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Abstract. We consider the following problem: can a certain graph pa-
rameter of some given graph be reduced by at least d for some integer d
via at most k edge contractions for some given integer k? We examine
three graph parameters: the chromatic number, clique number and in-
dependence number. For each of these graph parameters we show that,
when d is part of the input, this problem is polynomial-time solvable on
P4-free graphs and NP-complete as well as W[1]-hard, with parameter
d, for split graphs. As split graphs form a subclass of P5-free graphs,
both results together give a complete complexity classification for P`-
free graphs. The W[1]-hardness result implies that it is unlikely that the
problem is fixed-parameter tractable for split graphs with parameter d.
But we do show, on the positive side, that the problem is polynomial-
time solvable, for each parameter, on split graphs if d is fixed, i.e., not
part of the input. We also initiate a study into other subclasses of perfect
graphs, namely cobipartite graphs and interval graphs.

1 Introduction

A graph modification problem is usually defined as follows. We fix a graph class G
and a set S of one or more graph operations. The input consists of a graph G
and an integer k. The question is whether G can be modified into a graph H ∈ G
by using at most k operations from S. Now, instead of fixing a particular graph
class G, one may want to fix a graph parameter π instead. Then the question
becomes whether G can be modified, by using at most k operations from S, into
a graph H with π(H) ≤ π(G) − d for some threshold d, which is a nonnegative
integer that can either be fixed or be part of the input. These problems have
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been studied in a number of papers [2–4, 11, 21–23], where the graph parameters
that were considered are the chromatic number, clique number, independence
number, matching number, and the vertex cover number, while the set S was a
singleton consisting of a vertex deletion, edge deletion or edge addition. In this
paper we focus on another graph operation: the edge contraction, for which the
graph modification problem has been studied for fixed graph classes already in
the early eighties [24, 25] but not yet for fixed graph parameters.

Let G be a finite undirected graph with no self-loops and no multiple edges.
The contraction of an edge uv of G removes the vertices u and v from G, and
replaces them by a new vertex made adjacent to precisely those vertices that were
adjacent to u or v inG. We say that a graphG can be k-contracted into a graphH
if G can be modified into H by a sequence of at most k edge contractions.

We consider the following generic problem, where we fix the graph parameter
π and the threshold d (that is, they are not part of the input):

d-Contraction Blocker(π)
Instance: a graph G = (V,E) and a nonnegative integer k.
Question: can G be k-contracted into a graph H with π(H) ≤ π(G)− d?

We also consider the following version of the above problem where d is part of
the input (thus only π is fixed):

Contraction Blocker(π)
Instance: a graph G = (V,E) and two nonnegative integers d, k.
Question: can G be k-contracted into a graph H with π(H) ≤ π(G)− d?

These problems have been studied implicitly in the literature already in var-
ious settings. For instance, Belmonte et al. [5] proved that 1-Contraction
Blocker(∆), where ∆ denotes the maximum vertex-degree, is NP-complete
even for split graphs. In this paper we consider the following graph parameters:
the chromatic number χ, the clique number ω and the independence number α
of a graph. The following two results follow directly from known results.

First, 1-Contraction Blocker(χ) is NP-complete even for graphs of chro-
matic number 3. This can be seen as follows. Consider the problem Bipartite
Contraction, which is that of testing whether a graph can be made bipar-
tite by at most k edge contractions. It is readily seen that 1-Contraction
Blocker(χ) and Bipartite Contraction are equivalent for graphs of chro-
matic number 3. Heggernes, van t Hof, Lokshtanov and Paul [18] observed that
Bipartite Contraction is NP-complete by reducing from the NP-complete
problem Edge Bipartization, which is that of testing whether a graph can be
made bipartite by deleting at most k edges. Given an instance (G, k) of Edge
Bipartization, they obtain an instance (G′, k′) of Bipartite Contraction
by replacing every edge in G by a path of sufficiently large odd length. Note that
the resulting graph G′ has chromatic number 3.

Second, 1-Contraction Blocker(α) is NP-complete even for graphs with
independence number 2. This can be seen as follows. Golovach, Heggernes, van ’t
Hof and Paul [15] considered the s-Club Contraction problem, which takes
as input a graph G and an integer k and asks whether G can be k-contracted



into a graph with diameter at most s for some fixed integer s. They showed that
1-Club Contraction is NP-complete even for cobipartite graphs. Graphs of
diameter 1 are complete graphs, that is, graphs with independence number 1,
whereas cobipartite graphs have independence number at most 2.

