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Abstract We consider a generic protocell model consisting of any conserva-
tive chemical reaction network embedded within a membrane. The membrane
results from the self-assembly of a membrane precursor and is semi-permeable
to some nutrients. Nutrients are metabolized into all other species including
the membrane precursor, and the membrane grows in area and the protocell in
volume. Faithful replication through cell growth and division requires a dou-
bling of both cell volume and surface area every division time (thus leading
to a periodic surface area-to-volume ratio) and also requires periodic concen-
trations of the cell constituents. Building upon these basic considerations, we
prove necessary and sufficient conditions pertaining to the chemical reaction
network for such a regime to be met. A simple necessary condition is that
every moiety must be fed. A stronger necessary condition implies that every
siphon must be either fed, or connected to species outside the siphon through
a pass reaction capable of transferring net positive mass into the siphon. And
in the case of nutrient uptake through passive diffusion and of constant surface
area-to-volume ratio, a sufficient condition for the existence of a fixed point
is that every siphon be fed. These necessary and sufficient conditions hold for
any chemical reaction kinetics, membrane parameters or nutrient flux diffusion
constants.
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1 Introduction

Cellular growth and division relies upon harmonious growth whereby all cell
constituents (cytoplasm and membrane) are synthesized at the same average
rate (averaging over one cell cycle) so that at the end of a cycle one ends up
with two daughter cells, each quasi-identical to the mother cell. This raises
the following question: does such synchronization require some fine tuning of
stoichiometric and/or kinetic parameters (with such fine tuning resulting from
evolution in the case of modern evolved cells) or is it automatically achieved for
any such choice? This question is of interest not only for the origins of life (how
likely may have been the emergence of some protocell capable of stationary
growth) or for the design of an artificial protocell, but also for future whole-cell
models.

Existing whole-cell models do not answer this question, because they pre-
sume the existence of a stationary growth state, do not model the mechanistic
steps leading to membrane growth, and rely upon some global phenomenolog-
ical assumptions. The reason is not only the complexity of the system to be
modeled, but also the lack of knowledge about many reaction kinetics. The na-
ture and degree of such assumptions vary depending on the considered model.
Constraint-based models such as Flux Balance Analysis (Orth et al 2010), or
the model proposed by Molenaar et al 2009, assume that optimal cells have
been selected over the course of evolution, such optimum being embodied in an
objective function which is optimized under certain constraints. The reaction
network stoichiometry constrains any stationary flux distribution (Orth et al
2010) or ribosome allocation (Molenaar et al 2009). An implicit assumption
is that the optimal flux distribution or ribosome allocation can be achieved
independently of any kinetic limitation. An explicit assumption is the choice
of the objective function, which may be the biomass yield per consumed sub-
strate (which requires knowledge of the cell composition) or the growth rate.
In contrast, mechanistic whole-cell models do not assume cell optimality, and
rely upon a kinetic description of the elementary chemical reactions and physi-
cal interactions. This typically results in a coupled set of Ordinary Differential
Equations (ODEs) where concentrations of chemical species are variables of
the system, and there exists one ODE for any such variable. ODEs also include
dilution terms which depend on the growth rate (Paw lowski and Zielenkiewicz
2004). Yet, there is most often no mechanistic description of the elementary
steps leading to membrane surface area and cell volume growth (such as mem-
brane precursor synthesis and incorporation in the growing membrane). The
growth rate is an additional phenomenological variable, which requires an ad-
ditional assumption to make the model fully determined (e.g. constant density
in Weiße et al 2015, or constant RNA polymerase concentration in Tadmor
and Tlusty 2008).
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Existing protocell models come closer to answering this question, but only
partially. Because the system to be modeled is so much simpler than modern
evolved cells, most protocell models include a fine-grained description of all
constituents, and a mechanistic description of all chemical reactions, without
any global phenomenological assumption. In particular, the growth rate is not
a phenomenological parameter: growth in membrane surface area results from
the kinetic incorporation of membrane precursors (lipids), and this leads to
volume growth in a way which depends on the protocell shape. Also in contrast
to whole-cell models, most protocell models do not presume the ability to grow
and self-replicate, but attempt to explain when and why such cellular self-
replication may occur. Even if emergent synchronization has been numerically
observed in such models (characterized by the existence of a stationary growth
state), it is unclear what grants such property to the system. Such emergent
stationary growth was numerically observed in protocell models based upon
large random autocatalytic Chemical Reaction Networks (CRNs) with specific
stoichiometry (Kondo and Kaneko 2011; Himeoka and Kaneko 2014). This was
also the case in our own previous work using random CRNs with arbitrary
stoichiometry (Bigan et al 2015a). Varying the size of such networks, the ability
of the cell to ’work’ appeared to be determined by simple conditions pertaining
only to the CRN stoichiometry and topology, and independent of the detailed
kinetics.

The present work not only explains such numerical results but also gives
formal answers to the above-mentioned emergent synchronization question.
Using a protocell model relying upon any conservative CRN, it proves neces-
sary and sufficient conditions for the existence of a stationary growth state.
These conditions only depend on the CRN structure and are independent of
the detailed kinetics.

1.1 Relation with Chemical Reaction Network Theory (CRNT)

Relating the existence of a stationary state (fixed point of a set of ODEs) to
topological and stoichiometrical properties of a CRN independently of the ki-
netic details is precisely what Chemical Reaction Network Theory achieves (Fein-
berg 1979, 1995; Gunawardena 2003). Fundamental CRNT theorems relate
such existence to the deficiency, which is an integer number only depending
on the CRN structure and independent of the kinetics (Feinberg 1972). Exist-
ing theorems only apply to low deficiencies (0 or 1) and are intimately linked
to the existence of complex-balanced equilibria (Horn 1972) for which a Lya-
punov function can be constructed. However, in the case of the protocell model
considered in this work, pseudo-reactions accounting for dilution of chemical
species, membrane precursor incorporation and nutrient influx must be added
to the embedded CRN. This typically results in large deficiencies1 which makes
existing theorems non-applicable.

1 For the reference numerical protocell example given in Bigan et al 2015a, the deficiency is
9 (32) for the threshold (maximum-size) network, respectively (using the reference nutrient
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The reason why specific results could nevertheless be obtained within the
present work is the following: whereas general CRNT theorems are applicable
to any CRN (conservative or not), a cellular model defines a very special class
of non-conservative CRNs: starting from a conservative CRN representing the
inner cell chemistry, specific non-conservative pseudo-reactions are added to
account for dilution, membrane precursor incorporation (in the self-assembled
membrane), and transmembrane fluxes. The resulting set of ODEs is rem-
iniscent of that for a Continuous-Flow Stirred Tank Reactor (CFSTR), for
which additional theorems giving necessary conditions for multistationarity
have been proved (Schlosser and Feinberg 1994; Craciun and Feinberg 2005,
2006). Yet, there is a significant difference between the CFSTR and our pro-
tocell model: whereas the flow rate is fixed for a CFSTR, its counterpart here
is the growth rate, which is a variable function of the protocell state. In the
present work, we shall relate the existence of a stationary growth state to a
lower bound for the growth rate, which is itself related to persistence of the
membrane precursor (Lemmas 2 and 3). Important theoretical results relating
persistence to siphons have previously been proved in CRNT (Angeli et al
2007), and we shall make use of such previous work and concepts to prove
Theorem 3.

