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HOW TO RUN 100 METERS?

AMANDINE AFTALION∗

Abstract. The aim of this paper is to bring a mathematical justification to the optimal way of

organizing one’s effort when running. It is well known from physiologists that all running exercises

of duration less than 3mn are run with a strong initial acceleration and a decelerating end; on the

contrary, long races are run with a final sprint. This can be explained using a mathematical model

describing the evolution of the velocity, the anaerobic energy, and the propulsive force: a system of

ordinary differential equations, based on Newton’s second law and energy conservation, is coupled

to the condition of optimizing the time to run a fixed distance. We show that the monotony of the

velocity curve vs time is the opposite of that of the oxygen uptake ( ˙V O2) vs time. Since the oxygen

uptake is monotone increasing for a short run, we prove that the velocity is exponentially increasing

to its maximum and then decreasing. For longer races, the oxygen uptake has an increasing start

and a decreasing end and this accounts for the change of velocity profiles. Numerical simulations are

compared to timesplits from real races in world championships for 100m, 400m and 800m and the

curves match quite well.

Key words. Optimal control, running race, anaerobic energy, singular arc, state constraint.

1. Introduction. When watching a 100m race in a world championship or the
Olympic games, one is not always aware that runners do not finish the race speeding
up but slowing down. More precisely, they accelerate for the first 70m and then slow
down in the last 30m. This can be checked by looking at the time splits every 10m for
all athletes. Table 1.1 provides an example for the winner of the World Championship
in 2011. One can notice that at 70m, the timesplit increases, which means that the
velocity decreases. This way of running is not because they accelerate too strongly at

Table 1.1

Blake’s timesplits for the 2011 World Championships. Line 1 : distance in meter, line 2,

cumulated time in seconds, line 3, time splits for 10 meters in seconds.

10m 20m 30m 40m 50m 60m 70m 80m 90m 100m

1.87 2.89 3.82 4.70 5.56 6.41 7.27 8.13 9.00 9.88

1.87 1.02 0.93 0.88 0.86 0.85 0.86 0.86 0.87 0.88

the beginning of the race, or are exhausted, but because this is the best way to run a
100m from the physiological point of view. One of the aims of this paper is to bring
a mathematical justification and explanation to this phenomenon, and explain why,
using coupled ordinary differential equations, the best use of one’s ressources leads to
a run with the last third in deceleration.

In fact all distances are not run the same way [11]: for distances up to 400m,
the last part of the race is run slowing down, while for distances longer than 1500m,
the first part of the race has an initial acceleration, the middle part is run at almost
constant velocity and there is a final acceleration. The 800m is an intermediate
race. This way of running is well known from physiologists but they do not have an
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explanation of why the human body does not optimize the same way according to
the distance. This paper aims at understanding this optimization according to the
distance with a mathematical justification using the model developed in [1].

Up to now, very simple mathematical models have been used in the field of sport
sciences to model the velocity evolution in a sprint. The recently published works [21,
22] model the velocity curve in a 100m as a double exponential v(t) = vmax(e−t/τ1 −
e−t/τ2), and they fit the parameters τ1 and τ2 to match real curves. This is indeed very
close to the real velocity curves but the authors do not provide an explanation of their
modelling. In this paper, we provide a model of coupled equations between velocity,
energy and propulsive force which accounts for this double exponential approximation.

A pioneering mathematical work is that of Keller [12] relying on Newton’s law
of motion and energy conservation. Though his analysis reproduces quite well the
record times for distances up to 10km, it does not reproduce the champions’ way of
running. Indeed, Keller’s model relies on the assumption of constant ˙V O2, that is
constant oxygen uptake and it is proved in [1], that the race is made up of exactly
three parts:

1. initial speed up phase at maximal force
2. the velocity is constant
3. the velocity decreases and the runner runs with zero energy.

Therefore, in order to find non constant velocities as in real races, one has to take
into account a realistic ˙V O2 description. Several improvements of Keller’s model
have been introduced: the effect of fatigue [14, 25], the variation in maximal oxygen
uptake [4, 6], air resistance and altitude [5, 19], track curvature [5]. Other related
works include [3, 15, 16, 18, 24].