Our Results. In Section 2 we first introduce some definitions and notations. In
the same section we show that 1-Contraction Blocker(ω) is NP-complete
even for graphs with clique number 3. In Section 3 we prove that Contrac-
tion Blocker(π) is polynomial-time solvable on cographs for π ∈ {α, χ, ω).
Cographs are also known as P4-free graphs (a graph is P`-free if it has no in-
duced path on ` vertices).

Our result generalizes a recent result of Golovach et al. [15] who proved that
the Hadwiger Number problem is polynomial time solvable on cographs. This
problem is to test whether a graph contains the complete graph Kr as a minor
(or equivalently as a contraction) for some given integer r, which is equivalent to
the Contraction Blocker(α) problem restricted to instances (G, d, k) where
d = α(G) − 1 and k = |V (G)| − r. Our result can be viewed as best possible
as in Section 4 we show that for π ∈ {α, χ, ω) the Contraction Blocker(π)
problem is NP-complete for split graphs, which form a subclass of P5-free graphs.
We show that the same hardness reduction can also be used to prove that the
three problems, restricted to split graphs, are W[1]-hard when parameterized
by d. The latter result means that for split graphs these problems are unlikely
to be fixed-parameter tractable with parameter d. We complement the hardness
results for split graphs by proving in the same section that, for all (fixed) d ≥ 1,
the d-Contraction Blocker(π) problem is polynomial-time solvable for split
graphs if π ∈ {α, χ, ω). See Table 1 for an overview of these results.

Cographs and split graphs are subclasses of perfect graphs. Section 5 contains,
besides a number of directions for future work, some initial results for other
subclasses of perfect graphs, namely for interval graphs and cobipartite graphs.

general graphs cographs split graphs

d fixed NP-c even if d = 1 P P

d part of input NP-c P NP-c and W[1]-hard with parameter d

Table 1. Our results from Sections 3 and 4 for Contraction Blocker(π) with
π ∈ {α, χ, ω} (recall that, when d is fixed, we denote the problem by d-Contraction
Blocker(π)). Here, NP-c stands for NP-complete.

2 Preliminaries

We denote a graph by G = (V (G), E(G)), where V (G) is the vertex set and
E(G) is the edge set. We may write G = (V,E) if no confusion is possible. All
graphs considered are finite, undirected and without self-loops or multiple edges.
Let G = (V,E) be a graph. The complement of G is the graph G = (V,E) with



vertex set V and an edge between two vertices u and v if and only if uv /∈ E. For
a subset S ⊆ V , we let G[S] denote the induced subgraph of G, which has vertex
set S and edge set {uv ∈ E | u, v ∈ S}. A set I ⊆ V is an independent set of G if
no two vertices in I are adjacent to each other. The independence number α(G)
is the number of vertices in a maximum independent set of G. A subset C ⊆ V
is called a clique of G if any two vertices in C are adjacent to each other. The
clique number ω(G) is the number of vertices in a maximum clique of G. For
a positive integer k, a k-coloring of G is a mapping c : V → {1, 2, . . . , k} such
that c(u) 6= c(v) whenever uv ∈ E. The chromatic number χ(G) is the smallest
number k for which G has a k-coloring. Recall that the contraction of an edge
uv ∈ E removes the vertices u and v from G, and replaces them by a new vertex
made adjacent to precisely those vertices that were adjacent to u or v in G (so
neither self-loops nor multiple edges are created). We may also say that a vertex
u is contracted onto v, and we use v to denote the new vertex resulting from the
edge contraction.

Let G be a graph and let {H1, . . . ,Hp} be a set of graphs. We say that
G is (H1, . . . ,Hp)-free if G has no induced subgraph isomorphic to a graph in
{H1, . . . ,Hp}. If p = 1 we may write H1-free instead of (H1)-free. For n ≥ 1,
the graph Pn denotes the path on n vertices, that is, V (Pn) = {u1, . . . , un} and
E(Pn) = {uiui+1 | 1 ≤ i ≤ n − 1}. For n ≥ 3, the graph Cn denotes the cycle
on n vertices, that is, V (Cn) = {u1, . . . , un} and E(Cn) = {uiui+1 | 1 ≤ i ≤
n− 1} ∪ {unu1}.