1.2 Relation with moieties and siphons, and with our own previous work

In organic chemistry, a moiety refers to a functional part of a molecule. For
example, acyl or phosphate groups are moieties. These functional groups are
typically left unchanged by the chemical reactions: when counting the total
number of a given moiety, the same result is obtained for both the reactant
and product side. In mathematical chemistry, the concept of moiety has been
extended to include any elementary conserved quantity, and algorithms have
been devised to determine all moieties (Schuster and Höfer 1991), which may
not be as obviously visible as the two above simple examples. To each moi-
ety corresponds a positive linear combination of concentrations that is kept
constant by the chemical reactions.

In Petri nets, siphons refer to subsets of places that remain empty once they
have lost all their tokens (Murata 1989). Applying this concept to chemical
reaction networks, siphons are subsets of chemical species that remain forever
absent, if already initially so (Angeli et al 2007). In other words, siphons
are subsets of species the absence of which cannot be compensated by the
chemical reactions.2 In mathematical chemistry, siphons are closely related to
the concept of persistence (Angeli et al 2007).

and membrane precursor combination). Consistently, numerical simulations on protocells
based on random CRNs reveal that the stationary growth states are not complex-balanced.

2 One intuitive way to grasp the meaning of siphons is the following: some CRNs are so
strongly coupled that if one attempts to lower the concentration of one particular species
by an appropriate ’sink’ (e.g. incorporation into a structured membrane), then one ’sinks’
all other concentrations as well. This is the case when the only siphon is the full set of
species. But for CRNs with a weaker coupling, it is foreseeable to ’sink’ some species while
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Using these concepts, we have previously proved necessary and sufficient
conditions for protocell stationary growth: (i) every moiety of the underly-
ing CRN must be fed, or in other words, using the above example, some of
the nutrients permeating through the membrane should carry an acyl or a
phosphate group; and (ii) assuming a constant surface area-to-volume ratio,
it suffices that every siphon of the underlying CRN contain the support of a
moiety (that is fed).

We here extend these preliminary results by proving stronger necessary and
weaker sufficient conditions:3 (i) every siphon must be either fed or connected
to its complement by a specific kind of reaction, named pass reaction, that
is capable of transferring mass into the siphon; and (ii) assuming a constant
surface area-to-volume ratio, it suffices that every siphon be fed.

Our earlier proofs explained some of our previously reported numerical
results using random conservative CRNs and a single diffusing nutrient (Bi-
gan et al 2015a): no growth with two non-overlapping moieties; growth for
any choice of nutrient and membrane precursor when the only siphon is the
full set of species. The weaker sufficient condition also explains results in in-
termediate situations, for CRNs having a single moiety and a single siphon
that is shorter than the full set of species: when the nutrient is chosen in this
siphon, growth is always observed; else, growth is observed in some cases but
not in others. And the stronger necessary condition helps understand what
may make growth possible or not when the necessary conditions are met but
the sufficient condition is not.

These conditions are illustrated with two examples (Section 6): a simple
toy model, and a whole-cell model inspired by Molenaar et al 2009. And the
applicability of these theoretical results to modern evolved cells or protocells
is extensively discussed in Section 7.3.

1.3 Outline

This paper is organized as follows. Section 2 gives some definitions related to
CRNs. Section 3 presents a mechanistic fine-grained protocell model and gives
some related definitions. Section 4 proves an introductory proposition relating
oscillations in concentrations of cell constituents to the cellular shape. Section 5
proves necessary and sufficient conditions for the existence of a stationary
growth state. Section 6 illustrates these results with examples. Section 7 is
devoted to discussion. And Section 8 gives a conclusion.

keeping other concentrations positive. A subset of species that can be ’sank’ is a siphon that
is shorter than the full set of species.

3 Condition A is stronger (weaker) than condition B if A =⇒ B (B =⇒ A), respectively.
Stronger necessary and weaker sufficient conditions are desirable for a finer delineation of
’working’ protocells.
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Notations

In this text, a vector v is written in bold font. Its ith coordinate is denoted
vi. The ith coordinate of a vector carrying its own index vk is denoted vk,i.

2 Definitions related to CRNs

Following standard practice in Chemical Reaction Network Theory (Érdi and
Tóth 1989) a stoichiometry N × R matrix S may be associated to any CRN
where N is the total number of chemical species S = {Ai}i=1,...,N participat-
ing in the CRN and R is the total number of reactions. The rth column of S
is the reaction vector vr having as components {vr,i}i=1,...,N where vr,i is the
difference in stoichiometry of species Ai between products and reactants for
the rth reaction. For the CRN in a closed system, the time derivative of the
N × 1 concentration vector c is given by ċ = Sf where f is the R × 1 rate
vector.

Definition 1 A CRN is conservative if there exists a strictly positive N × 1
vector m such that mTS = 0 where (.)T denotes the transpose of (.). mi is
the molecular mass of species Ai.

Basically, a CRN is conservative if each chemical species may be assigned
a positive mass such that mass conservation be guaranteed for every chemical
reaction. There may exist multiple solutions to the set of mass conservation
equations. This notion is explicited through the definition below.

Definition 2 For a conservative CRN, the kernel of the transpose of S de-
noted Ker(ST) has dimension dim(Ker(ST)) = p ≥ 1, and the rank of S
is dim(Im(S)) = dim(Im(ST)) which is equal to N − dim(Ker(ST)) = N −
p ≤ N − 1. The set of mass vectors compatible with mass conservation is
{m | mi > 0, i = 1, . . . , N and mTS = 0}. This set constitutes a pointed
convex cone having p′ ≥ p generating vectors {bk}k=1,...,p′ , p of which are

linearly independent and constitute a basis of Ker(ST) (Schuster and Höfer
1991). We define as moieties the elements of such a set of generating vectors
{bk}k=1,...,p.

Moieties essentially correspond to positive linear combinations of chemi-
cal species concentrations that are left invariant by the chemical reactions.4

Moieties have non-negative but not necessarily strictly positive components:
indeed, it can be proved that if a moiety has all its components strictly pos-
itive, then this is the only moiety, p = 1 (see proof in Appendix 1 of Bigan
et al 2015a).

4 Moieties are non-negative basis vectors of the left-null space of the stoichiometry ma-
trix. Any mass vector can be decomposed as a positive linear combination of moieties. In
contrast, extreme pathways (Schilling et al 2000) or the closely related elementary flux
modes (Schuster and Hilgetag 1994) are non-negative basis vectors of the right-null space of
the stoichiometry matrix. Any stationary flux distribution can be decomposed as a positive
linear combination of extreme pathways (or elementary flux modes).
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Definition 3 The support of a moiety b (resp. of a concentration vector c)
denoted as supp(b) (resp. supp(c)) is the subset of chemical species Ai along
which b (resp. c) has non-zero components.

Definition 4 For a CRN (conservative or not), a siphon Z is a subset of S
such that for every species Ai in Z and every reaction where Ai appears as
product, then at least one of the reactant species also belongs to Z. A siphon
is minimal if it does not contain strictly any other siphon.

The concept of siphon was introduced in Angeli et al 2007 to study per-
sistence in CRNs. Siphons are essentially the sets of chemical species whose
absence cannot be compensated by the chemical reactions.

Definition 5 Consider a conservative CRN having a siphon Z that is shorter
than the full set of species S , S \ Z 6= ∅. Let b be a moiety or positive
linear combination of moieties of this CRN. Reordering species between S \
Z and Z, b may be decomposed in block form as bT = (bS \Z

T|bZT). A
reaction characterized by its reaction vector v is a pass reaction for b if ∆bZ =
(0S \Z

T|bZT)v > 0, where 0S \Z is the null vector for the subset S \ Z.

We have (0S \Z
T|bZT)v = −(bS \Z

T|0ZT)v because the CRN is conser-
vative. The existence of a pass reaction for b requires that supp(b) ∩ Z 6= ∅
and supp(b) ∩ (S \ Z) 6= ∅.

