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Abstract. The aim here is to study two-time-scale models and their associated parameter
identification. When it is possible to consider two well-separated time scales, and when the fast
component of the applied loading is periodic, a periodic time homogenization scheme, similar to
what exists in space homogenization, can be used to derive a homogenized model. A parameter
identification process for this latter is then proposed, consisting in homogenizing with respect
to time a classical identification strategy based on the use of adjoint state formulations; it is
then applied to an academic example showing the benefits of such a strategy.

1. Introduction
As far as the numerical calculation of a time-dependent model is concerned, the question of
the computational cost can be of utmost relevance, especially when the considered model deals
with fast phenomena, which require the use of very small time steps, when compared with the
length of the time interval of study. In order to drastically reduce the computational cost, a
periodic time homogenization method, such as [1], can be used when well-separated time scales
can be defined, and when the fast component of the applied loading is periodic. The resulting
homogenized model is then cheaper computationally, for it can be solved using time steps related
to the slow time scale only, whereas the fast time scale is taken into account in an average way
in the homogenization scheme.

In order them to give accurate predictions, such time-homogenized models have to be
compared with experimental data. The key point is to define an identification strategy able
to deal with such models in such a way that the process remains cheap and efficient. The aim of
this paper is to analyze on a specific academic example the different choices made throughout
the whole identification process, and what is their impact on the identification results.

2. Periodic time homogenization method
Periodic time homogenization, as it was initially proposed in [1], can be seen as a transposition to
time of the classical periodic space homogenization methods, such as the techniques described
in [2, 3]. It consists in separating two time scales, a slow one t and a fast one τ = t/ξ, by
introducing, for every time-dependent quantity in the equations of the reference problem, an
asymptotic expansion, in terms of the ratio ξ:

α(t, τ) = α0(t, τ) + ξα1(t, τ) + ξ2α2(t, τ) +O(ξ3) (1)
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When this ratio ξ is very small, it is possible to consider that the two time scales are independent,
and that any derivative with respect to time has to use the partial derivatives with respect to
the two time scales:

dtα = ∂tα+
1

ξ
∂τα (2)

where dt, ∂t, et ∂τ stand for the total time derivative, the partial derivative with respect to
the slow time and the partial derivative with respect to the fast time respectively. Moreover,
if the applied loading has a component, which is periodic with respect to the fast time τ , it
is reasonable to assume that every variable is quasiperiodic, meaning that it is periodic with
respect to τ (with associated period Tf ).

Using the asymptotic expansion (1) for every quantity in the reference equations, and
balancing the different orders of ξ, the time-homogenized equations are determined by averaging
over a fast period Tf the different quantities:

< α >=
ξ

Tf

∫ Tf/ξ

0
α(t, τ) dτ (3)

allowing to separate slow-evolving phenomena from fast-time periodic components using the
quasi-periodicity assumption. The residual quantities associated with this average are then
denoted as α∗ = α− < α >, and depend on both time scales t and τ a priori: they usually have
to verify a very simple problem (e.g. linear elastic). Eventually, these homogenized equations are
solved relatively to the slow time scale only, by introducing at each slow time step the averaged
influence of the fast cycles corresponding to the solution of the fast problem, allowing to solve
for all the time-homogenized variables with a drastically reduced computational cost.

References about the periodic time homogenization still tend to be scarce, as showed in [4],
even if the scope of applications can be quite large: see for example [5, 6, 7, 8, 9]. Recently, we
focused on validating the method for different cases of simulations of structures withstanding
fatigue loads with two periodic components:

• material fatigue with a viscoplastic law defining two hardening variables in [10];

• material fatigue with an isotropic damage law in [11];

• extension of the method to three different time scales in [4, 12];

• extension of the method to the case of resonant excitation in [4].

3. Gradient-based parameter identification with adjoint state formulations
In this section, a general identification strategy is proposed, which is relevant for both reference
and time-homogenized models: it will thus be illustrated in this latter case in Section 4. The
forward problem is considered as an implicit formulation with a vector function F considering
u(t) over a time interval [0, T ] :

F
(
u(t), dtu(t), d2

tu(t),p, t
)

= 0 (4)

u(0) = U0 dtu(0) = V0

where dt and d2
t are the first- and second-order time derivatives respectively. U0 and V0 stand for

the initial conditions of the dynamic problem. Whereas u is the state vector of size N , composed
of all the time-dependent degrees of freedom (DOFs) describing the studied problem, p stands
for the vector containing the P scalar parameters associated with the differential equation (4).

The identification problem consists in finding the parameter vector popt such that the solution
u(t; popt) of (4) obtained with the parameters popt is as close to the available experimental data
as possible. These latter are indeed compared with the corresponding quantities Au(t; p),
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where A is a projection operator allowing to select, for each quantity, the closest DOF to
the experimental measurement point. In order to use consistent notations, the corresponding
experimental quantity is denoted Auexp(t); however, it does not mean that such a vector uexp(t)
actually exists.