A graph G = (V,E) is a split graph if G has a split partition, which is a
partition of its vertex set into a clique K and an independent set I. A split
partition (K, I) of a graph G is called maximal if K ∪ {u} is not a clique for all
u ∈ I. A split partition (K, I) of a graph G is called minimal if I ∪ {v} is not
an independent set for all v ∈ K. Split graphs coincide with (2P2, C4, C5)-free
graphs [12] (where 2P2 is the disjoint union of two copies of P2). A split graph
is chordal, that is, contains no induced cycle on four or more vertices. A graph
is cobipartite if it is the complement of a bipartite graph, which is a graph whose
vertex set can be split into two non-empty subsets A and B such that any edge
is between a vertex of A and a vertex of B. A graph is an interval graph if it is
the intersection graph of a set of closed intervals on the real line, i.e., its vertices
correspond to the intervals and two vertices are adjacent in G if and only if their
intervals have at least one point in common. A P4-free graph is also called a
cograph. A graph is perfect if the chromatic number of every induced subgraph
equals the size of a largest clique in that subgraph. Chordal graphs, cobipartite
graphs, cographs, interval graphs and split graphs all form subclasses of perfect
graphs.

We finish this section by showing the following general result which motivated
our study of special graph classes. Note that it is trivial to solve 1-Contraction
Blocker(χ) in polynomial-time on graphs with chromatic number 2 as well as
1-Contraction Blocker(ω) on graphs with clique number 2.1

1 We omitted the proofs of some results due to space constraints. These results are
marked by ♠.



Theorem 1 (♠). 1-Contraction Blocker(π) is NP-complete for

(i) graphs with independence number 2 if π = α;
(ii) graphs with chromatic number 3 if π = χ;

(iii) graphs with clique number 3 if π = ω.

3 Cographs

Before presenting our results on cographs we first give some additional terminol-
ogy. Let G1 and G2 be two vertex-disjoint graphs. The join operation ⊗ adds an
edge between every vertex of G1 and every vertex of G2. The union operation
⊕ creates the disjoint union of G1 and G2 which is the graph with vertex set
V (G1) ∪ V (G2) and edge set E(G1) ∪ E(G2). We denote the disjoint union of
G1 and G2 by G1 ⊕ G2. We denote the disjoint union of r copies of a graph G
by rG.

It is well known (see, for example, [7]) that a graph G is a cograph if and only
if G can be generated from K1 by a sequence of operations, where each operation
is either a join or a union. Such a sequence corresponds to a decomposition tree
T , which has the following properties:

1. its root r corresponds to the graph Gr = G;
2. every leaf x of T corresponds to exactly one vertex of G, and vice versa,

implying that x corresponds to a unique single-vertex graph Gx;
3. every internal node x of T has at least two children, is either labeled ⊕ or
⊗, and corresponds to an induced subgraph Gx of G defined as follows:
• if x is a ⊕-node, then Gx is the disjoint union of all graphs Gy where y

is a child of x;
• if x is a ⊗-node, then Gx is the join of all graphs Gy where y is a child

of x.

A cograph G may have more than one such tree but has exactly one unique
tree [9], called the cotree TG of G, if the following additional property is required:

4. Labels of internal nodes on the (unique) path from any leaf to r alternate
between ⊕ and ⊗.

Note that TG has O(n) vertices. For our purposes we must modify TG by
applying the following known procedure (see e.g. [6]). Whenever an internal
node x of TG has more than two children y1 and y2, we remove the edges xy1
and xy2 and add a new vertex x′ with edges xx′, x′y1 and x′y2. If x is a ⊕-node,
then x′ is a ⊕-node, and if x is a ⊗-node, then x′ is a ⊗-node. Applying this rule
exhaustively yields a tree in which each internal node has exactly two children.
We denote this tree by T ′G. Because TG has O(n) vertices, modifying TG into T ′G
takes linear time.

Corneil, Perl and Stewart [10] proved that the problem of deciding whether a
graph with n vertices and m edges is a cograph can be solved in time O(n+m).
They also showed that in the same time it is possible to construct its cotree (if it
exists). As modifying TG into T ′G takes O(n+m) time, we obtain the following
lemma.



Lemma 1. Let G be a graph with n vertices and m edges. Deciding if G is a
cograph and constructing T ′G (if it exists) can be done in time O(n+m).