∆bZ is the total product weight minus the total reactant weight for the
moiety b, for species belonging to Z. A pass reaction for the moiety b is a
reaction resulting in a net positive weight transfer (for the moiety b) from
S \ Z into Z. It must involve species in both Z and S \ Z. But not all such
reactions need necessarily be pass reactions. All possible categories of reactions
involving both Z and S \Z are listed in Table 1 using the following notation:
S \Z +Z → Z denotes any reaction such that the reactant complex contains
species in S \ Z and in Z, and such that the product complex only contains
species in Z. Attributes of such categories are also given: compatibility with
the definition of a siphon, and compatibility with net positive weight transfer
(for the moiety b) from S \ Z into Z, i.e. ∆bZ > 0.

Pass reactions belong either to category S \ Z + Z → S \ Z + Z or to
category S \ Z + Z → Z (with the additional constraint ∆bZ > 0 in both
cases).

The concept of pass reaction is an original contribution of the present work.

Illustration with a simple example Consider the following CRN consisting of
two bidirectional reactions:

A+B � C

2B � C

It can be easily verified that it is conservative with the only possible mass
assignment (up to a multiplying factor) being (mA,mB ,mC) = (1, 1, 2). The
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Reaction category Compatible with
siphon

Compatible with net
weight transfer (for b)

S \ Z → Z 7 3
Z → S \ Z 3 7
S \Z+Z → S \Z+Z 3 3 if ∆bZ > 0
S \ Z → S \ Z + Z 7 3
S \ Z + Z → S \ Z 3 7
Z → S \ Z + Z 3 7
S \ Z + Z → Z 3 3 if ∆bZ > 0

Table 1 Categories of reactions involving species in both S \Z and Z. The second column
indicates whether reactions are compatible with the definition of a siphon or not. The third
column indicates whether reactions are compatible with net positive weight transfer (for the
moiety b) from S \ Z into Z, i.e. with ∆bZ > 0.

mass vector m is thus the only moiety. It can also be easily verified that
Z = {B,C} is the only minimal siphon, which is shorter than the full set
of species S = {A,B,C}, S \ Z = {A} 6= ∅. The first forward reaction
A + B → C is a pass reaction (for the mass) because the net mass transfer
into Z is ∆mZ = mC −mB = mA > 0.

3 Protocell model and related definitions

3.1 Assumptions

The following assumptions are made in the proposed protocell model:

1. Existence of some chemistry represented by a conservative CRN that is
active at least inside the protocell, and that may be assumed either active
or inactive outside the protocell (all proofs hold in both cases).

2. Self-assembly of one of the chemical species (membrane precursor Ame) in
a structured membrane: the incorporation of Ame into the growing mem-
brane is assumed to be kinetically controlled, with rate Foutput,me per unit
area (the corresponding rate vector F output has only one non-zero com-
ponent: Foutput,me, along Ame). The membrane is further characterized by
the number of molecules per unit area Nme.

3. Membrane precursor incorporation kinetics: the membrane precursor in-
corporation rate per unit area Foutput,me is assumed to be a continuous
monotonically increasing function of the concentration vector c such that
Foutput,me(c = 0) = 0 and Fme(c) > 0 iff c has non-zero components
along a subset Sme of S . Sme includes at least Ame (membrane precur-
sor must be present for it to be incorporated in the membrane) and may
also include other species (e.g. enzymes or other metabolites that may
be required in case of catalyzed or active membrane precursor incorpora-
tion). This is a very mild assumption as it is verified by all foreseeable
kinetics (mass-action, Michaelis-Menten, or active membrane precursor in-
corporation). Two situations may be envisioned for this incorporation: (i)
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either it originates only from the inside of the protocell in which case
the rate of incorporation is Foutput,me(c), or (ii) it originates from both
sides of the membrane in which case the total rate of incorporation is
Foutput,me(c) + Foutput,me(cout). Case (i) corresponds to a situation where
not all required species are present outside, Sme * supp(cout), or there
is some physical or chemical constraint preventing such an incorporation
from the outside (e.g. polarity of the self-assembled membrane). Case (ii)
corresponds to a non-polar membrane with all required species also present
outside, Sme ⊆ supp(cout).

4. Semi-permeability of self-assembled membrane to a subset Snu of S . Nu-
trient uptake from the outside growth medium may result from any mecha-
nism (e.g. passive diffusion or active transport). The resulting nutrient flux
vector per unit area is F input = F input(c, cout). It has non-zero components
along the subset Snu that are functions of the inside c and outside con-
centration vectors cout. For any species Ai ∈ Snu, Finput,i = 0 if cout,i = 0
(nutrients must be present in the outside growth medium in order to flow
inside).

5. Homogeneous concentrations: all chemical species are assumed to be homo-
geneously distributed and any intracellular or extracellular diffusion effect
is neglected. This is a simplifying assumption as, e.g. inside the cell, one
should expect nutrient Ai ∈ Snu (resp. membrane precursor Ame) con-
centration to be highest (resp. lowest) near the membrane that acts as
an effective source (resp. sink) for such chemical species. Similarly, any
intracellular spatial organization is neglected.

6. Large outside growth medium volume compared to the protocell volume:
so that the outside concentration vector cout remains constant even in the
presence of a growing protocell. It is either at equilibrium (Sf (cout) = 0
assuming the CRN is also active outside), or submitted to a continuous
nutrient flow. This equilibrium or stationary cout is assumed to be reached
starting with all and only those species in Snu in the initial state or in the
input flow.

Figure 1 gives a schematic representation of the protocell model.

3.2 Ordinary Differential Equation (ODE) system

With the above assumptions, the ODE system governing the time evolution
of concentrations is given by:

ċ = Sf + ρ(F input − F output)− µinstc (1)

where c is the N ×1 inside concentration vector having as components the
concentrations of the N different chemical species inside the protocell, S is the
N×R stoichiometry matrix associated with the CRN, f = f (c) is theR×1 rate
vector having as components the rates for each chemical reaction, ρ = A /V is
the surface area-to-volume ratio, F input = F input(cout, c) is the N×1 nutrient
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Fig. 1 Schematic of the protocell model. Some nutrient species (Anu ∈ Snu) flow across
the semi-permeable membrane (e.g. by passive diffusion or active transport). The membrane
results from the self-assembly of the membrane precursor Ame. The membrane surface area
grows as the result of Ame unidirectional incorporation in the self-assembled membrane.

flux vector per unit area with only non-zero components Finput,i for Ai ∈ Snu,
F output = F output(c) is the N × 1 membrane incorporation flux vector per
unit area with only non-zero component Foutput,me(c) along Ame, and µinstc
represents the dilution factor with instantaneous growth rate defined as the
instantaneous relative rate of change in volume, µinst = ˙V /V .

By definition of ρ and µinst, we have:

ρ̇

ρ
=

˙A

A
− µinst (2)

The membrane surface area A increases as the result of Ame incorporation.
If incorporation orginates only from the inside of the protocell (case (i) in
Assumption 3 above), as Ame gets incorporated into the growing membrane
with rate (per unit area) Foutput,me, the membrane area grows as:

˙A

A
=
Foutput,me(c)

Nme
(3)

If incorporation originates from both sides (case (ii) in Assumption 3
above), the above equation should be replaced by:

˙A

A
=
Foutput,me(c) + Foutput,me(cout)

Nme
(4)

Equations 1, 2 and 3 or 4 do not suffice to make the ODE system au-
tonomous: an additional relation is needed, which depends on the assumption
made regarding the protocell shape and the mechanical properties of the mem-
brane. We shall consider different cases to illustrate this point:
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1. If, on the one hand, the membrane is so rigid that it is constrained to take
a filament shape with fixed diameter (constant ρ = ρ0) regardless of any
difference in osmotic pressure across the membrane, then this additional
relation is simply ρ̇ = 0 and the protocell is an autonomous dynamical
system having N variables (the components of c). The µinst trajectory is
then simply given by Equation 2 (taken with ρ̇ = 0), and Equation 3 or 4.