In [1], a new model is introduced relying on Keller’s equations [12] but improving
them using a hydraulic analogy [16] and physiological indications [11], and taking
into account a realistic model for ˙V O2, the oxygen uptake. Numerical simulations
are performed in [1] for a 1500m. Let us introduce the model of [1] that we adapt to
short races. The first equation is the equation of motion, as in Keller’s paper:

dv

dt
+
v

τ
= f(t) (1.1)

where t is the time, v(t) is the instantaneous velocity, f(t) is the propulsive force and
v/τ is a resistive force per unit mass. The resistive force can be modified to include
another power of v or the influence of slopes, by adding to the right hand side a term
of the form −g sinα(d(t)), where α(d(t)) is the slope at distance d(t). We can relate
sinα(d) to A(d), the altitude of the center of mass of the runner at distance d, by

sinα(d(t)) =
A′(d(t))√

1 + (A′(d(t)))2
.

For most races, one can assume that sinα(d(t)) ∼ A′(d(t)) and here, we assume for
simplicity that A is constant along the race.

The second equation is an equation governing the energy. In fact, human energy
can be split into aerobic energy called eae(t), which is the energy provided by oxygen
consumption, and anaerobic energy e(t), which is provided by glycogen and lactate.
A very good review on different types of modeling can be found in [16]. In [1], it is
assumed that the anaerobic energy has finite capacity and is modeled by a container
of finite height (set to 1) and section as illustrated in Figure 1.1. When it starts
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Fig. 1.1. Scheme of the container modeling.

depleting by a height h, then what is called in physiology the accumulated oxygen
deficit which is proportional to the height, is reduced to e0− e, where e0 is the initial
energy. It is assumed that the aerobic energy is of infinite capacity and flows at a rate
of σ through a connecting tube R1 into the anaerobic container. Note that σ is the
energetic equivalent per unit time of ˙V O2, the volume of oxygen used by unit of time.
This equivalent can be determined thanks to the Respiratory Exchange Ratio and
depends on the intensity of effort. Nevertheless, a reasonable average value is that 1l
of oxygen produces 20kJ [17]. The flow of the aerobic container into the anaerobic
one depends on the anaerobic energy level, which is why we model σ as a function of
e: if the level of the anaerobic container is above the connecting tube R1, as on the
figure, then σ is proportional to h, the difference of fluid heights in the containers,
that is e0 − e, while if it is below, then σ is constant.

For a short race, R1 is connected to the bottom of the anaerobic container as in
Figure 1.1. Therefore, σ is proportional to e0 − e, but its maximal value σ̄ is not
reached, so that σ can be modelled as

σ(e) = λσ̄(e0 − e) (1.2)

where λ is such that λe0 < 1. The available flow at the bottom of the anaerobic
container is the work of the propulsive force f(t)v(t) and is equal to the creation of
available energy through σ(e) (aerobic energy) and −de/dt (anaerobic energy). This
leads to the energy equation:

de

dt
= σ(e(t))− f(t)v(t). (1.3)

Let us point out that e(t) is a decreasing function of time, therefore σ(e(t)) is an in-
creasing function of time, as expected. An example of σ(e(t)) for a 400m is illustrated
in Figure 4.1.
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When the race is longer, the dependence of σ on time is well known [11] and
varies according to the length of the race: σ, as a function of time, is linear increasing
until it reaches the maximal value σ̄ and then is decreasing to its final value σf , which
corresponds to the rate of aerobic transfer when there is no anaerobic energy left.
As a function of energy, we can take the following model, which has the opposite
monotony since e(t) decreases from e0 to 0 with time:

σ(e) =


σ̄ e
e0ecrit

+ σf (1− e
e0ecrit

) if e
e0 < ecrit

σ̄ if e
e0 ≥ ecrit and λ(e0 − e) ≥ 1

λσ̄(e0 − e) if λ(e0 − e) < 1
(1.4)

where e0 is the initial value of energy, σ̄ is the maximal value of σ, σf is the final
value of σ at the end of the race, ecrit the critical energy at which the flow of aerobic
energy into the anaerobic container starts to depend on the residual anaerobic energy,
because of an extra retroc control mechanism. The parameters λ, e0, ecrit, σ̄, σf
depend on the runner and on the race. Then (1.3) also holds. An example of σ(e(t))
for a 800m are illustrated in Figure 4.1 or for a 1500m in Figure 4.4.

