling, and surface conditions are split in Figure 2.
The ∂�Ωi symbol refers to a generic boundary of Ωi where
condition � is applied. In the particular case of a boundary
shared among subdomains, Γ is used instead. In the same
way, for conditions applied on corners, a symbol ∂∂�Ωi is
used. The generic corner shared among subdomains is in-
dicated with C . The over-line symbol � indicates that a
quantity � is known (i.e. a value of a boundary constraint).
n̂i indicates a normal unit vector of a boundary directed
outward Ωi. A generic subdomain Ωi is subject to loads,
displacements constraints, and continuity conditions along
boundaries (Figure 2a) and on corners (Figure 2b) as well
as a distributed load per unit surface gi (Figure 2d). With-
out loss of generality, a displacement constraint ui = [v′i,wi]

′

along ∂uiΩi can be divided in in-plane vi and out-of-plane
wi components1. In the same way, a load per unit length

pi =
[
b′i,qi

]′
along ∂piΩi can be divided in in-plane bi and

out-of-plane qi components. A rotation condition wi,n̂i is im-
posed along ∂wi,n̂i

Ωi while a bending moment per unit length
mi is applied along ∂miΩi. Corners are subject to out-of-
plane displacements constraints wC i on ∂∂wC iΩi and point
forces qC i on ∂∂qC iΩi. Coupling conditions are applied on
C and along Γ , in order to ensure stresses and displacements
continuity among subdomains (Figure 2c).

Ωe

Γe
Γe

Ce

Ce

ue
wCe pe

ge

qCe

we,n̂e
me

Ce
Ce

Fig. 1: Generic frame structure described in Section 2.1.

All quantities of interest are defined in the complex do-
main. Each one is considered multiplied by e jωt where j =

1 �′ is the transpose operator.
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Ωe

ue pe

we,n̂e
me

(a) boundary conditions.

Ωe

wCe

qCe

Ce
Ce

(b) corner conditions.

Ωe

Γeue

wCe
pe qCe

we,n̂e

me

(c) coupling conditions.

Ωe

ge

(d) surface conditions.

Fig. 2: Boundary, corner, coupling and surface constraints
of the generic frame structure of Figure 1 subdivided and
hightlighted.

√
−1 is the imaginary unit, ω = 2π f is the angular fre-

quency and t is the time.
Curvilinear coordinates

{
α̂ i, β̂ i, ẑi

}
define shell geom-

etry.
{

α̂ i, β̂ i

}
are unit vectors orthogonal each other and

tangent to shell middle surface in every point. ẑi is the out-
of-plane coordinate and is determined in each surface point
by ẑi = α̂ i× β̂ i where × is the cross product. The generic
surface is described by the vector field

ri = ri(α,β ), (1)

where ri is the generic 3D position vector of subdomain
Ωi. Lamé surface parameters

{
Lαi,Lβ i

}
and curvature radii{

Rαi,Rβ i
}

are

Lαi =
√

ri,α ·ri,α , (2)

Lβ i =
√

ri,β ·ri,β , (3)

Rαi =
L2

αi
ẑi · ri,αα

, (4)

Rβ i =
L2

β i

ẑi · ri,ββ

, (5)

where commas indicate directional derivatives. These def-
initions will be useful in the following Sections. Displace-
ment field can be restricted to (Kirchhoff’s kinematics as-
sumptions)

uz
i = ui− ziφ i, (6)

φ i = ∇wi−Ri ·vi, (7)

Ri =

[
1

Rαi
0

0 1
Rβ i

]
, (8)

where uz
i is the displacement thorough shell thickness, ui,

vi and wi are respectively total, in-plane, and out-of-plane
displacements of the middle surface, and Ri is the curvature
matrix. The solution is researched in Di = {ui,Ni,Mi}. ui is
a finite energy displacement and Ni and Mi are finite energy
generalized stress tensors. Di satisfies the in-plane equilib-
rium equation

∇ ·Ni−Ri (∇ ·Mi)+gαβ i +ρihiω
2vi = 0 over Ωi, (9)

and the out-of-plane equilibrium equation

∇ · (∇ ·Mi)+Ri : Ni +gzi +ρihiω
2wi = 0 over Ωi, (10)

where distributed loads gi are divided in in-plane and out-
of-plane components in this way

gi =
[
gαi,gβ i,gzi

]′
, (11)

gαβ i =
[
gαi,gβ i

]′
. (12)

Matrices Ni and Mi are stresses and stresses moment re-
sultants along thickness respectively. Constitutive relations,
also called stress-strain relations, are for orthotropic materi-
als [39]

Mi = Di : (∇∇wi +RiEi +Vicorr), (13)

Vicorr = Ri

[
0 ei(1,2)

ei(2,1) 0

]
, (14)

Ni = Bi : (Ei−Riwi) , (15)

Ei = [∇vi]sym =
1
2
(
∇vi +∇v′i

)
, (16)