2. If, on the other hand, the membrane is free to take any shape without any
mechanical constraint, the cell shape (and corresponding ρ ratio) adjusts
itself to balance the osmotic pressure across the membrane. Assuming the
dynamics of such a balancing to be very fast, this corresponds to a con-
straint of the kind uTc = P where u is the osmolarity vector such that ui
is the number of particles in solution when dissolving one molecule of Ai,
and P = uTcout is the constant outside growth medium osmolarity. The
inside osmolarity is constant, uTċ = 0. Replacing ċ by Equation 1 and
extracting µinst gives µinst = uT(Sf + ρ(F input −F output))/u

Tc. Feeding
back this expression for µinst in Equations 1 and 2 gives an autonomous
dynamical system having N + 1 variables (the components of c, and ρ),
with both concentrations and surface area-to-volume ratio trajectories so-
lution of this extended set of ODEs. This is similar to the approach taken
in Mavelli and Ruiz-Mirazo 2013 or Morgan et al 2004.

3. Between these two above extremes, a more sophisticated description of
the mechanical properties of the membrane (as in Surovtsev et al 2009 or
Božič and Svetina 2004) would result in a more complex relation and in an
autonomous dynamical system having N + 2 variables (the components of
c, and, V and A , or equivalently ρ and µinst).

While the proofs of Proposition 1 (Section 4) and of Theorems 1 and 2
(Section 5) hold in any such case and do not require to explicitly take into
account such an additional complexity in the model, the proof of the sufficient
condition given by Theorem 3 assumes a constant surface area-to-volume ratio
(case 1 in the above enumeration).

3.3 Definitions related to protocells

Definition 6 A protocell is an autonomous ODE system such that:

1. Starting from positive initial conditions, it defines trajectories for the con-
centration vector c and the cell geometry represented by the cell volume V
and the cell surface area A (or equivalently, by the instantaneous growth
rate µinst, and the surface area-to-volume ratio ρ).

2. It verifies Assumptions 1-6 of Section 3.1, and Equations 1, 2, and 3 or 4.
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Starting from initial conditions (c0,V0,A0), defining trajectories for (V ,A )
is equivalent to defining trajectories for (µinst, ρ) because the two may be de-
duced from one another through the relations µinst = ˙V /V and ρ = A /V .5

As mentioned at the end of Section 3.2 above, Equations 1, 2 and 3 or 4
do not suffice to make the ODE system autonomous: an additional relation is
needed, which depends on the assumption made regarding the protocell shape
and the mechanical properties of the membrane.

Definition 7 A protocell characterized by asymptotic trajectories for its con-
stituent concentration vector c(t), its membrane surface area A (t) and its
volume V (t) is said to be working if c(t) is periodic with periodicity T and if
both A (t) and V (t) are doubled during a time period T .

The surface area-to-volume ratio ρ(t) = A (t)/V (t) of a working protocell is
thus also periodic because ρ(t+T ) = A (t+T )/V (t+T ) = (2A (t))/(2V (t)) =
A (t)/V (t) = ρ(t).6

Cell division is not taken into account in this work. The above definition
only ensures that faithful replication through cell division be possible. The
above definition also implicitly assumes that the global surface A (t) and vol-
ume V (t) (considering the entire lineage as a single system) and the concentra-
tions c(t) are continuous functions of time (instantaneous variations through
a bursting effect upon cell division are excluded).

Definition 8 The instantaneous growth rate µinst of a working protocell is
defined as µinst = ˙V /V and its average value is denoted µavg.

µinst is also periodic because both the volume and its derivative double

every time period T . We have µavg = (1/T )
∫ T
0

( ˙V /V )dt = log(2)/T . Although
µavg is positive, µinst may not necessarily be so at all times. For example, a
cell constriction could induce a negative instantaneous growth rate at some
point during the cell cycle.

Definition 9 A protocell characterized by asymptotic trajectories for its con-
stituent concentration vector c(t), its membrane surface area A (t) and its vol-
ume V (t) is said to be stationary working if c(t) is constant and if both A (t)
and V (t) are exponentially increasing at the same constant strictly positive
relative rate µinst = µavg = µ = ˙V /V = ˙A /A .

A stationary working protocell is thus a particular example of a working
protocell, with both A (t) and V (t) being doubled during a time period T =
log(2)/µ. A stationary working protocell has a constant surface area-to-volume
ratio because the relative rates of increase are equal for its surface area and
its volume. An example of stationary working protocell is that of filamentous
growth, with negligible cross-section compared to its surface area.

5 It is implicitly assumed that the (V ,A ) trajectories are such that at any instant, there

is enough membrane surface area A to accommodate the volume V , A ≥ 3
√

36πV . Else,
the protocell may burst. See Mavelli and Ruiz-Mirazo 2013.

6 It can also be constant, which is a peculiar periodic function.
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Definition 10 Consider a protocell characterized by its embedded conser-
vative CRN, and by its nutrient flux vector F input = F input(c, cout) having
nonzero components along a subset Snu of S (Assumption 4). A subset Y of
the full set of species S is fed if Y ∩Snu 6= ∅.

Y is fed if it contains some of the species that can cross the membrane.
Note that Assumption 6 ensures that all species that can cross the membrane
are present in the outside growth medium.

This notion shall be applied to the supports of moieties and to siphons. In
the case of moieties, we shall say for simplicity that a moiety b is fed if its
support supp(b) is fed.

4 A constant concentration vector requires a constant surface
area-to-volume ratio

As a preamble to necessary and sufficient conditions proved in the next section,
we present here a basic introductory proposition.

Proposition 1 If a working protocell has a constant concentration vector tra-
jectory, then its surface area-to-volume ratio trajectory is also constant, i.e.
the protocell is working stationary.

It is reminded that by virtue of Definition 6, a protocell verifies Assump-
tions 1-6 of Section 3.1, and Equations 1, 2, and 3 or 4.

Proof Multiplying both sides of Equation 1 by the transpose of the mass vector
mT and using Equation 2 to replace the instantaneous growth rate µinst gives:

Ḋ = ρmT(F input − F output)− (
˙A

A
− ρ̇

ρ
)D (5)

where D = mTc is the density inside the protocell and ˙A /A is given
by Equation 3 or 4. A constant concentration vector c results in a constant
density, Ḋ = 0, constant nutrient input flux F input and membrane precursor

incorporation output flux F output vectors, and a constant ˙A /A (owing to
Equations 3 or 4). The left hand side of the above equation equals zero and
the right hand side only contains constant elements, except potentially ρ and
ρ̇. This makes ρ solution of a differential equation of the form:

ρ̇

ρ
= α− βρ (6)

with:

α =
˙A

A
(7)

and:
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β =
mT(F input − F output)

D
(8)

The differential equation 6 can be solved analytically, which results in:

ρ(t) =
α

β + γe−αt
(9)

where γ = (α/ρ0) − β and ρ0 = ρ(t = 0) is the initial condition. ρ(t) is
a monotonic function that cannot be periodic unless γ = 0, i.e. ρ0 = α/β in
which case ρ(t) remains constant. ut

In particular, this means that if for a working protocell ρ is periodic but not
constant (e.g. because of certain geometrical or mechanical constraints), then
the concentration of at least some of its constituents is also periodic but not
constant. Model examples of such situations have previously been described
(Morgan et al 2004; Surovstev et al 2007; Surovtsev et al 2009).