Constraints have to be imposed; the force is controlled by the runner but it cannot
exceed a maximal value fM and the energy is nonnegative:

0 ≤ f(t) ≤ fM , and e(t) ≥ 0, (1.5)

with the initial conditions:

v(0) = 0, e(0) = e0. (1.6)

The aim is to minimize the time T , given the distance D =
∫ T
0
v(t) dt. The mini-

mization problem depends on numerical parameters τ , fM , e0, σ̄, σf , λ, ecrit.

2. Numerical presentation of the models. Our numerical simulations are
based on the Bocop toolbox for solving optimal control problems [7]. This soft-
ware combines a user friendly interface, general Runge-Kutta discretization schemes
described in [8], and the numerical resolution of the discretized problem using the
nonlinear programming problems solver IPOPT [23].

Numerically, given the time splits of Table 1.1, Bocop identifies the parameters
τ , fM , e0, σ̄, σf , λ, ecrit that match the time splits and provide the optimal velocity
curve. Another protocol to identify the parameters has been described in [2].

In Figure 2.1, the numerically computed velocity is plotted as a function of time
on the left, while, on the right, a mean value every 10m is computed (star) to compare
with the mean value from Table 1.1 (square). The matching is quite good. The initial
velocity is taken to be 4, instead of 0, to better take into account the departure in the
starting blocks [21]. The left velocity curve indeed looks like a double exponential.

The rest of the paper is devoted to a mathematical justification of the race.

3. Mathematical analysis. We consider the following state equation

ḣ(t) = v(t), v̇(t) = f(t)− v(t)/τ, ė(t) = σ(e(t))− f(t)v(t), (3.1)

We assume that the recreation function σ(e) satisfies

σ(e) is C2 and nonnegative. (3.2)
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Fig. 2.1. Top: Plot of the velocity v(t) vs time for Blakes’ 100m. Bottom: every 10m, the

numerical velocity is averaged (star) and compared to the mean value obtained from Table 1.1, as

the ratio of 10 to the timesplit (square). When they coincide, only the square is visible. The velocity

is in m.s−1 and is plotted vs the distance in m.

We will apply it to σ(e) = α(e0 − e) for the sprint and to a C2 regularization of (1.4)
for longer races. The initial conditions are

h(0) = 0, v(0) = 0, e(0) = e0 > 0, (3.3)

and the constraints are

0 ≤ f(t) ≤ fM , e(t) ≥ 0, t ∈ (0, T ), h(T ) = D. (3.4)

The optimal control problem is to minimize the final time:

MinT ; s.t. (3.1) and (3.3)-(3.4). (3.5)

Note that we could as well take the final constraint as −h(T ) ≤ −D. Writing an
inequality in this way yields the sign of the Lagrange multiplier.
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It is established in [1] that the optimal solutions (for a given distance D) with
corresponding time T are also solutions of the problem of maximizing the distance
over a time interval T . So, in the following, we will rather use this second formulation
for the proofs.

The optimal control problem is

Min−
∫ T

0

v(t)dt; s.t. (3.1) and (3.3)-(3.4) hold. (3.6)

The Hamiltonian function is

H[p](f, v, e) := −v + phv + pv(f − v/τ) + pe(σ(e)− fv). (3.7)

The costate equation is therefore, omitting time arguments: −ṗh = 0
−ṗv = −1− pv/τ − pef
−dpe = peσ

′(e)dt− dµ,
(3.8)

with final conditions

pv(T ) = pe(T ) = 0. (3.9)

We can fix therefore ph to 0. The variables pv and pe are called costate variables.
Here dµ, identified to the bounded variation function µ on [0, T ], is a Borel measure
(that can be interpreted as a Lagrange multiplier) associated to the state constraint
−e ≤ 0 which satisifes

dµ ≥ 0; supp(dµ) ⊂ {t ∈ [0, T ]; e(t) = 0}. (3.10)

If 0 ≤ a < b ≤ T is such that e(t) = 0 for t ∈ [a, b], but e(·) does not vanish
over an interval in which [a, b] is strictly included, then we say that (a, b) is an arc
with zero energy. Similarly, if f(t) = fM a.e. over (a, b) but not over an open interval
strictly containing (a, b), we say that (a, b) is an arc with maximal force. A singular
arc is one over which the bound constraints are not active. We recall a result from
[1]:

Theorem 3.1. [1] The above problem (3.6) has at least one optimal solution. An
optimal trajectory starts with a maximal force arc, and is such that e(T ) = 0 and µ
has no jump. Moreover, pe(t) < 0 and pv(t) < 0 for t ∈ [0, T ).

