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ABSTRACT. We give a proof of the fact tha the subset of the rational curves form
a closed analytic subset in the space of the 1—dimensional cycles of a complex space.
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The aim of this short note is to prove the following result.

Theorem 0.0.1 Let M be a complex space. Let R be the subset of the space Ci(M)
consisting of compact rational 1—dimensional cycles in M. Then R is a closed an-
alytic subset in Cy(M).

By a rational 1—dimensional cycle we mean that each irreducible component of such
a cycle is a rational curve (may be singular).

Note that this result is classical in the projective context.

The proof of the theorem uses the following proposition.

Proposition 0.0.2 Let 7 : U — V be a geometrically flat map between reduced
complex spaces with one dimensional fibres. Assume that for a point vy € V' the fibre
7 (vy) has an irreducible component vy which has genus > 1. Then there exists an
open neighbourhood Vi of vy in V' such that for any v € Vy the fibre 7=(v) has an
irreducible component of genus > 1.
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In the previous statement, the genus of an irreducible compact curve is, by defini-
tion, the genus of its normalization.

Recall also that the geometric flatness assumption means that there exists a holo-
morphic map ¢ : V' — C;(U) such that for each v € V we have 771 (v) = |p(v)|
and such that for v generic in V' the 1—cycle ¢(v) is reduced (that is to say that all
multiplicities are equal to 1).

We begin by some general results in order to show that it is enough to prove the
proposition and the theorem in the case when V' is normal and when the fibres of 7
are connected.

Lemma 0.0.3 Let U — V be a geometrically flat map between reduced complex
spaces with holomorphic fibre map ¢ : V- — C, (U). Let T : V — V be a proper
modification of V and denote 7@ : U — V the strict transform of = by 7. Then 7 is
geometrically flat and the fibre at a point © € V is the n—cycle ¢(7(7)) X {v} in U.

PROOF. Let S C V be the center of the modification 7. Then for © ¢ 771(S) the
fibre of 7 is (7 (9)) x {0} as a cycle in U € U xy V. As U is a closed analytic subset
in U xy V and as the family of cycles & — (7()) x {9} is an analytic family of
compact cycles in U Xy V such that, for o generic, they are contained in U, this is
an analytic family of cycles in U and this gives the holomorphic fibre map for 7. W

REMARKS.

1. If n = 1 and if R is the set of points in V such that the fibre of 7 is rational
then 7(R) is the subset of V' where the fibre of 7 is rational.

2. This lemma allows to assume that V' is a normal complex space in the proofs
of the proposition 0.0.2 and the theorem 0.0.1

Lemma 0.0.4 Let U =V be a geometm'cally flat map between irreducible complex
spaces and assume that V is normal. Let 7’ : U — W and g : W — V be a Stein
factorization of ©. Let v : W — W be the normalzzatzon of Wandlet #:U — W
be the strict transform of © by v. Put §: W — V be the composition § = vog. As
7 is equi-dimensional proper and with a normal basis, it is geometrically flat with
connected fibres. Also g is proper, finite and surjective with a normal basis so it is
geometrically flat with 0— dimensional ﬁbres

Let 0 - W — Co(U) and f : V — Sym*(W) the corresponding holomorphic fibre
maps. Then the fibre map for the geometrically flat map 7o g is given by

foSym*(#) o Add : V — C,(U),

where Add : Symk(Cn(U)) — Co(U) is the addition map of n—cycles in U.



PROOF. Remember that, by definition of a Stein reduction, the fibre of g of a point
v € V is the set of connected components of 77!(v) and that the fibre of 7’ at a
point w € g~!(v) is the connected component of 7=!(v) given by w. So 7’ and also 7
have connected fibres. As ¢ is proper (and finite) and as W is irreducible the image
by g of non normal points in W is a closed analytic subset in V' with no interior
point. So it is clear that the holomorphic map f o Sym*(6) o Add is a fibre map for
7 o g at the generic points of V. This is enough to conclude. [ |

Corollary 0.0.5 In the situation of the previous lemma with n = 1, let R be the
subset of W of points such the fibre of 7 is rational. Then the subset of point in V
such that the fibre of 7 is rational is equal to R := {v € V | f(v) € Sym*(R)}.
Then, if R is closed (resp. analytic), so is R.

PROOF. This corollary is clear because a compact curve is rational if and only if
each of its connected component is rational. [ |

REMARK. With the previous results, it is enough to prove the proposition 0.0.2
and the theorem 0.0.1 with the following extra assumptions : V' is normal and all
fibres of 7 are connected.

PROOF OF THE PROPOSITION. We shall use the following result (see [B.80]): Let
C be a reduced compact curve in a complex space M, and let L be a holomorphic
line bundle on C. Then there exists an open neighbourhood M’ of C' in M and a
holomorphic line bundle £ on M’ inducing L on C. Moreover, if L is topologically
trivial on C' we may choose L topologically trivial on M.

Note that the last point is not stated in loc. cit but is a trivial consequence of the
proof given there.

Consider now Cy = |¢(vg)| = 7 H(vg) and let v : Cy — Cy be the normalization of
Co. Define the coherent sheaf F := 1v,(Og ) on Cy. We have an exact sequence of
coherent sheaves

0=2>0¢ —>F—=>Q—=0

where ) has support in a finite set. Then H'(Cj, Q) vanishes and we have a surjective
map

Hl(Co,OCD) — Hl(CO,F) — 0.