Bi =

Bαiναβ iBβ i 0
νβαiBαi Bβ i 0

0 0 BGi

 , (17)

Bαi =
Eαihi

1−ναβ iνβαi
, (18)

Bβ i =
Eβ ihi

1−ναβ iνβαi
, (19)

BGi = Gαβ ihi, (20)

Di =

Dαiναβ iDβ i 0
νβαiDαi Dβ i 0

0 0 DGi

 , (21)

Dαi =
Eαih3

i
12(1−ναβ iνβαi)

, (22)

Dβ i =
E2ih3

i
12(1−ναβ iνβαi)

, (23)

DGi =
Gαβ ihi

6
, (24)

Eαi = Eα0i (1+ jηαi) , (25)

Eβ i = Eβ0i
(
1+ jηβ i

)
, (26)

Gi = G0i (1+ jηGi) , (27)



4 Alessandro Cattabiani et al.

where Bi and Di are Hooke’s plane stress operators con-
cerning in-plane and out-of-plane stresses respectively, ρi is
the density, hi is the shell thickness, Eα0i and Eβ0i are the
Young moduli along directions α and β respectively, ηαi
and ηβ i are the relative damping coefficients of the Young
moduli, ναβ i and νβαi are the Poisson’s ratios (α,β ) and
(β ,α) respectively, Gαβ i is the in-plane shear modulus, ηGi
is its specific damping coefficient, � : � is the inner ma-
trix product operator, [�]sym = 1

2 (�
′+�) is the symmetric

part operator, ei(α,β ) is the component (α,β ) of the ma-
trix Ei, and Ni and Mi are the stress and stress moment
resultants tensors respectively. The sub-space of Di asso-
ciated with homogenized conditions (gi = 0) is denoted as
D0i = {δui,δNi,δMi}. This definition will be useful in the
next Sections.

2.2 Boundary conditions

In order to present a well-posed problem, three conditions
must be imposed along each boundary and one on each cor-
ner. Boundary and corner conditions presented in Figure 1
can be classified in this way:

1. an in-plane condition, either a displacement constraint
or a load per unit length (vi or bi),

2. an out-of-plane condition, either a displacement constraint
or a load per unit length (wi or qi),

3. either a rotation or a bending moment per unit length
(wi,n̂i or mi),

4. an out-of-plane condition, on corners either a displace-
ment constraint or a point load (wC i or qC i).

Boundary conditions in the most general case are

vi =

{
vi ∃vi

v jΓ @vi
, (28)

wi =

{
wi ∃wi

w jΓ @wi
, (29)

wi,n̂i = (∇wi) n̂i =

{
wi,n̂i ∃wi,n̂i

w jΓ ,n̂ jΓ
@wi,n̂i

, (30)

bi = Nin̂i = bi−
nΓ

∑
jΓ =1

b jΓ , (31)

qi = (∇ ·Mi) n̂i +∇
(
t̂′iMin̂i

)
· t̂i

= (∇ ·Mi) n̂i +
(
t̂′iMin̂i

)
,t̂i
= qi−

nΓ

∑
jΓ =1

q jΓ ,
(32)

mi = n̂′iMin̂i = mi−
nΓ

∑
jΓ =1

m jΓ , (33)

where t̂i is the tangent unit vector, jΓ is the index relative
to the other subdomains sharing with Ωi the boundary Γ ,

Ωi

Ω1

Γ

ΩnΓ

ΩjΓ

Ω2

Fig. 3: nΓ + 1 subdomains (Ωi included) sharing the same
boundary Γ .

and nΓ is their total number (Ωi excluded) as is shown in
Figure 3.

Corner conditions in the most general case are

wC i =

{
wC i ∃wC i

wC jC @wC i
, (34)

qC i = t̂′1iMin̂1i + t̂′2iMin̂2i = qC i−
nC

∑
jC =1

q jC , (35)

where n̂1i and n̂2i are outward normal unit vectors of the two
boundaries of Ωi sharing the corner C . t̂1i and t̂2i are their re-
spective tangent unit vectors directed towards the corner. As
for jΓ , the index jC is relative to other subdomains sharing
with Ωi the corner C . nC is their total number (Ωi excluded)
as is shown in Figure 4.

Ωi

Ω1

C

ΩnC

ΩjC

Ω2

1

2

n̂1i

t̂1i

t̂2i n̂2i

Fig. 4: nC +1 subdomains (Ωi included) that share the same
corner C .

