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Note on rational 1−dimensional compact cycles.

Daniel Barlet∗.

28/06/16

Abstract. We give a proof of the fact tha the subset of the rational curves form
a closed analytic subset in the space of the 1−dimensional cycles of a complex space.
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The aim of this short note is to prove the following result.

Theorem 0.0.1 Let M be a complex space. Let R be the subset of the space C1(M)
consisting of compact rational 1−dimensional cycles in M . Then R is a closed an-

alytic subset in C1(M).

By a rational 1−dimensional cycle we mean that each irreducible component of such
a cycle is a rational curve (may be singular).

Note that this result is classical in the projective context.

Proof. Consider first an irreducible component V of C1(M) such that the generic
cycle in V is reduced. Let U0 ⊂ V × M be the graph of the tautological family
parametrized by V (this is a reduced cycle-graph from our assumption on V ) given
by

U0 := {(v, x) ∈ V ×M / x ∈ |v|}.

Let π0 : U0 → V the projection. Now fix a relatively compact open set W in V and
let U := π−1

0
(W ) and π : U → W the restriction of π0 to U . The inclusion map of

W in C1(U) will be denoted by ϕ.
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Now, thanks to the proposition IV 7.1.2 in [B-M 1], the number of irreducible com-
ponents (counting multiplicities) of the cycle ϕ(v) for v ∈ W is bounded by some
integer k depending only on W : As for each integer k the subset

Fk := {v ∈ V / v has at least k irreducible components, counting multiplicities}

is a closed analytic subset in V , the fact that V = ∪k≥1Fk implies the existence, for
the compact set W̄ , of an integer kW such that W̄ ⊂ FkW . Fix now k := kW .
Consider now in U × P1 the subset Γ of compact 1−dimensional cycles γ which are
sum of l ∈ [1, k] irreducible curves (distinct or not) each having degree 1 on P1 and
such that the direct image of γ in U is a cycle in ϕ(W ).

Claim. The subset Γ ⊂ C1(U×P1) defined by the two conditions above is a closed
analytic subset in C1(U × P1).

proof of the claim. Let p : U×P1 → P1 and p′ : U×P1 → U be the projections
and π′ : U × P1 → W the composition of the projection p′ with π. Then we have
two holomorphic maps given by the direct images of compact 1−cycles in U × P1

(see [B-M 1] IV th. 3.5.4)

p∗ : C1(U × P1) → N.[P1] ≃ C1(P1)

and
p′∗ : C1(U × P1) → C1(U).

Now, as the map ϕ is proper (see [B-M 1] th. III 6.2.1 and th. IV 2.7.20) and
injective1, the subset ϕ(W ) is closed and analytic in C1(U) and so the subset de-
fined by T := (p′∗)

−1(ϕ(W )) in C1(U × P1) is also analytic and closed . The subset
S1 := p−1

∗ (1.[P1]) is also closed and analytic in C1(U × P1). For each l ∈ [1, k] the
image Sl of the addition map Sl

1
→ C1(U × P1) is also analytic and closed because

the addition map of cycles is holomorphic and proper (and finite). Then the union of
Sl for l ∈ [1, k] is a closed analytic subset. Then the intersection Γ := T ∩ (∪k

l=1
S(l))

is analytic and closed in C1(U × P1); so the claim is proved.

Now let R(W ) := {v ∈ W / ϕ(v) is rational}; recall that, by definition, a 1−cycle
γ is rational if and only if each irreducible component of γ is rational.

We want to show that ϕ−1(p′∗(Γ)) coincides with R(W ).
First remark that the subset ϕ−1(p′∗(Γ)) is analytic and closed because on the closed
analytic subset Γ the direct image (p′)∗ is proper on ϕ(W ) :
As ϕ is proper, for any compact set L in ϕ(W ) there exists a compact set K in
W such that L ⊂ ϕ(K). Fix a compact set K in W . Then the volume (for any
continuous hermitian metric on U) of the cycles ϕ(v), v ∈ K, is uniformely bounded
(see [B.78] or [B-M 1] th.III 6.2.1). So the cycles in U × P1 with bounded degree

1In fact a proper embedding ; but we dont need this point.
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on P1 with direct image equal to some ϕ(v), v ∈ K, has also a bounded volume.
And such a cycle is geometrically contained in π−1(K) × P1 which is compact, so
they are in a compact set in C1(U×P1) and the properness over ϕ(W ) of p′∗ is proved.

Take γ ∈ R(W ); it has at most k irreducible components. Each irreducible compo-
nent of γ is the direct image by p′ of the graph of a holomorphic map P1 → U . Then
the sum of these graphs is a cycle in Γ.
Conversely, each element in Γ is the direct image by p′ of the sum of l ∈ [1, k] graphs
of holomorphic maps P1 → U : an irreducible 1−cycle in U ×P1 which has degree 1
on P1 is necessarily such a graph ! So we have proved that R(W ) is a closed analytic
subset in W .
As V is locally compact, the subset R(V ) of points in V such that the corresponding
cycle is rational is a closed analytic subset in V .
To obtain the general case (so the case of an irreducible component of C1(M) has a
generic cycle which is not reduced) it is enough to use the following easy lemma.

Lemma 0.0.2 Let S be a normal complex space and f : S → Cn(M) be a holo-

morphic map from S to the space of compact n−cycles of a complex space M .

There exist integers m1, . . . , mh and holomorphic maps |fj| : S → Cn(M) such that

f =
∑h

j=1
mj .|fj| and such that for each j ∈ [1, h] the generic cycle in the analytic

family defined by the map |fj| is reduced.

This lemma is an easy consequence of the theorem IV 3.4.1 of [B-M 1].

To conclude the proof it is enough to remark that in the situation of the lemma
above with n = 1, the cycle f(s) is rational if and only if each cycle |fj|(s) is ra-
tional, to apply the result already obtain to the analytic families of 1−cycles in M
with generic reduced member parametrized by the normalization Ṽ of the irreducible
component V , and to remark that R(V ) is equal to ν∗(R(Ṽ )) where ν : Ṽ → V is
the normalization map. �
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