There have also been numerous experimental reports of various concentra-
tions oscillating across the cell cycle in eukaryotic cells (see Busa and Nuccitelli
1984, Wittmann et al 2005 and references therein). It should be noted that
such cells tend to have a spherical shape at the beginning of a cell cycle,
and that with spherical growth the surface area-to-volume ratio ρ decreases
as the sphere radius increases. The required periodicity of ρ implies its in-
crease at some later point during the cell cycle (which may typically result
from cell constriction). Proposition 1 suggests that, besides additional regu-
lation mechanisms, variations of ρ across the cell cycle should contribute to
such oscillations in concentrations. This stresses the importance of taking cell
geometry into account in whole-cell modeling.

5 Necessary and sufficient conditions for a working protocell

5.1 First necessary condition

Theorem 1 For a protocell to be working, every moiety b (of the embedded
conservative CRN) the support of which contains any species in Sme, supp(b)∩
Sme 6= ∅, must be fed. This is necessary to ensure persistence of species in
Sme and a positive growth rate for the protocell ODE system. Further, if all
species (not just those in Sme) are to be present in the stationary growth state,
then every moiety (not just those such that supp(b) ∩Sme 6= ∅) must be fed.

It is reminded that by virtue of Definition 6, a protocell verifies Assump-
tions 1-6 of Section 3.1, and Equations 1, 2, and 3 or 4.

The following lemma is useful to prove this theorem:

Lemma 1 If a nonnegative function of the concentration vector of a working
protocell, y(t) = ψ(c(t)) ≥ 0 is such that ẏ ≤ −µinst × y, then y → 0 if
t→ +∞.
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This is obvious if µinst = µavg > 0 is a constant (as is the case for a
stationary working protocell) which results in an exponentially decreasing y.
It also holds in the most general case where µinst varies (and may even turn
negative at some point during the cell cycle). The proof is given below.

Proof Replacing y(t) by its asymptotic trajectory yas(t), if yas 6= 0 were pos-
sible, we would have:

˙yas
yas
≤ −µinst (10)

Integrating this inequality over any time period T would give:

∫ t1+T

t1

˙yas
yas

dt = log(
yas(t1 + T )

yas(t1)
) ≤ −

∫ t1+T

t1

µinst dt = log(
V (t1)

V (t1 + T )
) (11)

where t1 is an arbitrary time. The above inequality is equivalent to:

yas(t1 + T )

yas(t1)
≤ V (t1)

V (t1 + T )
(12)

y being a function of the concentration vector c that itself converges asymp-
totically towards a periodic trajectory, yas(t) is also periodic and the left-hand
side of the above inequality is LHS = 1. The protocell volume doubling every
time period T , the right-hand side is RHS = 1/2. This is contradictory with
the above inequality. We must therefore have yas = 0. ut

We shall now prove Theorem 1.

Proof Multiplying both sides of the above ODE system (given by Equation 1)
by bT where b is any of the p moieties {bk}k=1,...,p, gives the ODE governing

the time evolution of the quantity bTc:

bTċ = ρbT(F input − F output)− µinstb
Tc (13)

If there exists a moiety b that is not fed, then supp(b) ∩ Snu = ∅. As
F input only has nonzero components along Snu, we have bTF input = 0. bTċ
may then be bounded as follows:

bTċ ≤ −µinstb
Tc (14)

Applying Lemma 1 with y = bTc results in bTc → 0 with t → +∞. All
species in supp(b) asymptotically disappear.

If supp(b) ∩Sme 6= ∅, then there exists at least one species in Sme that
asymptotically disappears. The membrane area can no longer grow from the
inside. Neither can it grow from the outside because the constant cout is as-
sumed to be reached starting with only species in Snu in the initial state (or in
the constant input flow through the growth medium), see Assumption 6. Any
species in the support supp(b) of any non-fed moiety b, supp(b)∩Snu = ∅, re-
mains absent outside, supp(b)∩ supp(cout) = ∅, because moieties correspond
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to conserved quantities. This results in a non-working protocell because the
membrane surface area can neither grow from the inside nor from the outside
( ˙A → 0 because of Equation 3 or 4), whereas A should double every time
period T if the protocell were working). ut

5.2 A stronger necessary condition

Theorem 2 For a protocell to be working, for every siphon Z (of the embedded
conservative CRN) containing any species in Sme, Z ∩Sme 6= ∅, and every
moiety b the support of which intersects with Z∩Sme, supp(b)∩(Z∩Sme) 6= ∅,
Z must be either fed or connected to its complement S \ Z through a pass
reaction for b. This is necessary to ensure persistence of species in Sme and
a positive growth rate for the protocell ODE system. Further, if persistence of
all chemical species is required (not just those in Sme), then for every siphon
Z (not just those intersecting with Sme) and every moiety b the support of
which intersects with Z, supp(b) ∩ Z 6= ∅, Z must be either fed or connected
to its complement S \ Z through a pass reaction for b.

It is reminded that by virtue of Definition 6, a protocell verifies Assump-
tions 1-6 of Section 3.1, and Equations 1, 2, and 3 or 4.

Applying this condition to the mass vector m , every siphon Z should either
be fed or connected to its complement S \ Z through a pass reaction for the
mass.

Proof Consider a siphon Z intersecting with the support of a moiety b. Assume
Z is neither fed, nor connected to S \Z by any pass reaction. As Z is not fed,
S \ Z 6= ∅ because there is at least one nutrient species (see Assumption 6).

We can rearrange species and reaction indices as follows: first species in
S \Z followed by those in Z (as in Definition 5); first reactions involving only
species in S \Z, followed by those involving species in both S \Z and Z, and
last those involving only species in Z. The stoichiometry matrix then takes
the following block form:

S =


SS \Z

SS \Z,Z

0

0 SZ


where SS \Z (resp. SZ) is the stoichiometry matrix subblock for reactions

only involving species in S \ Z (resp. in Z) and SS \Z,Z is the stoichiometry
matrix subblock for reactions connecting S \ Z and Z. With this rearrange-
ment, the transposes of the moiety b and of the reaction flux vector take the
following block form:

bT = (bS \Z
T|bZT)
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and,

f T = (f S \Z
T|f S \Z,Z

T|f Z
T)

Decomposing the full ODE system (given by Equation 1) into two ODE
subsystems for concentrations of species belonging to S \Z and Z, respectively,
and multiplying these subsets by bT

S \Z and bZ
T, respectively, gives:

(15)
bS \Z

T ˙cS \Z = ρbTF input + bS \Z
TSS \Zf S \Z

+ (bS \Z
T|0ZT)SS \Z,Zf S \Z,Z − µinstbS \Z

TcS \Z

bZ
T ˙cZ

= (0S \Z
T|bZT)SS \Z,Zf S \Z,Z + bZ

TSZf Z − ρb
TF output − µinstbZ

TcZ
(16)

We have bS \Z
TSS \Z = 0 and bZ

TSZ = 0 because the CRN is conserva-
tive. The two above equations may be rewritten as:

˙BS \Z = ρbTF input −
∑

r∈{S \Z,Z}

∆bZ,r × fr − µinstBS \Z (17)

ḂZ =
∑

r∈{S \Z,Z}

∆bZ,r × fr − ρbTF output − µinstBZ (18)

where BS \Z = bS \Z
TcS \Z (resp. BZ = bZ

TcZ) is the contribution of

species in S \ Z (resp. Z) to the total weight for moiety b, B = bTc, r is
the index spanning the set {S \ Z,Z} of reactions connecting Z to S \ Z,
∆bZ,r = (0S \Z

T|bZT)vr = −(bS \Z
T|0ZT)vr is the net weight for moiety b

being transferred from S \Z into Z by reaction indexed by r (i.e. total product
weight minus total reactant weight for species belonging to Z), with reaction
vector vr. As there is no pass reaction connecting S \Z to Z, ∆bZ,r ≤ 0,∀r ∈
{S \ Z,Z}, and:

ḂZ ≤ −µinstBZ (19)

In the above Equations 17 and 18 we have implicitly assumed that Ame ∈
Z. If Ame ∈ S \ Z instead, the term −ρbTF output should be in Equation 17
instead of 18. The above inequality 19 holds in both cases.