The following misfit function is then introduced: it consists of a norm measuring the
discrepancy between the quantities predicted with the forward model (4) and experimental
data:

J (p) =
1

2

∫ T

0
|A(u(t; p)− uexp(t))|2 dt+

1

2
|R(p− p0)|2 (5)

where u(t; p) satisfies Equation (4). The L2-norm proposed here is completed with a Tikhonov
regularization term, allowing to deal with the ill-posedness of the identification problem, by
bounding the magnitude of the parameter vector p to be identified: this regularization term
uses a vector p0 containing nominal values corresponding to a priori experience, and a diagonal
weighing matrix R. Eventually, the solution of the identification problem can be sought as the
parameter vector minimizing the misfit function J (p):

popt = arg min
p
J (p) (6)

The determination of this minimum is achieved using gradient-based minimization methods,
therefore the question of avoiding local minima by means of an appropriate regularization
process should be carefully addressed. In some cases, rather than using the classical Tikhonov
regularization term, the a priori experience can be introduced in some specific ways, as in [13].
Similarly, the fact of using a homogenized model in the parameter identification process can
introduce a regularizing effect, just as explained in [14]. However, we will not address here this
specific question, but rather focus on the identification process itself.

To estimate the gradient of the misfit function, we solve an adjoint state problem. A typical
example in mechanical engineering is given in [15], where the parameters of an elastoplastic
material law are identified with indentation tests. In the strategy proposed here, the generic
form of the adjoint state problem is as follows:

∇uFTz− dt
(
∇dtuFTz

)
+ d2

t

(
∇d2tu

FTz
)

= ATA(u− uexp) (7)(
∇d2tu

FTz
)
|t=T

= 0
(
∇dtuFTz

)
|t=T

= 0

where ∇uF , ∇dtuF and ∇d2tu
F stand for the directional derivatives of F with respect to u, dtu

and d2
tu respectively. The adjoint state problem is then a time-backward differential equation

with final conditions, and where the first-order sensitivities of the forward problem are concerned.
Once the adjoint state problem (7) is solved, it can be shown that the misfit function gradient

with respect to the parameter vector p can be expressed as:

∇pJ (p) = RTR(p− p0)−
∫ T

0
∇pFTz(t) dt (8)

This specific way of estimating the misfit function gradient can be compared with a classical
finite difference formula, such as the central finite difference scheme: in this latter case, when
the parameter vector is of size P , the gradient calculation is obtained by evaluating the misfit
function in 2P additional ‘points’, each couple of points corresponding to two symmetrical
perturbations of the misfit function associated with each parameter in the vector p. The
resulting computational cost for each gradient evaluation consists of 2P solutions of the forward
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problem (4) and 2P time integral evaluations. By contrast, when the adjoint state solution is
used, only two differential equation solutions are required: one for the forward problem (4) and
one for the adjoint problem (7). The associated computational cost for each gradient evaluation
is then 2 differential equation solutions, and P time integral evaluations. The resulting gain is as
high as the number of parameters to be identified. Moreover, it is easier to control the accuracy
of the gradient estimate with the adjoint state method than with finite difference formulas, for
which the choice of the discretization steps has a strong influence on the final estimate.

4. Parameter identification of a model with two time scales
4.1. Forward reference and time-homogenized problems
Here an academic example is proposed to discuss the different steps of the parameter
identification problem associated with a time-homogenized model. This latter consists of a
straight bar of length L withstanding at one end a normal force fs with two periodic components.

∂xσ + cKdt∂xσ = ρd2
tu (9)

u|x=0 = 0 (σ + cKdtσ)|x=L = fs (10)

σ = E (∂xu− εp) (11)

dtε
p =

(
|σ|
K

)n
signσ (12)

where ∂x is the partial space derivative, and zero initial conditions are assumed for the
displacement u, dtu and the plastic strain εp. K and n are the two parameters to be identified,
using the measured displacement uexp at x = L, whereas E, ρ and cK are assumed known.

The time-homogenized equations come from the zeroth-order expression of the forward
problem (9)-(10)-(11)-(12), where the fast-time average (3) has been previously applied:

∂x < σ0 > = 0 (13)

< u0 >|x=0= 0 < σ0 >|x=L=< fs > (14)

< σ0 >= E (∂x < u0 > −εp0) (15)

∂tε
p
0 =

〈(
|σ0|
K

)n
signσ0

〉
(16)

where it has been assumed that ρL2/(ET 2
f ) ≤ O(1) and cK/Tf ≤ O(1), and where it can be

shown that εp0(x, t, τ) = εp0(x, t). The fast-time average term associated with the evolution
equation (16) is evaluated by means of a numerical integration formula, such as the trapezoidal
rule, and uses the solution of the residual system defined as the difference between the reference
problem and the zeroth-order time-homogenized system (13)-(14)-(15)-(16).