3 Shell - VTCR theory

In this Section a very general version of VTCR for shell
structures is illustrated. Since the VTCR is a Trefftz method,
the solution is searched in a function set that satisfy equi-
librium equations. Boundary and corner residuals are ad-
dressed in weak form. The weak variational problem is:
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find the solution set Dsi = {usi,Nsi,Msi} ∈ Di where i ∈
[1, ...,n] is the index related to the subdomain Ωi such that

n

∑
i=1

{∫
∂vi Ωi

δbH
i (vsi−vi)ds−

∫
∂bi

Ωi

δvH
i
(
bsi−bi

)
ds

+
∫

∂wi Ωi

δqH
i (wsi−wi)ds−

∫
∂qi Ωi

δwH
i (qsi−qi)ds

−
∫

∂wi,n̂i
Ωi

δmH
i
(
wsi,n̂i −wi,n̂i

)
ds

+
∫

∂mi Ωi

δwH
i,n̂i

(msi−mi)ds

+ δwH
C i (qC si−qC i)

∣∣
∂∂qC i Ωi

− δqH
C i (wC si−wC i)

∣∣
∂∂wC i Ωi

+
nΓ

nΓ +1

∫
Γ

δbH
i vsi +δqH

i wsi−δmH
i wsi,n̂ids

− 1
nΓ +1

∫
Γ

δvH
i bsi +δwH

i qsi−δwH
i,n̂i

msids

− nC

nC +1
δqH

C iwC si

∣∣∣∣
C

+
1

nC +1
δwH

C iqC si

∣∣∣∣
C

−
n

∑
j=1, j 6=i

{
1

nΓ +1

∫
Γ

δbH
i vs j +δqH

i ws j +δmH
i ws j,n̂ j ds

+
1

nΓ +1

∫
Γ

δvH
i bs j +δwH

i qs j +δwH
i,n̂i

ms jds

− 1
nC +1

(
δqH

C iwC s j +δwH
C iqC s j

)∣∣
C

}}
= 0

∀{δui,δNi,δMi} ∈D0i.

(36)

where Dsd0i is the test function space being VTCR a Galerkin
method. Ladevèze in [25] proved uniqueness and existence
properties in general elastic theory. Since shell theory is a
particularization of such theory, those demonstrations (prop-
erly adapted to meet shell theory approximations) hold in
our specific case.

3.1 Shape functions

Since VTCR is a Trefftz method, any kind of shape function
fSFi, proved that satisfy equilibrium equations, can be cho-
sen as solution in subdomain Ωi. Without loss of generality,
such family of shape functions is

fSF(xreli) =
∫ 2π

0
ai(ζ )ĉi(ζ )e jki(ζ )xrelidζ . (37)

These functions are “Herglotz wave functions”. [41] ex-
plains in detail how these functions satisfy the Helmholtz
equations. The proof for thin shell equations is alike. For the

sake of simplicity, it is omitted. However, it is demonstrated
for their discretized version in Section 3.1.4. At this stage no
discretizations have been performed and Equation 37 is the
exact solution. Wave vector ki(ζ ) and unit direction vector
ĉi(ζ ) are chosen so that equilibrium equations are identi-
cally satisfied for every possible amplitude function ai(ζ ).
This is further explained in Section 3.1.4. xreli is the relative
position vector in curvilinear coordinates {αi,βi}. Without
loss of generality, it is relative to subdomain geometric cen-
ter. Yet, any other subdomain point can be chosen. ai(ζ ) is
an amplitude function and it is set by the weak variational
formulation to address boundary and corner conditions. In
order to practically calculate integrals of the weak form, this
function is discretized.

3.1.1 Discretizations

A classical way chosen by Riou in [32] uses a sum of Dirac
delta δ

ai(ζ )≈
n

∑
l=1

aliδ (ζl), (38)

that simplified Equation 37 into

fSF(xreli)≈
n

∑
l=1

aliĉlie jklixrel , (39)

where aqi are amplitude coefficients determined by the weak
form. Since the integral over the unit circle in Equation 39
disappears, other terms ĉli and kli are discretized too. This
drastically reduces complexity of integrals of the weak form.
In other words, Riou approximated the solution as a sum of
plane waves. The main advantage of this approach is that, in
case of “straight boundaries”2, analytic integrals are possi-
ble. This is a dramatic spare of computational time.

Different discretizations such as wave band [32] and Fourier
[21] exist in literature and have different advantages (i.e. an
inexpensive way to compute a convergence indicator). Yet,
the advantage presented before prompted us to chose and
improve the plane wave discretization.

As anticipated, wave vectors ki(l) and unit direction vec-
tors ĉi(l) of the plane wave are chosen so that equilibrium
equations are identically satisfied. Since Dirac delta erases
the integral over the unit circle, they are discretized too.
Without loss of generality, a discretized wave vector can be
decomposed as

ki(l) = kli = klik̂li, (40)

2 Straight boundaries in the general case of curvilinear coordinates;
i.e. in a cylindrical coordinate system a “straight boundary” along a
curvilinear coordinate is circular.
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where k̂li is a unit direction vector of the wave vector and
kli is the wavenumber. The unit direction vector k̂li is set “a
priori” and is part of the discretization process. It is proved
in [32] that two plane waves types are needed: propagatives
and evanescents. The mathematical difference between them
lies in the unit direction vector k̂li chosen. In case of prop-
agative waves it is

k̂li = Tli ·
[

1
0

]
, (41)

where Tli

Tli =

[
cos(θli) −sin(θli)

sin(θli) cos(θli)

]
, (42)

is a rotation matrix and θi ∈ [0;2π) is a discretized angle of
the plane wave direction. Their qualitative behavior is pic-
tured in Figure 5.