For two integers k and l we say that a graph G can be (k, l)-contracted
into a graph H if G can be modified into H by a sequence containing k edge
contractions and l vertex deletions. Note that cographs are closed under edge
contraction and under vertex deletion. In fact, to prove our results for cographs,
we will prove that the problem whether a cograph G can be (k, l)-contracted
into a cograph H with π(H) ≤ π(G)−d is polynomial-time solvable for all given
integers d, k, l and for all π ∈ {α, χ, ω}.

Theorem 2. For π ∈ {α, χ, ω}, the Contraction Blocker(π) problem can
be solved in O(n2 +mn+ k3n) time on cographs with n vertices and m edges.

Proof. First consider π = α. Let G be a cograph with n vertices and m edges that
together with an integer k forms an instance of Contraction Blocker(α). We
first construct T ′G. We then consider each node of T ′G by following a bottom-up
approach starting at the leaves of T ′G and ending in its root r.

Let x be a node of T ′G. Recall that Gx is the subgraph of G induced by all
vertices that corresponds to leaves in the subtree of T ′G rooted at x. We associate
a table with x that records the following data: for each pair of integers i, j ≥ 0
with i + j ≤ k we compute the largest integer d such that Gx can be (i, j)-
contracted into a graph Hx with α(Hx) ≤ α(Gx) − d. We denote this integer d
by d(i, j, x). Let i, j ≥ 0 with i+ j ≤ k.

Case 1. x is a leaf.
Then Gx is a 1-vertex graph meaning that d(i, j, x) = 0 if j = 0, whereas
d(i, j, x) = 1 if j ≥ 1.

Case 2. x is a ⊕-node.
Let y and z be the two children of x. Then, as Gx is the disjoint union of Gy

and Gz, we find that α(Gx) = α(Gy) + α(Gz). Hence, we have

d(i, j, x) = max {α(Gx)− (α(Gy)− d(a, b, y) + α(Gz)− d(i− a, j − b, z)) |
0 ≤ a ≤ i, 0 ≤ b ≤ j}

= max {d(a, b, y) + d(i− a, j − b, z) | 0 ≤ a ≤ i, 0 ≤ b ≤ j}.

Case 3. x is a ⊗-node.
Since x is a ⊗-node, Gx is connected and as such has a spanning tree T . If
i + j ≥ |V (Gx)| and j ≥ 1, then we can contract i edges of T in the graph Gx

followed by j vertex deletions. As each operation will reduce Gx by exactly one
vertex, this results in the empty graph. Hence, d(i, j, x) = α(Gx). From now on
assume that i + j < |V (Gx)| or j = 0. As such, any graph we can obtain from
Gx by using i edge contractions and j vertex deletions is non-empty and hence
has independence number at least 1.

Let y and z be the two children of x. Then, as Gx is the join of Gy and Gz, we
find that α(Gx) = max{α(Gy), α(Gz)}. In order to determine d(i, j, x) we must
do some further analysis. Let S be a sequence that consists of i edge contractions



and j vertex deletions of Gx such that applying S on Gx results in a graph Hx

with α(Hx) = α(Gx) − d(i, j, x). We partition S into five sets Se
y, Se

z , Se
yz, Sv

y ,
Sv
z , respectively, as follows. Let Se

y and Se
z be the set of contractions of edges

with both end-vertices in Gy and with both end-vertices in Gz, respectively. Let
Se
yz be the the set of contractions of edges with one end-vertex in Gy and the

other one in Gz. Let ay = |Se
y| and let az = |Se

z |. Then |Se
yz| = i − ay − az.

Let Sv
y and Sv

z be the set of deletions of vertices in Gy and Gz, respectively. Let
b = |Sv

y |. Then |Sv
z | = j − b. We distinguish between two cases.

First assume that Se
yz = ∅. Then ay +az = i. Let Hy be the graph obtained from

Gy after applying the subsequence of S, consisting of operations in Se
y ∪ Sv

y , on
Gy. Let Hz be defined analogously. Then we have

α(Hx) = max{α(Hy), α(Hz)}
= max{α(Gy)− d(ay, b, y), α(Gz)− d(az, j − b, z)}
= max{α(Gy)− d(ay, b, y), α(Gz)− d(i− ay, j − b, z)},

where the second equality follows from the definition of S.

Now assume that Se
yz 6= ∅. Recall that i+j < |V (Gx)| or j = 0. Hence α(Hx) ≥ 1.