Using the surjectivity above, we can find a topologically trivial line bundle L on Cj
which is not holomorphically trivial on each non rational component of Cj. Thanks
to the result quoted above and to the properness of © we can find an open neigh-
bourhood V of vy in V' an a line bundle £ on Uy := 7~ 1(V,) which is topologically
trivial on Uy and induces L on Cy. Now let Z be the subset of the space Cy(L) of



connected! compact 1—cycles in £ such that their direct image on Uy is contained
in o(Vy) C C1(Up). This subset Z is a closed analytic subset in C; (L) because ¢(V)
is a closed analytic subset in Cy(Up) as ¢ : Vo — C1(Up) is a proper holomorphic
map and as the direct image by the projection p : £L — Uy is holomorphic.

Remark that for each v € V} the set Z contains the cycle ¢(v) of £ which is the zero
section of the restriction of £ to |p(v)| with suitable multiplicities, in order that its
direct image on Uy is equal to ¢(v). This defines a closed holomorphic embedding
of (V) in Z C C1(L).

We shall show now that the direct image map f, : Z — (V) for compact 1—cycles
induced by the projection Cy (L) — C1(Up) has positive dimensional fiber at p(v) € Z
when ¢(v) is rational.

Assume that for some v € Vj the 1—cycle C' := ¢(v) is rational. Then the restriction
of the line bundle £ on C'is holomorphically trivial and any compact 1—dimensional
cycle in L) can be move (by vertical translation). So any point in Z in the fibre of
f« over C' = p(v) is not isolated. This proves our assertion.

Now C)y has at least one irreducible component, say v, which is not rational; so the
corresponding point of p(vg) € Z is isolated in its fibre for f,. Indeed, the zero sec-
tion is the only reduced compact 1—dimensional cycle in L}, as L, is topologically
trivial but not holomorphically trivial by construction. So any connected compact
1—cycle near-by ¢(vg) in Z N f71(Cy) must have support in the zero section of L on
each non rational component of Cy. As ¢(vp) is connected this implies that on a ra-
tional component of p(vy) which meets an irrational component, the corresponding
component of a near-by cycle to the cycle ¢(vg) in f71(Cy) has to vanish at some
point (the intersection with some non rational component). Then the corresponding
component of such a cycle is the zero section over this rational component (we have
only constant sections on rational components). As we assume Cj connected and as
the cycles in Z are connected, we conclude that ¢(vy) € Z is an isolated point in its
fibre of f,.

Now the subset T of points ¢ € Z such that the dimension at t of the fibre of f, is at
least equal to 1 is a closed analytic set in Z. The intersection of T" with the closed
embedding of p(Vp) is Z defines a closed analytic subset in ¢(V5) and then also of
Vo which contains the subset of rational fibers of 7 in V;. As we have shown that vy
is not in this closed analytic subset, we obtain an open neighourhood V; of vy in V
such that for any v € V} the cycle ¢(v) is not rational. |

Corollary 0.0.6 Let M := U x Py be a reduced complex space and let p : M — Py
be the projection. Let p, : C1(M) — C1(P1) ~ N.[Py] the direct image for compact
1—cycles. Define X := p;1(1.[P1]). As p,. is holomorphic, this is a closed analytic
subset in Cy(M). Let Sy be the subset of C1(M) of irreducible cycles which are in X .
This is a Zariski open subset in X (see [B-M] prop. IV 7.1.2). Then the closure Sy
of Sy in X contains only rational cycles.

see th. IV 7.2.1 for the analyticity of this condition on compact cycles.



PROOF. Let m: U — V := 5] be the projection of the graph of the tautological
family of 1—cycles parametrized by S;. As the generic cycle in this family is irre-
ducible, by definition of Sy, all fibres of 7 are connected. Also the generic fibres are
rational because for s € S it is reduced and isomorphic to P;. If there is a non
rational cycle in Sy, then there exists, thanks to the previous proposition, a non
empty open set of non rational cycles in this family. But Sj is open and dense in 5;
this gives a contradiction. [ |

PROOF OF THE THEOREM. Let V be an irreducible component of C;(M). As we
may normalize V' thanks to the lemma 0.0.3, we can assume that the generic cycle
in V' is reduced. Let W be a relatively compact open set in V. Then there exists,
thanks to the proposition IV 7.1.2 in [B-M 1], an integer k£ > 1 such that for any
v € W the cycle v has at most £ irreducible components.

Denote 7 : U — W the projection of the graph of the tautological family of compact
curves in M parametrized by W.

Define the subset S; C C;(U x P;) as the image by the addition map of cycles of
(S1)!in C1 (U x P1). As the addition map is proper and finite, S; is a closed analytic
subset of C; (U x Py) for each integer [ > 1.

Let ¢ : U x P; — U the projection. We shall prove that the subset of rational cycles
in the family (v),ew is exactly given by the subset

R:= (U, ¢(S))NW

which is a closed analytic subset in W because the map ¢ is proper and the subset
S; C C1(U x Py) is a closed analytic subset.

First remark that each cycle in R is rational as the direct image of a rational cycle
is rational and we proved that each cycle in 57 is rational in corollary 0.0.6.
Conversely, let v € W such that v is rational. Then there exists an integer [ € [1, k]
and [ holomorphic generically injective? maps (distinct or not) fi,..., f; from P
to U such that the sum of there images is v and with graphs G, ..., G; which are
points in Sp. Then v = 3¢, ¢.(G;) and so v is in R.

To conclude the proof it is enough to say that a subset which is closed and analytic
on any open relatively compact subset in V' is a closed analytic subset in V. |
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