Fig. 5: Qualitative behavior of a propagative wave described
in Section 3.1.

For the other wave type, in order to enforce evanescent
behavior, it is suggested in [32] to use the following formu-
lation

k̂mi = Tmi ·
[√

1+ cos2(φmi)

j cos(φmi),

]
(43)

where φmi ∈ [−π;π] is a different discretized angle in the
complex domain. This angle controls ratio between oscilla-
tory and evanescent parts of the wave. In this case it is

reo =
cos(φmi)√

1+ cos2(φmi)
. (44)

By definition reo ∈ [− 1
2 ; 1

2 ], therefore, if faster-oscillating
evanescent waves exists, they are omitted. In fact, there is no
a priori consideration that allows such restriction. For this
reason, we modified the formula

k̂mli = Tli ·
[

cosh(φmi)

j sinh(φmi)

]
. (45)

In this case the ratio is

reo =
sinh(φmi)

cosh(φmi)
. (46)

This new version has no ratio limits while keeping k̂mli(θli,φmi)

a unit vector. Due to evanescent behavior, these waves are
crucial only along specific boundaries. For this reason, for
evanescent waves l ∈ [1, . . . ,nbi] where nbi is the number of
boundaries of subdomain Ωi. This drastically reduces the
number of DoFs of VTCR. Their qualitative behavior is il-
lustrated in Figure 6.

Fig. 6: Qualitative behavior of an evanescent wave described
in Section 3.1.

The next Section discusses how to discretize angles {θli,φmi}
to reduce computational costs.

3.1.2 Quasi-symmetric ray distribution

The angle θli ∈ [0,2π) controls direction of propagative waves.
The parameter φmi governs ratio reo. Since it is discretized,
φmi is distributed over [−φ ′,φ ′] where φ ′ is set “a priori”
and can be always changed. For the sake of simplicity the
range is kept symmetric. In previous works [32, 23, 33] these
parameters were distributed symmetrically. This choice im-
poses a complete matrix recomputation as the number of
rays change. For example, let us suppose we computed a
VTCR solution of a vibrational problem with three prop-
agative rays and we found it unsatisfactory. We want to add
one or two rays. In order to keep a symmetric ray distribu-
tion, previous rays must move as illustrated in Figure 7. For
this reason previous matrices cannot be reused and must be
recomputed anew as ray number change. Since for VTCR
matrix creation can be relevant in terms of computational
time, this effect can be expensive in terms of computational
costs.

2

3
4

1

2

31

3

2

1

4

5

Fig. 7: Effect of symmetric distribution policy during dis-
cretization refinement example explained in Section 3.1.2.
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Conversely, in the present approach a quasi-symmetric
ray distribution is used. In this algorithm previous rays are
fixed as new ones are added. The first ray can be placed
in any direction. After that, new rays are inserted in gaps
among previous rays in the most possible symmetric way.
Figure 8 illustrates the algorithm for the first eight rays.

121

3

2 1

4

12

3

4

12

3
5

4

12

3
5

6
4

12

3
5

4

12

3
5

66

7 7

8

Fig. 8: Quasi-symmetric ray distribution for the first eight
rays as described in Section 3.1.2.

This method permits complete recycling of old matri-
ces when more rays are added. The drawback is that for a
given ray number its distribution could be asymmetric. For
this reason, this algorithm could require more rays to reach
convergence than a symmetric distribution method. Let us
compare a quasi-symmetric and a symmetric distribution of
n rays. The shift angle θsi of ray i in the quasi-symmetric
distribution with respect of the symmetric one is

θsi = γi
2π

n
, (47)

where γi ∈ [0,1] is a discrete parameter. Since it varies with
1
n , the difference between algorithms decreases as the ray
number n increases. In practice, when convergence is reached
the difference is already negligible. Moreover, in this case

{
Fn ∈Fm,

n≤ m,
(48)

where Fn and Fm are shape function spaces with n and
m shape functions respectively. Therefore, except for pol-
lution and resonance effects, an error indicator is a never-
increasing function with the number of shape functions.

For the sake of clarity the present discussion was implic-
itly developed considering a propagative wave distribution.
Yet, it can be extended to evanescent wave distribution.