Our approach is based on the following observations.

First, contracting an edge with one end-vertex in Gy and the other one in Gz

is equivalent to removing these two end-vertices and introducing a new vertex
that is adjacent to all other vertices of Gx (such a vertex is said to be universal).

Second, assume that Gy contains two distinct vertices u and u′ and that
Gz contains two distinct vertices v and v′. Suppose that we are to contract
two edges from {uv, uv′, u′v, u′v′}. Contracting two edges of this set that have
a common end-vertex, say edges uv and uv′, is equivalent to deleting u, v, v′

from Gx and introducing a new universal vertex. Contracting two edges with no
common end-vertex, say uv and u′v′, is equivalent to deleting all four vertices
u, u′, v, v′ from Gx and introducing two new universal vertices. Because the two
new universal vertices in the latter choice are adjacent, whereas the vertex u′

may not be universal after making the former choice, the latter choice decreases
the independence number by the same or a larger value than the former choice.
Hence, we may assume without loss of generality that the latter choice happened.
More generally, the contracted edges with one end-vertex in Gy and the other
one in Gz can be assumed to form a matching. We also note that introducing
a new universal vertex to a graph does not introduce any new independent set
other than the singleton set containing the vertex itself.

We conclude that each edge contraction in Se
yz may be considered to be

equivalent to deleting one vertex from Gy and one from Gz and introducing a
new universal vertex. If one of the two graphs Gy or Gz becomes empty in this
way, then an edge contraction in Se

yz can be considered to be equivalent to the
deletion of a vertex of the other one. Finally, if both sets Gy and Gz become
empty, then we can stop as in that case Hx has independence number 1 (which
we assumed was the smallest value of α(Hx)).



By the above observations and the definition of S we find that

α(Hx) = max{1, α(Gy)−d(ay, b+i−ay−az, y), α(Gz)−d(az, j−b+i−ay−az, z)}.

Hence we can do as follows. We consider all tuples (ay, b) with 0 ≤ ay ≤ i
and 0 ≤ b ≤ j and compute max{α(Gy)− d(ay, b, y), α(Gz)− d(i− ay, j− b, z)}.
Let α′x be the minimum value over all values found. We then consider all tuples
(ay, az, b) with ay ≥ 0, az ≥ 0, ay + az ≤ i and 0 ≤ b ≤ j and compute
max{1, α(Gy)−d(ay, b+i−ay−az, y), α(Gz)−d(az, j−b+i−ay−az, z)}. Let α′′x be
the minimum value over all values found. Then d(i, j, x) = α(Gx)−min{α′x, α′′x}.

After reaching the root r, we let our algorithm return the integer d(k, 0, r).
By construction, d(k, 0, r) is the largest integer such that G = Gr can be k-
contracted into a graph H with α(H) ≤ α(G)− d(k, 0, r). We are left to analyze
the running time.

Constructing T ′G can be done in O(n + m) time by Lemma 1. We now de-
termine the time it takes to compute one entry d(i, j, x) in the table associated
with a node x. It takes linear time to compute the independence number of a
cograph2. The total number of tuples (ay, b) and (ay, az, b) that we need to con-
sider is O(k3). Note that the table associated with a node x has O(k2) entries
but that we only have to compute α(Gx) once. Hence, it takes O(n + m + k3)
time to construct a table for a node. As TG′ has O(n) vertices, the total running
time is O(n+m) +O(n(n+m+ k3)) = O(n2 +mn+ k3n).

Now consider π = χ. Note that we cannot consider the complement of a cograph
(which is a cograph) because an edge contraction in a graph does not correspond
to an edge contraction in its complement. However, we can re-use the previous
proof after making a few modifications. Let G be a cograph with n vertices and
m edges that together with an integer k forms an instance of Contraction
Blocker(χ). We follow the same approach as in the proof for n = α. We only
have to swap Cases 2 and 3 after observing that χ(Gx) = max{χ(Gy), χ(Gz)} if
x is a ⊕-node with y and z as its two children and χ(Gx) = χ(Gy) + χ(Gz) if x
is a ⊗-node. We can use the same arguments as used in the proof for n = α for
the running time analysis as well; we only have to observe that it takes O(n+m)
time to compute the chromatic number of a cograph (using the same arguments
as before or another algorithm of [8]).