Applying Lemma 1 with y = BZ results in BZ → 0 with t → +∞. All
species in supp(b) ∩ Z asymptotically disappear, with the same consequences
as in the proof of Theorem 1.

If supp(b) ∩ (Z ∩Sme) 6= ∅, then there exists at least one species in Sme

that asymptotically disappears. The membrane area can no longer grow from
the inside. Neither can it grow from the outside because the constant cout is
assumed to be reached starting with only species in Snu in the initial state (or
in the constant input flow through the growth medium), see Assumption 6.
Any species in any non-fed siphon Z, Z ∩Snu = ∅, remains absent outside,
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Z ∩ supp(cout) = ∅, because siphons are subsets of species whose absence
cannot be compensated by chemical reactions. This results in a non-working
protocell because the membrane surface area can neither grow from the inside
nor from the outside ( ˙A → 0 because of Equation 3 or 4), whereas A should
double every time period T if the protocell were working). ut

This second necessary condition is stronger than the first one because of
the following proposition.

Proposition 2 For a conservative CRN, the support of any moiety is a siphon.

Proof For any moiety b and any reaction in a CRN, we shall denote by prod-
uct b-weight (resp. reactant b-weight) the sum of the components of b along
product species (resp. reactant species) weighted by the corresponding stoi-
chiometric coefficients. Conservativity ensures that the b-weight is conserved
on either side of the reaction, i.e. the product b-weight equals the reactant
b-weight.

If any species Ai in supp(b) appears on the product side of a reaction,
then the corresponding product b-weight is strictly positive, and so is the
corresponding reactant b-weight. A stricly positive reactant b-weight implies
that at least one of the reactant species belongs to supp(b), which matches
the definition of a siphon. ut

Assume the second necessary condition is verified. For any moiety b, the
above proposition states that Z = supp(b) is a siphon. Either Z is fed, or
connected to its complement S \ Z by a pass reaction for b. The existence
of such a pass reaction would require supp(b) ∩ (S \ Z) 6= ∅ (see note after
Definition 5), but this is impossible because Z = supp(b). This proves that
Z = supp(b) must be fed. The first condition is then also verified. This proves
that the second condition is stronger than the first one.

5.3 Sufficient condition

The sufficient condition presented in this section only holds in the case where
nutrient uptake results from passive diffusion and where the surface area-to-
volume ratio ρ = ρ0 remains constant.

From Equation 2, the growth rate is given by µinst = ˙A /A which is itself
given by Equation 3 or 4 depending on whether membrane precursor incorpo-
ration originates only from the inside or from both sides of the membrane.

Denoting the effective diffusion constant of species Ai ∈ Snu as Di, each
of the non-zero components Finput,i, Ai ∈ Snu, of the nutrient flux vector per
unit area F input can be expressed as:

Finput,i = Di(cout,i − ci) ∀i ∈ Snu (20)

We shall denote F input,max the maximum input flux vector having as non-
zero components Finput,max,i = Dicout,i, ∀i ∈ Snu.
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Theorem 3 Consider a protocell for which:

1. Nutrient uptake results from passive diffusion
2. The surface area-to-volume ratio ρ remains constant

If every siphon Z (of the embedded conservative CRN) containing any species
in Sme is fed, then there exists a fixed point with all species in Sme being
persistent and with positive growth rate for the protocell ODE system. Further,
if every siphon (not just those containing any species in Sme) is fed, then all
chemical species are persistent and present in the fixed point.

It is reminded that by virtue of Definition 6, a protocell verifies Assump-
tions 1-6 of Section 3.1, and Equations 1, 2, and 3 or 4.

In essence, this theorem suggests that a sufficient condition for a protocell
to be working is that every siphon of the embedded conservative CRN is fed,
provided the additional assumptions of nutrient uptake through passive dif-
fusion and of constant ρ = ρ0 are made. This is not exactly so because the
existence of a fixed point does not guarantee its stability (working station-
ary protocell) or its oscillatory behavior (working protocell). More complex
bounded trajectories cannot be excluded, although numerical analyses on ran-
domly generated CRNs suggest that this fixed point is actually stable and
unique, but this remains a conjecture at this stage.7,8

As for the above necessary conditions, this sufficient condition only assumes
mass conservation of the embedded CRN and holds for any kinetics including
that for membrane precursor incorporation.

The main steps of the proof are summarized below, each step corresponding
to a distinct lemma:

1. Any autonomous dynamical system with bounded trajectories has a fixed
point.9 In particular, any reaction system with bounded density has a fixed
point. This can be deduced from Brouwer’s fixed point theorem (Wei 1962)
(Lemma 2).

2. If Ame is persistent (i.e. cme has a lower bound), then the cytoplasmic
density has an upper bound. This results from directly bounding Equa-
tion 13 taken for b = m . The chemical system trajectory is thus bounded
(Lemma 3).

3. If every siphon (of the embedded conservative CRN) containing Ame is fed,
then Ame is persistent. This is because if Ame were to disappear, then so
would all other species in at least one of the siphons containing Ame, and
this is contradictory with this siphon being fed (Lemma 4).

7 We were unable to construct a Lyapunov function for this protocell model. As mentioned
in Section 1.1, the Lyapunov function used in existing deficiency-based CRNT theorems re-
quires complex-balanced equilibria. Consistently, numerical simulations show that protocell
stationary growth states are not complex-balanced (see Footnote 1).

8 The fact that complex bounded trajectories cannot be excluded (in which case the
protocell might not be working) is the reason why Definitions 6 and 7 are kept distinct.

9 This fixed point may depend on the initial conditions. A typical example (considered
in Wei 1962) is a closed conservative chemical reaction system: both the trajectory upper
bound and the equilibrium point depend on the initial conditions (which determine the total
mass in the system). See also Footnote 10.
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We now enunciate and prove these lemmas.

Lemma 2 Consider a protocell for which the surface area-to-volume ratio ρ
remains constant. If the cytoplasmic density D = mTc remains bounded for
the entire protocell trajectory given by the autonomous differential equation
ċ = g(c) with g(c) = Sf + ρ0(Finput − Foutput) − µinstc, then there exists a
stationary point cst such that g(cst) = 0.

Proof The proof results from a generalization of Brouwer’s fixed point theorem
to dynamical systems, and was given in Wei 1962. This result is not specific to
chemical systems and holds for any continuous autonomous dynamical system
ẋ = g(x ) having a semiflow. A more restrictive statement of this result, based
on a similar proof as that given in Wei 1962 can also be found in Basener et al
2006 and Richeson et al 2002: if a subset K of the entire space of all possible x
is non-empty, convex and forward-invariant for the flow of g, then there exists
a fixed point x 0 such that g(x 0) = 0.10 ut

Lemma 3 Consider a protocell for which:

1. Nutrient uptake results from passive diffusion
2. The surface area-to-volume ratio ρ remains constant

If all concentrations for chemical species in Sme admit strictly positive lower
bounds, then for any moiety or positive linear combination of moieties b, the
corresponding quantity bTc has an upper bound. In particular, D = mTc is
bounded.