3.1.3 Orthotropic materials and generalization to
non-cartesian coordinate systems

Equation 41 and Equation 45 are defined for isotropic mate-
rials in a cartesian coordinate system. In this Section correc-
tions for orthotropic materials and non-cartesian coordinate
systems are illustrated. Kovalevsky in [23] suggested to add

a correction matrix Oi to address orthotropic materials in
plates

kli = Oik̂likli, (49)

where

Oi =
4
√

ρihiω2

[
D−1/4

xi 0
0 D−1/4

yi

]
. (50)

In this formulation Oi = Oi(ρihiω
2). This dependency

can lead to numerical difficulties during calculation of kli
and ĉli because Oik̂li is no more a unit vector. In the present
approach we use a slight different formulation that solves
such problem and expands its applicability to curvilinear co-
ordinates

kli = LiOik̂likli (51)

Oi = 8
√

DαiDβ i

[
D−1/4

αi 0
0 D−1/4

β i

]
(52)

Li =

[
Lαi 0
0 Lβ i

]
. (53)

In this case coefficients are dimensionless and Lamé pa-
rameters are added to address non-cartesian coordinate sys-
tems. Such modifications generalize the formulation to curvi-
linear coordinates while increasing precision in computation
of kli and ĉli. More details about determination of these two
parameters are illustrated in the following Section.

3.1.4 Wavenumber and unit direction vector of the plane
wave determination

As anticipated, these parameters are chosen so that equilib-
rium equations are identically satisfied. Substituting a generic
shape function defined in Equation 39 with a given unit di-
rection vector k̂li in Equation 9 and Equation 10 leads to a
linear set of equilibrium equations that in matrix form is

Zliĉliali = 0, (54)

where Zli = Zli(kli) is a 3× 3 matrix that depends on kli.
In order to obtain untrivial results (ali = 0) the dispersion
equation must be imposed

det [Zli] = 0. (55)

It provides values of kli for the specified unit direction
vector k̂li. When kli is extracted from Equation 55, the term
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ĉli can be obtained by re-injecting kli in Equation 55 and
enforcing that

‖ĉli‖= 1. (56)

Since Zli determinant is set equal to zero and ĉli 6= O is
a kernel vector of Zli, the equilibrium equations are satis-
fied for every possible amplitude ai. These variables are set
by a weak form to address boundary, corner, and coupling
conditions.

In [32] in-plane inertia is neglected in Equation 55. This
simplification leads to a fourth-degree dispersion equation
that has four solutions. Half of them can be discarded since
concern regressive waves already addressed by the oppo-
site unit direction vector k̂l′i = −k̂li. The two remaining
solutions are a propagative and an evanescent out-of-plane
waves. Such simplification drastically reduces number of
DoFs (thus computational time) but it is prohibited when
out-of-plane behavior is not predominant. In this approach
we retain in-plane inertia. For this reason, the dispersion
equation is an eighth-degree equation that has eight solu-
tions. As previously, half of them can be discarded. Two of
the remaining are out-of-plane waves (one propagative and
one evanescent) while the other two are propagative in-plane
waves that carry in-plane shear (SS) and normal stresses
(NS). In Section 4.2 we demonstrate that these waves are
crucial when out-of-plane behavior is not prevalent.

4 Numerical examples: supported half cylinder

This Section investigates vibrational responses of a supported
half cylinder. First, in-plane inertia effects are studied. For
the sake of clarity in this case the material is isotropic. A
triple comparison is performed among VTCR with and with-
out in-plane inertia and a FEM reference. After, VTCR with
in-plane inertia performances and FEM are confronted over
a frequency band. Finally, VTCR corrections for orthotropic
materials are investigated. The geometry of the previous ex-
ample is considered changing the material. Its vibrational
behavior is compared for a given frequency with a FEM ref-
erence.

4.1 General description of the vibrational problems

A complex frame structure is illustrated in Figure 9. Three
sub-domains are connected by the same edge. The first two
are cylinder parts while the last one is a plate. All boundaries
are clamped but left edge where an out-of-plane oscillatory
distributed load p= [1,0,0]′e jωt N/m is applied. For the sake
of simplicity thicknesses are constant h1 = h2 = h3 = 3 mm.

u = 0
u,n = 0

p = 1N/m θ̂

Ω2

Ω3Ω1

ŷ
ẑ

x̂

1 m 1 m

Fig. 9: Boundary and geometric dimensions of the frame
structure described in Section 4.1.

4.1.1 Error indicators

The focus is on displacement field since it unequivocally de-
fines the solution. In order to summarize results in one rel-
evant visual comparison, displacement magnitude portraits
are investigated. In the following Sections two comparison
types are performed:

– a VTCR solution with a FEM reference,
– two different VTCR solutions.

The first one is a cross-method confrontation while the
second one is not. At mid-frequency a small difference in
theories can lead to slightly different frequency responses.
Since, at this frequency range there are many wave lengths
per subdomain, a small difference in wavenumbers can lead
to different displacement magnitude portraits that have al-
most the same energy. For this reason, we define two dif-
ferent error indicators for each comparison type. Both are
based on the kinetic energy

EK(u) =
1
2

ρhω
2
∫

S
uH ·uds. (57)

where S denotes surfaces. Direct comparisons of VTCR and
FEM displacement magnitude portraits could be non-optimal
due to small theory differences that can lead to different so-
lutions at mid-frequency. Therefore, in this case, an error
indicator based on a comparison between total energies is
used

errFEM =
|EK(uFEM)−EK(uV TCR)|

EK(uFEM)
, (58)

where uFEM and uV TCR are displacement fields of FEM and
VTCR respectively and |�| denotes the absolute value.