Numerically, the zero energy arc is only a few points and cannot be seen on a
100m. Note that if we plug f(t) = fM in the second equation of (3.1), then we find
as a solution v(t) = fMτ(1− e−t/τ ).

Once we know that the race starts with an arc of maximal force and ends with a
zero energy arc, we want to know more about the singular intermediate arc.

3.1. Justification of the velocity decrease in a 100m race. In this section,
we will find properties of the singular arc. We will prove the following:

Theorem 3.2. Let σ(e) = α(e0 − e) with ατ < 1. Then an optimal trajectory of
(3.6) starts with a maximal force arc, followed by a singular arc on which

v̇ + αv = 0 (3.11)
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and ends with a zero energy arc. Therefore, the velocity profile is

v(t) = fMτ(1− e−t/τ ) for 0 ≤ t ≤ t1 (3.12)

v(t) = fMτ(1− e−t1/τ )e−α(t−t1) for t1 ≤ t ≤ t2. (3.13)

Note that for a 100m, τ is between 1 and 2 sec and α is of order 10−2 sec−1 so
that ατ < 1. We point out that t2 is very close to T and the values of t1 and t2 are
determined by the condition on the distance and the energy equation as we will see
below. The final value of the propulsive force is limited by how much aerobic energy
can be provided by the runner since on the zero energy arc f(t) = σ(0)/v(t).

Proof. We are going to use the properties of the switching function to determine
the type of arcs. Indeed Theorem 3.1 states that the trajectory starts with an arc
of maximal force. We want to investigate what follows, whether the constraints are
active and what the shape of the singular arc (no active constraint) is.

We have that Pontryagin’s principle holds in qualified form, i.e., each optimal
trajectory (f, v, e) is associated with at least one multiplier (p, µ) such that the relaxed
control minimizes the Hamiltonian.

The switching function is

Ψ(t) =
∂H

∂f
(t) = pv(t)− pe(t)v(t). (3.14)

We can differentiate this with respect to t so that Ψ̇(t) = ṗv − ṗev − pev̇, and we use
(3.8) to get,

Ψ̇ = 1 + pv/τ + pef + peσ
′(e)v− pe(f − v/τ) = 1 + Ψ(t)/τ + pev(σ′(e) + 2/τ). (3.15)

We recall from Theorem 3.1 that at t = 0, the trajectory starts on a maximal force
arc and that, since v = 0, Ψ(0) = pv(0) < 0. We want to investigate what can follow
this arc of maximal force. Since we have the constraints 0 ≤ f ≤ fM and e ≥ 0, there
could be arcs of zero force, of zero energy, other arcs of maximal force or a singular
arc.

Step 1: Study of the singular arc. On a singular arc, Ψ(t) = 0. We can differ-
entiate this and find that Ψ̇ = 0, so that, from (3.15), pev(σ′(e) + 2/τ) = −1. In
particular, on a singular arc, σ′(e)+2/τ 6= 0. We differentiate again and obtain, after
dividing by pe, and using the equation for ė and v̇:

v̇

(
1− v2σ′′(e)

σ′(e) + 2/τ

)
− v

(
σ′(e) +

σ′′(e)(σ(e)− v2/τ)

σ′(e) + 2/τ

)
= 0. (3.16)

In a regime where σ(e) = α(e0 − e), the previous equation simplifies to (3.11).
Step 2: There is no zero force arc and hence, Ψ(t) ≤ 0, for all t ∈ [0, T ]. Let

(ta, tb) be a zero force arc, over which necessarily Ψ is nonnegative. By what we have
seen ta > 0, and so Ψ(ta) = 0, Ψ̇(ta+) ≥ 0. On a zero force arc, the equations yield
that pev = λe(α−1/τ)t, hence is increasing since ατ < 1 and pe(t) < 0. By (3.15), we
have that

Ψ̇(tb−)− Ψ̇(ta+) =
1

τ
Ψ(tb−) + (

2

τ
− α)((pev)(tb−)− (pev)(ta+) ≥ 0

meaning that the zero force arc cannot end before time T , contradicting the final
condition e(T ) = 0 recalled in Theorem 3.1.
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Step 3: The only maximal force arc is the one starting at t = 0. On a maximal
force arc (ta, tb) with ta > 0, the speed increases and ṗe = αpe, thus pe decreases and
is negative. Therefore, pev decreases. Equation (3.15) implies Ψ̇(tb−) < Ψ̇(ta+) ≤ 0,
and since Ψ ≤ 0 along the maximal force arc, it follows that Ψ(tb) < 0, meaning that
the maximal force arc ends at time T , which is in contradiction with e(T ) = 0 in
Theorem 3.1.