Proof If all concentrations for chemical species in Sme have stricly positive
lower bounds, then so has the membrane precursor incorporation rate Foutput ≥
Foutput,min > 0 because of Assumption 3. With the assumption of constant

ρ = ρ0 the growth rate is µinst(t) = ˙A /A which is given by Equation 3 or 4.
Whether given by any of these two equations, µinst(t) has a strictly positive
lower bound µinst(t) ≥ µmin = Foutput,min/Nme > 0, and the time evolution of

bTc(t) can be bounded as follows:

bTċ ≤ ρ0bTF input,max − µmin(Bme + bTc) (21)

where F input,max is the maximum nutrient flux vector and Bme = ρ0 ×
bme ×Nme. The above equation may be rewritten in a more compact form:

Ḃ ≤ ξ − µminB (22)

where B = bTc and ξ = ρ0b
TF input,max − µminBme. This is equivalent to:

Ḃ + µminB ≤ ξ (23)

10 The original proof in Wei 1962 holds even if the trajectory bound depends on the initial
conditions. Whereas the statement in Basener et al 2006 and Richeson et al 2002 relies upon
the existence of a convex and forward-invariant set, which corresponds to a trajectory bound
independent of the initial conditions (after a sufficient time).
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Multiplying both sides by exp(µmint) gives:

(Ḃ + µminB) exp(µmint) ≤ ξ exp(µmint) (24)

or equivalently:

˙(B exp(µmint)) ≤ ξ exp(µmint) (25)

Integrating from t′ = 0 until t′ = t gives:

B(t) exp(µmint)−B0 ≤ ξ
exp(µmint)− 1

µmin
(26)

where B0 = B(t = 0). Multiplying both sides by exp(−µmint) and rear-
ranging terms gives:

B(t) ≤ B0 exp(−µmint) + ξ
1− exp(−µmint)

µmin
(27)

The right-hand side is a bounded function, which proves that B(t) has an
upper bound. Applying this to the particular case of the mass, b = m , shows
that if all concentrations for chemical species in Sme have strictly positive
lower bounds, then the cytoplasmic density D is bounded. ut

Lemma 4 Consider a protocell for which:

1. Nutrient uptake results from passive diffusion
2. The surface area-to-volume ratio ρ remains constant

If every siphon Z (of the embedded conservative CRN) containing any species
in Sme is fed, then the concentrations trajectories of all species in Sme have
strictly positive lower bounds when starting from strictly positive initial con-
centrations (i.e. are persistent).

The proof will make use of a previous result that relates persistence to
siphons in CRNs. It was first proved in Angeli et al (2007) for conservative
CRNs and later extended to non-conservative CRNs in Angeli et al (2011). It
requires only mild assumptions on reaction kinetics (these should be nonnega-
tive, continuous, and monotonic functions of concentrations, with null reaction
rate if any reactant concentration is null). The key result is Theorem 4 in An-
geli et al (2011) which states that any extinction set is a siphon.11

We shall exploit this result by applying it to an extended non-conservative
CRN the dynamics of which are fully described by the ODE system given by
Equation 1, in the case of nutrient flux through passive diffusion and in the

11 An extinction set is defined as follows: if for some particular set of strictly positive initial
conditions, the corresponding ω-limit set of a bounded concentration vector trajectory has
zero concentration for some non-empty subset Z of all species, then Z is an extinction set.
Note that this definition as well as the statement of Theorem 4 in Angeli et al (2011) calls for
bounded concentration vector trajectories. However, its proof appears not to rely upon this
assumption and only requires continuity (of trajectories and kinetics), which is the reason
why we use it here in this extended form.
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case of constant surface area-to-volume ratio. This extended non-conservative
CRN is obtained by adding to the original embedded conservative CRN, the
following pseudo-reactions accounting for nutrient flux across the membrane,
membrane precursor incorporation, and dilution:

0 � Ai, for Ai ∈ Snu

Ame +
∑
Aj∈Sme, j 6=me ζjAj →

∑
Aj∈Sme, j 6=me ζjAj

Ai +Ame +
∑
Aj∈Sme, j 6=me ζjAj → Ame +

∑
Aj∈Sme, j 6=me ζjAj , for Ai ∈ S

The nutrient flux (bidirectional) pseudo-reaction has forward (constant)
rate equal to ρ0Finput,max,i for Ai ∈ Snu and reverse rate equal to ρ0Dici. The
rate of the (unidirectional) membrane precursor incorporation is ρ0Foutput({cj}j∈Sme

).
It only consumes one molecule of Ame but may require the presence of addi-
tional species Aj with stoichiometric coefficient ζj (e.g. catalysts) in case Sme

contains more than just Ame. And the rate of the (unidirectional) dilution for
species Ai is µinstci = (Foutput({cj}j∈Sme

)/Nme)ci in case membrane precursor
incorporation originates only from inside. If incorporation also occurs from the
outside, this can be taken into account through additional pseudo-reactions
Ai → 0 with rate (Foutput(cout)/Nme)ci for Ai ∈ S . Pseudo-reactions accou-
ting for membrane precursor incorporation and dilution and their rates have
only been given for the sake of completeness, but only the nutrient flux for-
ward pseudo-reaction is key to our proof of Lemma 4, as will be made clear
from the following lemma.

Lemma 5 If a non-conservative CRN contains a pseudo-reaction of the kind
0→ Ai, then no siphon may contain Ai.

Proof By definition of a siphon, if Ai were to belong to a siphon Z, then there
would at least be one species on the reactant side of the reaction 0 → Ai
that would also belong to Z. But this is impossible because no such species
exists. ut

In the particular case of nutrient influx by diffusion and of constant surface
area-to-volume ratio, if the subset {Ai} is fed, then Ai cannot go extinct,
whatever other reactions in the CRN may consume Ai.

We are now in a position to prove Lemma 4.

Proof Assume one of the species in Sme were not persistent. Then this species
would belong to a siphon Z of the extended non-conservative CRN. By def-
inition of a siphon, Z would also be a siphon of the embedded conservative
CRN, that is made of a subset of all reactions in the extended non-conservative
CRN. And at least one of the nutrient species Ai in Snu would also belong to
the siphon Z because every siphon of the embedded conservative CRN is fed.
But by virtue of Lemma 5 the associated nutrient flux forward pseudo-reaction
0→ Ai, Ai ∈ Snu, prevents the existence of any such siphon (of the extended
non-conservative CRN). This proves that all species in Sme are persistent. ut
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We now combine Lemmas 2, 3 and 4 to prove Theorem 3.

Proof If every siphon (of the embedded conservative CRN) containing any
species in Sme is fed, Lemma 4 ensures that all species in Sme are persis-
tent. Applying Lemma 3 to the particular case of the mass ensures that if all
species in Sme are persistent, then the cytoplasmic density D is bounded. And
Lemma 2 ensures that if D is bounded, the protocell dynamical system has
a stationary point. Persistence of all species in Sme further ensures that this
stationary point corresponds to a positive growth rate.

Further, if every siphon of the embedded conservative CRN (not just those
containing any species in Sme) is fed with some nutrient flux, then Lemma 4
ensures that all chemical species are persistent and present in the fixed point.

ut

The proof only ensures the existence of a fixed point and a bounded tra-
jectory, but does not guarantee its unicity nor its stability.

Summary of mathematical results and assumptions

Table 2 summarizes mathematical results proved in the preceding two sections,
along with required assumptions.