Finally consider π = ω. As cographs are perfect and closed under edge contrac-
tions, the proof follows immediately from the corresponding result for π = χ. ut

Remark. As can be seen from the proofs of our results, our algorithms for solving
Contraction Blocker(π) on cographs for π ∈ {α, χ, ω} in fact determine the
largest integer d for which the input graph G can be k-contracted into a graph
H with π(H) ≤ π(G)− d.

2 For a cograph G, compute T ′
G and use the formula α(Gx) = α(Gy) + α(Gz) if x is

a ⊕-node with children y and z and α(Gx) = max{α(Gy), α(Gz)} otherwise. Alter-
natively, see for example [8] for a linear-time algorithm on a superclass of cographs.



4 Split Graphs

We first show the following result.

Theorem 3. Let π ∈ {α, χ, ω}. For any fixed d ≥ 0, the d-Contraction
Blocker(π) problem is polynomial-time solvable on split graphs.

Proof. First consider π = α. Let (G, k) be an instance of d-Contraction
Blocker(α) where G = (V,E) is a split graph. Let (K, I) be a minimal
split partition of G. Let I ′ be the set of vertices in I that have at least one
neighbor in K, and let I ′′ = I \ I ′. Because G is a split graph, all vertices
of I ′ belong to the same connected component D of G. Moreover, we have
α(G) = |I| = |I ′|+ |I ′′| = α(D) + |I ′′|.

First suppose that |I ′| ≤ d. For (G, k) to be a yes-instance, G must be
contracted into a graph G′ with α(G′) ≤ α(G)− d = |I ′|+ |I ′′| − d ≤ |I ′′|. This
means that we must contract D into the empty graph, which is not possible.
Hence, (G, k) is a no-instance in this case. Hence, we may assume without loss
of generality that |I ′| ≥ d+ 1.

Suppose that k ≥ d + 1. If k ≥ |I ′|, then we contract every vertex of I ′

onto a neighbor in K. In this way we have k-contracted G into a graph G′ with
α(G′) = |I ′′|+1 ≤ |I ′|+ |I ′′|− (|I ′|−1) ≤ |I ′|+ |I ′′|−d = α(G)−d. So, (G, k) is
a yes-instance in this case. If k ≤ |I ′|−1, we contract each vertex of an arbitrary
subset of k vertices of I ′ onto a neighbor in K. In this way we have k-contracted
G into a graph G′ with α(G′) ≤ |I ′| − k + 1 + |I ′′| ≤ |I ′|+ |I ′′| − d = α(G)− d.
So, (G, k) is a yes-instance in this case as well.

If k ≤ d+1, we consider all possible sequences of at most k edge contractions.
This takes time O(|E(G)|k), which is polynomial as d, and consequently k, is
fixed. For every such sequence we check in polynomial time whether the resulting
graph has chromatic number at most χ(G)− d. As split graphs are closed under
edge contraction and moreover are chordal graphs, the latter can be verified in
linear time (see [16]).

Now let π = χ. Let (G, k) be an instance of d-Contraction Blocker(χ)
where G = (V,E) is a split graph.

Case 1. χ(G) ≤ d.
For (G, k) to be a yes-instance, G must be contracted into a graph G′ with
χ(G′) ≤ χ(G)− d ≤ 0. The only graph with chromatic number at most 0, is the
empty graph. However, a non-empty graph cannot be contracted to an empty
graph. Hence, (G, k) is a no-instance in this case.

Case 2. χ(G) = d+ 1.
For (G, k) to be a yes-instance, G must be contracted into a graph G′ with
χ(G′) ≤ χ(G)− d = 1. Hence, every connected component of G′ must consist of
exactly one vertex. If G has no connected components with edges, then (G, k) is a
yes-instance. Otherwise, because G is a split graph, G has exactly one connected
component D containing one or more edges. In that case, (G, k) is a yes-instance
if and only if k ≥ |V (D)| − 1; this can be checked in constant time.



Case 3. χ(G) ≥ d+ 2.
First, assume that k < d. Because every edge contraction reduces the chromatic
number by at most 1, (G, k) is a no-instance.

Second, assume that k = d. We consider all possible sequences of at most k
edge contractions. This takes time O(|E(G)|k), which is polynomial as d, and
consequently k, is fixed. For every such sequence we check in polynomial time
whether the resulting graph has chromatic number at most χ(G) − d. As split
graphs are closed under edge contractions and moreover are chordal graphs, the
latter can be verified in polynomial time (see [16]).