Step 4: end of the proof. The existence of a maximal force arc starting at time 0
is established in Theorem 3.1. Let ta ∈ (0, T ) be its exit point. Let tb ∈ (0, T ) be the
first time at which the energy vanishes.

If ta < tb, over (ta, tb), Ψ is equal to zero and hence, (ta, tb) is a singular arc
on which (3.11) is satisfied. Finally let us show that the energy is zero on (tb, T ).
Otherwise there would exist tc, td with tb ≤ tc < td ≤ T such that e(tc) = e(td) = 0,
and e(t) > 0, for all t ∈ (tc, td). Then (tc, td) is a singular arc, over which ė =
α(e0 − e) − fv. We differentiate again and recall that ḟ = −αf and v̇ = −αv on a
singular arc, so that

ë = −αė+ 2αfv.

Therefore, the function e cannot have a positive maximum which gives a contradiction
since the energy is positive. The result follows.

Equation (3.11) is the main result of the paper. It allows us to make the difference
between short races and long races. Indeed, when the duration of exercise is less than
3mn, the maximal value of ˙V O2 is not reached, therefore σ is a decreasing, almost
linear function of energy and an increasing function of time, so that (3.11) provides
that v is a decreasing function of time once the runner can no longer run at maximal
force. Therefors, the race starts at maximal force and v is increasing. When on the
singular arc, the velocity becomes decreasing and its evolution is governed by (3.11).
This matches the model of [21] of double exponential but provides a mathematical
justification.

We use (3.12)-(3.13) to integrate the energy equation

de

dt
= α(e0 − e)− fv

from 0 to t2 recalling that f = fM for t < t1 and that on the singular arc, we derive
from (3.11) and (1.1) that f = v(1/τ − α). We find

e0

f2Mτ
eαt2 =

eαt1 − 1

α
− e

(α− 1
τ )t1 − 1

α− 1
τ

+(1−e−t1/τ )2e2αt1(1−ατ)
e−αt1 − e−αt2

α
. (3.17)

We also recall D =
∫ t2
0
v(t) dt. In fact, there should be the last arc at zero energy,

but since it is very short, we can make the approximation that the race is run in t2.
We find

D

fMτ
= t1 − τ(1− e−t1/τ ) + (1− e−t1/τ )

1− e−α(t2−t1)

α
. (3.18)

This equation allows to solve for e−αt2 , and replace it in (3.17) to solve for t1. The
expression of t1 is not analytic in general, but to get an idea on the dependance
of the parameters, we can make assumptions. For instance, if we assume that α is
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small (of order 10−2 sec−1), then we can expand the exponentials in α and find that
(3.17)-(3.18) becomes

D

fMτ
= t1 + (1− e−t1/τ )(t2 − t1 − τ), (3.19)

D

fMτ
(1− e−t1/τ )− e0

f2Mτ
= (τ − t1 − τe−t1/τ )e−t1/τ . (3.20)

Given the order of magnitude, the right hand side of (3.20) can be neglected at leading
order, which yields

D

fMτ
(1− e−t1/τ )− e0

f2Mτ
= 0. (3.21)

If e0 = fMD, then t1 is of order t2, that is the race is run at maximal force and the
e−t1/τ term can be in fact neglected, and one has to go further in the expansion in α
of the exponentials. In general, e0 is not so high, and t1 is given by (3.21), that is

t1 = −τ ln(1− e0

fMD
). (3.22)

Therefore, t1 is an increasing function of e0: the bigger the initial energy, the longer
fM is maintained. Moreover, t1 is a decreasing function of fM : the bigger fM , the
shorter it can be maintained.