4.2. Identification strategy
The first step consists in describing, through the misfit function, the discrepancy between the
time-homogenized model’s predictions and experimental data: indeed, on the one hand, the
model has been solved on slow time steps only, whereas, on the other hand, the experimental
data can be available on a much finer scale.

The most efficient choice in terms of computation cost is to use time-homogenized quantities
in the misfit function, since it allows to address the time integral on slow time steps only:

J0(K,n) =
1

2

∫ T

0
| < u0 > (L, t;K,n) − < uexp > (t)|2 dt (17)

Whereas < u0 > (L, t;K,n) is the solution of the zeroth-order time-homogenized forward
problem (13)-(14)-(15)-(16), < uexp > (t) stands for the corresponding experimental quantity,
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which is obtained by fast-averaging the experimental data for each slow time step tk of the
time-homogenized displacement:

< uexp > (tk) =
1

Tf

∫ tk+Tf

tk

uexp(t) dt (18)

The gradient of this misfit function is evaluated as in Section 3, using the solution of an
adjoint state problem. This latter is as follows, with λ0(x, t) only:

∂tλ0 = < u0 >|x=L − < uexp > (19)

λ0 |t=T = 0

and it can be shown that it corresponds to the zeroth-order time-homogenized version of the
time-backward adjoint state problem associated with the identification process for the reference
problem. Indeed, Figures 1 and 2 show the comparison between the two corresponding adjoint
state solutions for the identification process detailed previously: the adjoint state solution
corresponding to the time-homogenized problem is homogeneous along the bar, and is very close
to the (homogeneous) fast-time average of the (heterogeneous) adjoint state solution associated
with the reference problem. This equation can be solved using the slow time steps tk only,
which allows to derive the solution in a way as efficient as for the time-homogenized forward
solution (13)-(14)-(15)-(16).

Figure 1. Adjoint state solutions for
reference (in red) and time-homogenized (in
blue) problems, at x = 0 and x = L.

Figure 2. Zoom of Figure 1 (same color
conventions).

The misfit function’s gradient then consists of the two following partial derivatives:

∂J0
∂K

=

∫ T

0

∫ L

0

〈
n

K

(
E |∂xu0 − εp0 |

K

)n
sign (∂xu0 − εp0)

〉
λ0 dx dt (20)

∂J0
∂n

= −
∫ T

0

∫ L

0

〈(
E |∂xu0 − εp0 |

K

)n
sign (∂xu0 − εp0) log

(
E |∂xu0 − εp0 |

K

)〉
λ0 dx dt (21)

Once again, it can be shown that these relations correspond to the zeroth-order time-
homogenized estimates of the two misfit function’s gradient components obtained for the
identification problem associated with the reference problem. Actually, this is a result that
already occurs in periodic space homogenization, as shown for example in [16].

In order to evaluate how the identification process performs, synthetic data uexp(t) are created
by solving the reference forward problem (13)-(14)-(15)-(16), using Kexp = 100 ·106 SI units and
nexp = 10 as parameter values. The bar withstands a two-periodic loading with F = 0.05 Hz
and F/ξ = 500 Hz. K0 = 50 · 106 SI units and n0 = 5 are chosen as initial parameter values for
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the identification process, which is based on an interior-reflective Newton method [17] in order
to minimize the misfit function J 0. Since we do not want to address specifically the question
of regularization, no Tikhonov term is added. Figure 3 shows the comparison between the
identified model (Kid = 100.89 · 106 SI units and nid = 9.94) and the synthetic reference, more
precisely the variations of the longitudinal plastic strain, which is not directly observable. When
compared with what is obtained when the inverse problem related to the reference problem (9)-
(10)-(11)-(12) is considered, the computational cost associated with the identification process is
significantly reduced (105 time steps instead of 107 here).

Figure 3. Parameter identification of a time-
homogenized model: experimental (in red)
and predicted (in blue) longitudinal plastic
strain.

5. Conclusion
Here we have proposed a first preliminary study of a two-time-scale parameter identification
process, using time-homogenized models: the adaptation of a classical identification strategy
based on an adjoint state formulation to estimate the misfit function’s gradient can be used in
this specific framework: this leads, on the proposed example, to the determination of the time-
homogenized counterpart of the adjoint solution associated with the reference identification
problem. Despite its simplicity, the academical example studied here showed the relevance of
the strategy and its reduced computational cost: these results can be viewed as a first step
before dealing with more complex cases of study.
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