Third, assume that k > d. We claim that (G, k) is a yes-instance. This can
be seen as follows. Let (K, I) be a maximal split partition of G.

If k < |K|, then we contract k arbitrary edges of K. The resulting graph
G′ has a split partition (K ′, I) with |K ′| = |K| − k ≤ |K| − d − 1. Hence
χ(G′) ≤ |K ′| + 1 ≤ |K| − d = χ(G) − d. Note that the latter equality follows
from our assumption that (K, I) is maximal. Now suppose that k ≥ |K|. We
contract |K| arbitrary edges of K. The resulting graph G′ has chromatic number
2 ≤ χ(G)− d. Hence, in both cases, we conclude that (G, k) is a yes-instance.

Finally consider π = ω. We use the previous result combined with the fact that
split graphs are perfect and closed under edge contractions. ut

In our next theorem we give two hardness results which, as explained in
Section 1, show that Theorem 3 can be seen as best possible. In their proofs we
will reduce from the Red-Blue Dominating Set problem. This problem takes
as input a bipartite graph G = (R ∪ B,E) and an integer k, and asks whether
there exists a red-blue dominating set of size at most k, that is, a subset D ⊆ B
of at most k vertices such that every vertex in R has at least one neighbor in
D. This problem is NP-complete, because it is equivalent to the NP-complete
problems Set Cover and Hitting Set [14]. The Red-Blue Dominating Set
problem is also W[1]-complete when parameterized by |B| − k [17]. Belmonte
et al. [5] reduced from the same problem for showing that 1-Contraction
Blocker(∆) is NP-complete and W[2]-hard (with parameter k) for split graphs,
but the arguments we use to prove our results are quite different from the ones
they used.

Theorem 4. For π ∈ {α, χ, ω}, the Contraction Blocker(π) problem, re-
stricted to split graphs, is NP-complete as well as W[1]-hard when parameterized
by d.

Proof. The problem is readily seen to be in NP for π ∈ {α, χ, ω}. Recall that we
reduce from Red Blue Dominating Set in order to show NP-hardness and
W[1]-hardness with parameter d.

First consider π = α. Let G = (R ∪B,E) be a bipartite graph that together
with an integer k forms an instance of Red-Blue Dominating Set. We may
assume without loss of generality that k ≤ |B|. Moreover, we may assume that
every vertex of R is adjacent to at least one vertex of B. We add all possible edges
between vertices in R. This yields a split graph G∗ with a split partition (R,B).



Because every vertex in R is assumed to be adjacent to at least one vertex of B
in G, we find that (R,B) is a minimal split partition of G∗.

Because Red-Blue Dominating Set problem is NP-complete [14] and
W[1]-complete when parameterized by |B| − k [17], it suffices to prove that G
has a red-blue dominating set of size at most k if and only if (G∗, |B| − k) is
a yes-instance of (|B| − k)-Contraction Blocker(α). We prove this claim
below.

First suppose that G has a red-blue dominating set D of size at most k. Be-
cause k ≤ |B|, we may assume without loss of generality that |D| = k (otherwise
we would just add some vertices from B \D to D).

In G∗ we contract every u ∈ B \ D onto a neighbor in R. In this way we
(|B|−k)-contracted G∗ into a graph G′. Note that G′ is a split graph that has a
split partition (R,D). Because every vertex in R is adjacent to at least one vertex
of D in G by definition of D, it is adjacent to at least one vertex of D in G∗. The
latter statement is still true for G′, as contracting an edge incident to a vertex
u ∈ B is equivalent to deleting u. Hence, (R,D) is a minimal split partition of
G′, so α(G′) = |D|. Because (R,B) is a minimal split partition of G∗, we have
α(G∗) = |B|. This means that α(G′) = |D| = |B|−(|B|−|D|) = α(G∗)−(|B|−k).
We conclude that (G∗, |B| − k) is a yes-instance of (|B| − k)-Contraction
Blocker(α).