We have found that the optimal race is to start at maximal force, and then
decrease the propulsive force, because the runner does not have enough energy to
maintain his maximal propulsive force for the whole duration of the race. The decrease
in propulsive force leads to a singular arc and a decrease in velocity. It turns out that
the decrease in the propulsive force predicted by our model is too strong compared
to what the runner can produce. Therefore, in a real race, the runner keeps his
maximal force for a shorter time and has a decrease which is weaker. This implies
that in our model we have to take into account another constraint, which is the bound
on the variation of the propulsive force. This implies also that in order to improve
one’s performance, improving the ability to vary the propulsive force is an important
criterion. This is why interval training is often used.

3.2. Bounding variations of the force. It seems desirable to avoid strong
variations of the force which occur with the previous model, and to introduce bounds
on ḟ . The force becomes then a state and the new control ḟ is denoted by g. So the
state equation is

ḣ = v; v̇ = f − v/τ ; ė = σ(e)− fv; ḟ = g, (3.23)

with constraints

0 ≤ f ≤ fM ; e ≥ 0; gm ≤ g ≤ gM . (3.24)

Note that gm is negative. We minimize as before −
∫ T
0
v(t)dt. The Hamiltonian is

H = −v + pv(f − v/τ) + pe(σ(e)− fv) + pfg. (3.25)
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Fig. 4.1. ˙V O2 curve vs time, that is σ(e(t)) vs time for a 400m (left) and 800m (right).

The costate equation are now −ṗv = −1− pv/τ − pef,
−dpe = σ′(e)pedt− dµ,
−ṗf = pv − pev.

(3.26)

The state constraint e ≥ 0 is of second order, and we may expect a jump of the
measure µ at time T . The final condition for the costate are therefore

pv(T ) = 0; pe(T ) = 0; pf (T ) = 0. (3.27)

We may expect that the optimal trajectory is such that g is bang-bang (i.e., always
on its bounds), except if a state constraint is active (the state constraints now include
bound constraints on the force), as is confirmed in our numerical experiments: for a
100m, the race starts with an arc of maximal force followed by an arc where g = gm
and ends with an arc of zero energy.

The model with a bound on the derivative of the force matches the real race
of world champions better than the previous system. This can be explained from
the fact that the propulsive force cannot be varied too quickly from muscular and
motor control reasons [13]. This is the model which is simulated to get Figure 2.1.
Analytically, if ḟ = −β, that is f(t) = fM − β(t− t0), then the velocity equation can
be solved explicitly:

v(t) = v0e
−(t−t0)/τ + fMτ(1− e−(t−t0)/τ ) + βτ2(1− e−(t−t0)/τ )− βτ(t− t0).

So an approximation of the velocity close to t0 is fMτ − β(t− t0)2/2.
This formula can lead to an easier identification of the parameters: fMτ is the

peak velocity, β is related to the decrease of velocity and τ can be identified by
matching the exponential at the beginning of the race.

Table 4.1

400m, French world level. Line 1 : distance in meter, line 2, time splits for 50 meters in

seconds. Total time 44.43 seconds.

50m 100m 150m 200m 250m 300m 350m 400m

6.10 4.94 5.0 5.17 5.37 5.52 5.86 6.45
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Fig. 4.2. Top: Plot of the velocity v(t) vs time for a 400m. Bottom: every 50m, the numerical

velocity is averaged (star) and compared to the mean value obtained from Table 4.1, as the ratio of

50 to the timesplit (square). The velocity is in m.s−1 and is plotted vs the distance in m.

Table 4.2

800m, Rudisha’s timesplits for the 2012 Olympic games, World record and olympic record. Line

1 : distance in meter, line 2, time splits for 100 meters in seconds. Total time 100.91 seconds.

100m 200m 300m 400m 500m 600m 700m 800m

12,3 11,2 12,55 13,23 12,74 12,28 13,02 13,59

4. Longer races. In order to describe mathematically a race, one needs to know
the ˙V O2 curve. We get information from [11] to construct the curve σ(e). In Figure
4.1, we have plotted the ˙V O2 curve (that is σ(e(t))) vs time for a 400m and for an
800m.

We have obtained data for Tables 4.1 and 4.2 from Christine Hanon [9] as well
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Fig. 4.3. Top: Plot of the velocity v(t) vs time for an 800m. Bottom: every 100m, the

numerical velocity is averaged (star) and compared to the mean value obtained from Table 4.2, as

the ratio of 100 to the timesplit (square). The velocity is in m.s−1 and is plotted vs the distance in

m.

as estimated data for σ̄: for the 400m, it corresponds to French world level athletes,
while for the 800m, it is the Olympic and World record of Rudisha (London 2012),
where he was in front for the whole run, so that no strategy related to overtaking
modified his way of running.