In the following Sections comparisons between VTCR
solutions are performed to analyze VTCR convergence. In
this case the two solutions share the same theory, thus a more
strict error indicator can be considered. It is based on the
energy of the displacement magnitude portrait difference

errrel =
EK(uV TCR m−uV TCR n)

EK(uV TCR m)
, (59)

where uV TCR n and uV TCR m are two different VTCR solu-
tions, n and m denote ray numbers, and m > n.
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4.1.2 Software and convergence criterions

In the following Sections, VTCR solutions are compared
with ABAQUS R© tests considered FEM references. In low-
frequency range the rule-of-thumb to set mesh size is

h0 =
λ

10
, (60)

where h0 is the maximum edge length of a mesh element
and λ is the typical phenomenon wavelength. Equation 60
can be rearranged in terms of wavenumber k

h0k =
2π

10
. (61)

Ihlenburg in acoustic [20] and Deraemaeker, Babuška,
and Bouillard for general Helmholtz problems [9] proved
that this relation is not valid at mid-frequency due to high-
scattering behavior. In particular, they affirmed that pollu-
tion error becomes predominant as the wavenumber increases.
They suggested a corrected version of the rule-of-thumb

h2
0k3 =

4π2

100L
(62)

where L is a characteristic dimension of the problem
considered. Since in shell theory many wave types are present,
the following rule-of-thumb is used:

h2
0k3

MAX =
4π2

100L
, (63)

where kMAX is the greatest wavenumber. By definition, in
shells in-plane stiffness is much greater than out-of-plane
stiffness; thus kMAX is always the wavenumber of the prop-
agative out-of-plane wave along the direction relative to the
highest Lamé parameter.

VTCR is implemented in MATLAB R© . In the follow-
ing tests VTCR convergence is studied using Equation 59
where uV TCR m is a reference solution. Since there are three
main ray types, convergence seeking is a three-step process.
First, out-of-plane propagative rays are increased until con-
vergence keeping other rays equal to reference. Second, out-
of-plane evanescent ray convergence is analyzed fixing the
number of propagative out-of-plane waves equal to its con-
vergence value determined in the first step. Third, propaga-
tive in-plane wave convergence is investigated keeping the
number of out-of-plane waves (propagative and evanescent)
equal to their respective convergence values. Since out-of-
plane waves are the fastest oscillating ones, these rays are
the most scattering and should be considered first. Anyhow,
every other sequence is possible. Converged rays are used in
second and third step because interactions between rays can

change convergence error. As side effect, this yields plateaus
in convergence graphics of second and third step at the level
of the error threshold chosen. This process is cheap in terms
of computational time because of matrix recycling enabled
by the quasi-symmetric ray distribution algorithm. In fact,
once matrices are computed for the reference solution they
are reused to analyze convergence.

4.1.3 Hardware

All tests (VTCR and FEM) are performed on the same work-
station. Its characteristics are reported in Table 1.

Cores 16
Clock Frequency 2.4 GHz
RAM 50 Gb

Table 1: Characteristics of the workstation used for numeri-
cal examples described in section 4.

4.2 In-plane inertia analysis

In this Section the focus is on in-plane inertia effects. A
triple comparison among VTCR with and without in-plane
inertia and a FEM reference is performed at fixed frequency.
Geometry description and boundary conditions of the nu-
merical example are reported in Section 4.1. For the sake
of clarity, in this case the material is isotropic. Studied fre-
quency and material properties are reported in Table 2.

f frequency 2000 Hz
E Young modulus 200 GPa
ν Poisson’s ratio 0.3
ρ density 7800 kg/m3

η damping factor 0.01

Table 2: Quantities of interest of the example in Section 4.1.

For the reasons reported in Section 4.1.2, a FEM refer-
ence with 11,293,452 DoFs is used accordingly with Equa-
tion 63. The three-step VTCR convergence analysis with
in-plane inertia is reported in Figure 10. Accordingly with
discussion in Section 4.1.2, a VTCR reference with many
rays is computed for convergence analysis. Error threshold
is err≤ 0.01 for every step. Ray number and type for VTCR
reference and converged VTCR are reported in Table 3.

Since without in-plane inertia there are no in-plane prop-
agative waves, convergence analysis for VTCR without in-
plane inertia is equal to VTCR with in-plane inertia conver-
gence arrested to second step. For the reasons reported in
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(a) First step: propagative out-of-plane ray
convergence.

(b) Second step: evanescent out-of-plane
ray convergence.

(c) Third step: propagative in-plane ray con-
vergence (normal and shear stress carrying
rays).

Fig. 10: three-step convergence process of VTCR with in-
plane inertia of the numerical example described in Sec-
tion 4.2 at 2000 Hz. This process is explained in general
in Section 4.1.2.