Now suppose that (G∗, |B| − k) is a yes-instance of (|B| − k)-Blocker(α),
that is, G∗ can be (|B| − k)-contracted into a graph G′ such that α(G′) ≤
α(G∗) − (|B| − k). Recall that α(G∗) = |B|. Hence, α(G′) ≤ k. Let p be the
number of contractions of edges with one end-vertex in B. Note that any such
contraction decreases the size of the independent set B by exactly one. If p <
|B| − k, then G′ contains an independent set of size |B| − p > k, which would
mean that α(G′) > k, a contradiction. Hence, p ≥ |B| − k, which implies that
p = |B| − k as we performed no more than |B| − k contractions in total. Let D
denote the independent set obtained from B after all edge contractions. Then
we find that k = |B| − (|B| − k) = |B| − p = |D| ≤ α(G′) ≤ α(G∗)− (|B| − k) =
|B| − (|B| − k) = k. Hence, |D| = α(G′), which means that (D,R) is a minimal
split partition of G′. This means that every vertex of R is adjacent to at least
one vertex of D in G′. Because all our contractions were performed on edges
with one end-vertex in B, we have only removed vertices from G∗, that is, G′ is
an induced subgraph of G∗. Hence, every vertex of R is adjacent to at least one
vertex of D in G′. Consequently, D is a red-blue dominating set of G with size
|D| = k.

We omit the proof for π = χ. As split graphs are perfect and closed under edge
contractions, the case π = ω follows directly from the case π = χ. ut

5 Conclusions

Because split graphs are (2P2, C4, C5)-free [12], they are P5-free. This means
that Theorem 2, combined with Theorem 4, has the following consequence.



Corollary 1. Let π ∈ {α, χ, ω). Then Contraction Blocker(π) restricted
to P`-free graphs is polynomial-time solvable if ` ≤ 4 and NP-complete if ` ≥ 5.

Recently, Lokshtanov, Vatshelle, and Villanger [20] proved that the indepen-
dence number of a P5-free graph can be computed polynomial time (thereby
solving a long-standing open problem). In contrast, already 1-Contraction
Blocker(α) is NP-complete for P5-free graphs (recall that it is NP-complete
even for cobipartite graphs, as explained in Section 1). The problems of deter-
mining the chromatic number [19] and the clique number [1] are NP-hard for
P5-free graphs. One might be able to use these two results to prove NP-hardness
of d-Contraction Blocker(π) for π ∈ {χ, ω} and d ≥ 1.

The classes of cographs and split graphs are subclasses of the class of perfect
graphs. Thus, it is interesting to study Contraction Blocker(π) for other
subclasses of perfect graphs, such as interval graphs or cobipartite graphs with
π ∈ {α, χ} (since for perfect graphs Contraction Blocker(ω) and Con-
traction Blocker(χ) are equivalent). For interval graphs we can show the
following result.

Theorem 5 (♠). Let π ∈ {χ, ω}. Then Contraction Blocker(π) can be
solved in polynomial time on interval graphs.

Whether the same result holds for Contraction Blocker(α) is not clear and
left as future work.

Cobipartite graphs have independence number at most 2, that is, are 3P1-
free. We can show the following.

Theorem 6 (♠). For any fixed d ≥ 0, the d-Contraction Blocker(χ) prob-
lem can be solved in polynomial time on 3P1-free graphs.

Whether Theorem 6 can be generalized to the class of 4P1-free graphs is an open
problem. Its proof cannot be translated to 4P1-free graphs, because computing
the chromatic number is NP-hard for 4P1-free graphs [19]. Also, determining the
complexity of Contraction Blocker(χ) for the class of cobipartite graphs
and its superclass of 3P1-free graphs is still open. Moreover, we do not know
the complexity of d-Contraction Blocker(ω) for 3P1-free graphs and d ≥ 1
(whereas, for π = α this problem is NP-complete already for d = 1 even for
cobipartite graphs, as we recalled earlier).

Finally, we note that a similar table as Table 1 is not complete for the other
variants of the blocker problem where the operation permitted is the edge addi-
tion, edge deletion or vertex deletion, respectively. For edge deletions the prob-
lem, for π = χ, is known [2] to be NP-hard for general graphs even if d = 1,
polynomial-time solvable on threshold graphs (which form a proper subclass of
P4-free graphs) if d is part of the input and polynomial-time solvable on split
graphs but only if d is fixed. For edge additions the problem, for π = α, is
known [2] to be NP-hard for general graphs even if d = 1 and polynomial-time
solvable on split graphs if d is fixed. For vertex deletions the problem, for π = ω,
is known to be NP-complete for general graphs [21] and, for π = α, polynomial-
time solvable for cographs if d is part of the input [4]. It would be interesting to
complete these results in the way we have done for edge contractions.
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