In the 400m case, the ˙V O2 curve is increasing which leads to a velocity profile
(Figure 4.2 left) similar to a 100m, increasing and then decreasing though the decrease
is stronger and the increase is only during the first quarter of the race, as can be
confirmed in Table 4.1. The first part of the race is at maximal force, then the
force is decreased and so is the velocity due to the fact that ˙V O2 is increasing. The
description of the race of Theorem 3.2 holds, as well as (3.22). This is consistent
with previous analyses in the literature leading to double exponentials for short races,
but additionally provides a relation between the time where the runner starts slowing
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Fig. 4.4. Velocity curve vs time for a 1500m (left) and ˙V O2 curve, that is σ(e(t)) vs time (right).

down and his total anaerobic energy.
In the case of an 800m, the curve σ(e(t)) is increasing and then decreasing, which

leads to a complicated race strategy: the beginning of the race is at maximal force
and the velocity is increasing. Then, the ˙V O2 is still increasing, and on the singular
arc, the velocity is decreasing: indeed equation (3.11) holds but α = σ′(e) > 0. At
t = 40s, the curve σ(e(t)) changes monotony and α changes sign and is negative again.
Therefore, from (3.11), the curve v(t) is increasing again until the runner reaches a
situation where he can no longer increase his velocity because he does not have enough
energy left and he moves onto a constrained arc where the derivative of the force is
constant, before finishing on a zero energy arc. We have no mathematical proof that
this is the best strategy in this order, but it is consistent with different possible arcs
and the curve σ(e(t)). More precisely, the possibility of an arc of maximal force is
allowed when σ is an increasing function of energy, that is a decreasing function of
time. In Theorem 3.2, Step 3, it was ruled out because σ had the opposite monotony.
We see from this part of the proof of Theorem 3.2 that the decrease of velocity at the
end of the race is related to the monotony of σ. Therefore, if σ changes monotony, as
it is the case for longer races, then another maximal force arc is not excluded at the
end of the race. This is why for longer races, at the end of the race, σ is a decreasing
function of time, and the velocity increases again: this is the final sprint.

Let us point out that this complex behaviour of the 800m race, had not been cap-
tured by other mathematical modeling: after the initial acceleration, Keller’s model
leads to a constant velocity and Ward Smith [24] or Reardon [20] to a decreasing
velocity, while the reality of the race is more involved.

When the duration of the race is longer than 3mn, the maximal value σ̄ of ˙V O2
is reached, σ is a decreasing function of time at the end of the race, or an increasing
linear function of energy, and therefore, (3.16) implies that v is increasing again.

Varying the parameters, we can notice that a high ˙V O2 (high σ̄) improves perfor-
mance as well as a high ability to vary the propulsive force. Hence interval training
exercises are favored to improve this force variation.

The 1500m has been studied in [1] and [2], in particular the effects of the various
parameters. Here, we use the data of [10] to produce the velocity curve and ˙V O2 curve
in Figure 4.4. Again, we can derive information from (3.16): when in the part where

˙V O2 is linearly increasing, on the singular arc, we have (3.11) with α > 0 and the
velocity is decreasing; on the part where σ is constant, the velocity is constant, and
when σ is linearly decreasing, we have (3.11) with α < 0 and the velocity is increasing
so that there is a final sprint. The very last points where the velocity decreases again
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is due to the zero energy part at the end of the optimization.

For longer races, we do not have detailed timesplits but we believe that the model
remains valid, and could provide interesting indications in the case of hilly and windy
races.

5. Conclusion. Given a distance D to run, our model relies on the knowledge
of the ˙V O2 curve, that is the data of σ̄, σf , λ and ecrit and on 3 parameters: the
maximal propulsive force fM , the initial anaerobic energy e0 and the friction coefficient
τ . On the basis of these parameters, the energy conservation and Newton’s second
law, we can determine the optimal way of running, that is the instantaneous velocity,
propulsive force and anaerobic energy. The same model holds for all distances but
provides very different shapes of velocities according to distances.