Types VTCR reference converged VTCR
Propagative out-of-plane 200 100
Evanescent out-of-plane 100 40

Propagative in-plane (NS) 100 40
Propagative in-plane (SS) 100 40

Table 3: Ray number and type for VTCR reference and con-
verged VTCR with in-plane inertia described in Section 4.2.
converged VTCR is the result of the three-step convergence
process explained in general in Section 4.1.2 and illustrated
for this specific case in Figure 10 where the error thresh-
old is err ≤ 0.01. NS and SS stands for Normal and Shear
Stresses respectively.

Section 4.1.2, the second and the third convergence analysis
illustrate a plateau when the error threshold is reached.

The triple comparison among displacement magnitudes
of VTCR with and without in-plane inertia and a FEM refer-
ence is reported in Figure 11. In this case Equation 58 is used
as error indicator due to reasons explained in Section 4.1.1.

VTCR with and without in-plane inertia are confronted with
the FEM reference independently. VTCR with in-plane in-
ertia mismatch towards FEM is ≈ 8% while VTCR without
in-plane inertia mismatch towards FEM is above 70%.

(a) converged VTCR with in-plane inertia.

(b) FEM reference.

(c) converged VTCR without in-plane iner-
tia.

Fig. 11: Triple comparison of displacement magnitudes of
VTCR with and without in-plane inertia and a FEM refer-
ence of the numerical example described in Section 4.2.

Remarks In this numerical example out-of-plane behavior
could be considered predominant due to the out-of-plane
load and intrinsic shell stiffness difference. Yet, triple com-
parison illustrated in Figure 11 and error difference confirm
necessity of in-plane normal and shear stress carrying rays.
Therefore, we can conclude that, for what concerns VTCR,
in-plane rays cannot be neglected even if out-of-plane be-
havior seems predominant.

4.3 Performance analyzes over a frequency band

This Section compares VTCR with in-plane inertia and FEM
performances over a frequency band. They are divided in
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memory consumption and total computational time. The nu-
merical problem considered is equal to that one illustrated
in Section 4.2 but frequency that, in this case, varies over a
range f ∈ [2000;4000] Hz with a 100 Hz step. The rule-of-
thumb reported in Equation 62 sets the FEM DoFs number.
VTCR convergence is analyzed using the three-step process
described in Section 4.1.2. For the sake of simplicity con-
vergence is investigated only at extremes (2000 Hz conver-
gence analysis is reported in Section 4.2). The general con-
vergence analysis procedure is illustrated in Section 4.1.2.
Error threshold is err≤ 0.01. For other frequencies ray num-
bers are linearly interpolated between converged ray num-
bers reported in Table 3 and Table 4. This is a conservative
choice if nrβ ∝ f α where nrβ is the ray number of type β

and α ≥ 1. This relation is generally satisfied because equi-
librium equations are ∝ ω2. A more rigorous study of the
relation between frequency and converged ray numbers is
indeed an interesting topic. Nevertheless, it is out of the aims
of this work.

The three-step convergence analysis at 4000 Hz is illus-
trated in Figure 12. Converged ray numbers and reference
ray numbers are reported in Table 4.

Types VTCR reference converged VTCR
Propagative out-of-plane 200 130
Evanescent out-of-plane 100 40

Propagative in-plane (NS) 100 40
Propagative in-plane (SS) 100 40

Table 4: Ray number and type for VTCR reference and con-
verged VTCR described in Section 4.3 at 4000 Hz. con-
verged VTCR is the result of the three-step convergence pro-
cess explained in general in Section 4.1.2 and illustrated for
this specific case in Figure 12 where the error threshold is
err ≤ 0.01.

Performance analyses over the frequency band [2000;4000]
Hz are reported in Figure 13b and Figure 13c. DoFs cannot
be directly compared because methods are intrinsically dif-
ferent. Nevertheless, for the sake of completeness, DoFs re-
quired over the frequency band are illustrated in Figure 13a.

Remarks At mid-frequency FEM suffers of pollution effect.
DoFs number and time and memory consumptions become
prohibitive. Conversely, VTCR is unaffected as supported
by Figure 13. Since VTCR remains stable, computational
cost differences grow as frequency increases. Figure 13b
and Figure 13c illustrate that time and memory consump-
tion differences are already of some orders of magnitude
and increase with frequency. Due to differences in mem-
ory and computational costs, VTCR could have been run on
much less powerful machine (i.e. a laptop) than FEM (which
needs a workstation). Therefore, we can affirm that VTCR

(a) First step: propagative out-of-plane ray
convergence.

(b) Second step: evanescent out-of-plane
ray convergence.

(c) Third step: propagative in-plane ray con-
vergence (normal and shear stress carrying
rays).

Fig. 12: three-step convergence process of VTCR with in-
plane inertia of the numerical example described in Sec-
tion 4.3 at 4000 Hz. This process is explained in general
in Section 4.1.2.

greatly outperform FEM at mid-frequency in terms of com-
putational time and memory consumption.
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(a) DoFs.

(b) Time consumption.

(c) Memory consumption.

Fig. 13: Performance analyzes over a frequency band
[2000;4000] Hz of the numerical example described in Sec-
tion 4.3. VTCR and FEM are compared considering time
and memory consumptions. DoFs required are reported for
the sake of completeness, a direct comparison is unmean-
ingful due to theory differences.

4.4 Orthotropic materials

This Section tests VTCR corrections for orthotropic mate-
rials explained in Section 3.1.3. A VTCR with in-plane in-
ertia solution is compared with a FEM reference at fixed
frequency. The numerical example investigated is the sup-
ported half cylinder described in Section 4.1. In this case the
material is a typical aerospace composite. Table 5 reports its
characteristics as well as frequency studied.

f frequency 3700 Hz
Eθ1 = Eθ2 = Ez3 Young moduli 125 GPa
Ey1 = Ey2 = Ey3 Young moduli 60 GPa

Gθy1 = Gθy2 = Gzy3 Shear moduli 18 GPa
νθy1 = νθy2 = νzy3 Poisson’s ratios 0.3

ρ1 = ρ2 = ρ3 densities 2000 kg/m3

ηθ1 = ηθ2 = ηz3 damping factors 0.001
ηy1 = ηy2 = ηy3 damping factors 0.001

ηG1 = ηG2 = ηG3 damping factors 0.001

Table 5: Orthotropic material properties and frequency ex-
amined of the numerical example described in Section 4.4.

A FEM reference solution is calculated using the rule-
of-thumb reported in Equation 63. At this frequency 34,547,616
DoFs are needed to reach convergence due to pollution. Sec-
tion 4.1.2 further discusses this effect. VTCR convergence
is studied by a three-step process described in Section 4.1.2.
It is reported in Figure 14. Table 6 illustrates VTCR refer-
ence and converged ray numbers summarizing convergence
analysis results. Section 4.1.1 discusses errors in detail. For
VTCR convergence Equation 59 is used. It is considered ac-
ceptable if err ≤ 0.01.

(a) First step: propagative out-of-plane ray
convergence.

(b) Second step: evanescent out-of-plane
ray convergence.

(c) Third step: propagative in-plane ray con-
vergence (normal and shear stress carrying
rays).

Fig. 14: three-step convergence process of VTCR with in-
plane inertia of the numerical example described in Sec-
tion 4.4 at 3700 Hz. This process is explained in general
in Section 4.1.2.

Displacement magnitude comparison is depicted in Fig-
ure 15. Due to reasons discussed in Section 4.1.1, in this
case errFEM is used. Even if VTCR and FEM solutions are
not equal the error based on kinetic energy is ≈ 8%.

Remarks The small error confirms that orthotropic materi-
als are correctly addressed and included in VTCR. This im-
provement allows the study of a great variety of composite
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Types VTCR reference converged VTCR
Propagative out-of-plane 200 140
Evanescent out-of-plane 100 69

Propagative in-plane (NS) 100 40
Propagative in-plane (SS) 100 40

Table 6: Ray number and type for VTCR reference and con-
verged VTCR described in Section 4.3 at 3700 Hz. con-
verged VTCR is the result of the three-step convergence pro-
cess explained in general in Section 4.1.2 and illustrated for
this specific case in Figure 14 where the error threshold is
err ≤ 0.01.

(a) VTCR.

(b) FEM.

Fig. 15: Comparison of displacement magnitude portraits.

shell structures effectively extending VTCR applicability to
common composite aerospace and automotive structures.

5 Conclusions

In order to extend VTCR to orthotropic shell structures where
in-plane inertia can be relevant, many adjustments were pro-
posed. In-plane inertia was addressed using two types of
propagative waves (carrying shear and normal stresses). A
quasi-symmetric ray distribution algorithm was proposed to
reuse matrices. It dramatically reduces computational time
when converged ray numbers are unknown or when bound-
ary conditions are changed. Othotropic materials were in-
troduced and a correction matrix for the wave vector was
proposed. Differently from previous works [23], it is dimen-
sionless providing additional robustness to the method. Fi-
nally, VTCR theory was generalized for non-cartesian coor-
dinate systems.

A numerical example presented in Section 4.1 was deeply
presented. Section 4.2 tested VTCR in-plane propagative
waves. For the sake of clarity in this case the material was
isotropic. Even if there were just an out-of-plane load, in-
plane behavior was relevant; in fact VTCR with in-plane
propagative rays displayed much better results than VTCR
without them. After that, VTCR performances were studied
in Section 4.3 confronting computational time and mem-
ory consumption with a FEM reference. Results illustrate
that VTCR greatly outperforms FEM at mid-frequency. Sec-
tion 4.4 focused on testing VTCR orthotropic material cor-
rections. The previous numerical example was investigated
using a classic aerospace composite material and compared
with a FEM reference. The error indicator confirmed that
there were good correspondence between VTCR and FEM
solutions validating orthotropic corrections.

The future work will couple VTCR with a Reduced Or-
der Model (ROM) method to further improve performances.
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