The structure of the 100m or 400m race is that v increases exponentially quickly
when f is at its maximal value fM . Then v decreases exponentially slowly until the
energy reaches the zero value for a few points of computation. Though the double
exponential profile structure for the velocity was already known in the literature, a
precise dependance on the different parameters is clearly identified. One sees that in
order to reach a very high velocity quickly, one needs a very strong propulsive force
(fM ) and small internal friction dues to joints or running economy (high τ). But on
the other hand, the limiting value becomes the available anaerobic energy because
reaching a high velocity quickly requires a lot of energy, and if little is left, the runner
cannot maintain his velocity, which falls down exponentially. Nevertheless, the best
strategy is to put as high force and acceleration at the beginning to reach strong
velocity, even if this strong velocity cannot be maintained, rather than accelerating
more slowly and all along the race.

If the race is long enough so that σ reaches its maximal value and decreases on
the last third of the race, then the runner can speed up again. We provide a precise
structure of the 800m race, for which the velocity curve has 4 pieces: increasing, de-
creasing, increasing and decreasing again. For a 1500m or more, there is a long part
of the race at almost constant velocity, which gets close to Keller’s model. Numeri-
cally, our model matches 100m, 400m, 800m and 1500m races for olympic or world
championships.

The interest of the mathematical model is that it allows to play on the parameters
variations. For instance, one can identify how the variation of one parameter or
another has an influence on the deceleration on the second part of the race or how to
better improve the final time since our model is strong enough to match all type of
distances and human optimization.

Acknowledgments. The author would like to thank her colleague Martin An-
dler, who is both a talented mathematician and a former 800m runner, and whose
remarks and advice all along this work were crucial. Martin Andler introduced the
author to a physiologist and former French champion Christine Hanon. Christine
Hanon provided all real race data for 400, 800 and 1500m [9]. Though she partici-
pated strongly to this work, she did not want to be involved in the authorship. Her
involvement into making physiologists and sport scientists believe in mathematics is
strongly acknowledged here, as well as her terrific ability to understand mathematics.
The author is also very grateful to Frédéric Bonnans and Pierre Martinon on Bo-
cop and to people from the sprint project at Insep, namely Antoine Couturier, Gael
Guilhem and Giuseppe Rabita who provided the timesplits of Table 1.1.



How to run a 100m? 15

REFERENCES

[1] A. Aftalion and J.F. Bonnans. Optimization of running strategies based on anaerobic energy

and variations of velocity. SIAM Journal on Applied Mathematics, 74(5):1615–1636, 2014.

[2] A. Aftalion, L.-H. Despaigne, A. Frentz, P. Gabet, A. Lajouanie, M.-A. Lorthiois, L. Roquette,

and C. Vernet. How to identify the physiological parameters and run the optimal race.

MathS In Action, 7:1–10, 2016.

[3] J. Alvarez-Ramirez. An improved peronnet-thibault mathematical model of human running

performance. European journal of applied physiology, 86(6):517–525, 2002.

[4] H. Behncke. A mathematical model for the force and energetics in competitive running. Journal

of mathematical biology, 31(8):853–878, 1993.

[5] H. Behncke. Small effects in running. Journal of applied biomechanics, 10(3):270–290, 1994.

[6] H. Behncke. Optimization models for the force and energy in competitive running. Journal of

mathematical biology, 35(4):375–390, 1997.

[7] F. Bonnans, V. Grelard, and P. Martinon. Bocop, the optimal control solver, open source

toolbox for optimal control problems. URL http://bocop.org, 2011.

[8] W.W. Hager. Runge-Kutta methods in optimal control and the transformed adjoint system.

Numer. Math., 87(2):247–282, 2000.

[9] C. Hanon. Private communication. 2015.

[10] C. Hanon, J.-M. Leveque, C. Thomas, and L. Vivier. Pacing strategy and ˙V O2 kinetics during

a 1500-m race. International journal of sports medicine, 29(03):206–211, 2008.

[11] C. Hanon and C. Thomas. Effects of optimal pacing strategies for 400-, 800-, and 1500-m races

on the ˙V O2 response. Journal of sports sciences, 29(9):905–912, 2011.

[12] J.B. Keller. Optimal velocity in a race. American Mathematical Monthly, pages 474–480, 1974.

[13] R. Le Bouc, L. Rigoux, L. Schmidt, B. Degos, A.-L. Welter, M. Vidailhet, J. Daunizeau, and

M. Pessiglione. Computational dissection of dopamine motor and motivational functions

in humans. Preprint, 2016.
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