Result statement Assumptions
Proposition 1 ċ = 0 =⇒ ρ̇ = 0

– Assumptions 1-6 in Sec-
tion 3.1Necessary

conditions

Theorem 1 Each moiety must be fed

Theorem 2
Each siphon must be fed
or connected to its comple-
ment via a pass reaction

Sufficient
condition

Theorem 3 Each siphon is fed

– Assumptions 1-6 in Sec-
tion 3.1

– Fixed-diameter filament
shape (ρ = ρ0 constant)

– Nutrient influx by diffusion

Table 2 Summary of results in Sections 4 and 5 and required assumptions. The statement
of Theorem 2 has been simplified by only applying it to the particular case where b = m .

6 Illustration with examples

6.1 Simple example

Consider the same CRN example as given at the end of Section 2:

A+B � C
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2B � C

We recall that it is conservative with (mA,mB ,mC) = (1, 1, 2) as single moiety,
and with {B,C} as only minimal siphon.

Let us endow this CRN with mass-action kinetics by letting k+1,2 (resp.

k−1,2 be the forward (resp. reverse) kinetic constants for the first and second
reaction.

Consider a protocell embedding such a CRN with C chosen as membrane
precursor (with no other species required for membrane precursor incorpora-
tion). The corresponding rate is assumed to also follow mass-action kinetics
with constant Kme per unit area, Foutput = KmecC . As in the previous sections,
Nme is the number of molecules per unit area in the structured membrane.

Let us assume that A is the single nutrient flowing across the membrane
through passive diffusion with D as effective diffusion constant, and that the
protocell has a constant surface area-to-volume ratio ρ = ρ0. Let us also as-
sume that A is the only species present in the outside growth medium so that
membrane precursor incorporation only occurs from the inside. The first nec-
essary condition (Theorem 1) is met because the support of the only moiety is
the full set of species which is fed. The second necessary condition (Theorem 2)
is alo met because A + B → C is a pass reaction (the net mass transfer into
Z is mC −mB = mA > 0). But the sufficient condition given in Theorem 3 is
not met because the minimal siphon {B,C} is not fed.

Consistently, we shall show analytically that for certain kinetic and mem-
brane parameters, the protocell ODE system cannot have any fixed point.

The protocell ODE system is given by:

˙cA = ρ0D(cout,A − cA)− k+1 cAcB + k−1 cC − µinstcA (28)

˙cB = −k+1 cAcB + k−1 cC − 2k+2 c
2
B + 2k−2 cC − µinstcB (29)

˙cC = k+1 cAcB − k
−
1 cC + k+2 cB

2 − k−2 cC − ρ0KmecC − µinstcC (30)

Looking for a fixed point, we set all time derivatives to zero. Adding Equa-
tions 29 and 30 with time derivatives set to zero gives:

− k+2 cB2 + k−2 cC − µinstcB − ρ0KmecC − µinstcC = 0 (31)

Rearranging terms, we obtain:

k+2 cB
2 + µinst(cB + cC) = (k−2 − ρ0Kme)cC (32)

The LHS of the above equation is positive and the RHS is positive only if
k−2 > ρ0Kme. This shows that the existence of a fixed point is excluded within
a certain range of kinetic and membrane parameters.

Choosing B as nutrient instead of A, the sufficient condition becomes met
which ensures the existence of a fixed point. Analytically proving the existence
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of such a fixed point is quite challenging even with such a simple network, and
this illustrates the power of Theorem 3.

The fact that the sufficient condition is not met does not preclude the ex-
istence of a fixed point. Indeed, Appendix A shows a variation of this simple
example where nutrient influx results from active transport instead of passive
diffusion: the nutrient A is only present outside and is transformed into C
across the membrane under the activation of B. Appendix A proves analyti-
cally that such a protocell may or may not exhibit a fixed point (other than
the degenerate zero concentration vector corresponding to an empty protocell)
depending on kinetic and membrane parameters.

6.2 Whole-cell model inspired by Molenaar et al 2009

In this mechanistic, coarse-grained whole-cell model, metabolites, proteins and
chemical reactions are the same as in Molenaar et al 2009. The original model
was a constraint-based model which presumed the existence of a stationary
growth state, and which was used to gain insight into specific characteristics
of the cell. Instead, the same coarse-grained description is used here in a fully
mechanistic model, in order to determine whether a stationary growth state
exists for any choice of kinetic parameters or not.

Embedded CRN The embedded CRN consists of two metabolic reactions:

S + E1 → P + E1 (33)

P + E2 → L+ E2 (34)

and of four protein synthesis reactions:

nRP +R→ 2R (35)

n1P +R→ E1 +R (36)

n2P +R→ E2 +R (37)

nTP +R→ T +R (38)

There are seven participating chemical species: three metabolites (intra-
cellular substrate S, precursor P , and lipid L) and four proteins (ribosome
R catalyzing the transformation of P into any protein, enzyme E1 catalyzing
the metabolization of S into P , enzyme E2 catalyzing the metabolization of
P into L, and transmembrane transporter T ). ni is the number of precursors
P required to synthesize a protein indexed by i (i = 1, 2, R or T , for E1, E2,
R or T , respectively).

In the following, cX is the concentration of species X for X = S, P , L, R
or T , and c1 (c2) is the concentration of E1 (E2), respectively. All the above
reactions are endowed with Michaelis-Menten kinetics with kinetic coefficient
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kcati and saturation concentration Kmi), where i is the protein index, i = 1, 2
or R (the relation between transmembrane transporter T and substrate influx
is more complex than a simple Michaelis-Menten relation and is considered
below).

The reaction rates for the two metabolic reactions (indexed by their reac-
tion product, P and L, respectively) are given by:

νP =
kcat1cSc1
Km1 + cS

(39)

νL =
kcat2cP c2
Km2

+ cP
(40)

And the rate of synthesis of a protein indexed by i (i = 1, 2, R or T ) is
given by:

νi =
kcatRnicP cR

KmR
+ n1cP + n2cP + nRcP + nT cP

=
kcatRnicP cR
KmR

+ ntotcP
(41)

where ntot = n1 + n2 + nR + nT . The above formulation reflects the dis-
tribution of the total ribosome concentration cR: the fraction of ribosome
devoted to synthesis of a protein indexed by i (i.e. bound to the corresponding
mRNA) is φi = nicP /(KmR

+ ntotcP ) while the fraction of free ribosomes is
φfree = KmR

/(KmR
+ ntotcP ). We thus have νi = φikcatRcR. Such a formula-

tion is consistent with the mechanistic model of Scott et al 2010, as well as
with that of Weiße et al 2015 with the additional simplifying assumption that
all genes are transcribed at the same rate in the present case.

Membrane growth L and T self-assemble into a structured membrane. Both
contribute to the total surface membrane surface area A :

A = AL + AT (42)

where AL (AT ) is the contribution of L (T ) to the membrane surface area,
respectively. We call α the fraction of total membrane surface area occupied
by T :

α =
AT

A
(43)

Assuming the incorporation of both L and T is proportional to AL
12, we

have:

ȦL

AL
=
Foutput,L

NL
(44)

and:

12 L or T can only incorporate among already self-assembled L. As in Molenaar et al 2009,
this excludes a growing membrane composed only of T but the corresponding process is
modeled mechanistically here, instead of being imposed as en external constraint.
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ȦT

AL
=
Foutput,T

NT
(45)

where Foutput,L (Foutput,T ) is the rate of incorporation of L (T ) in the
growing membrane, and NL (NT ) is the number of molecules of L (T ) per
unit area in the self-assembled membrane, respectively.13

As in the previous example, Foutput,L (Foutput,T ) is assumed to follow
mass-action kinetics with constant KL (KT ) per unit area, Foutput,L = KLcL
(Foutput,T = KT cT ), respectively.

Assuming for simplicity a fixed-diameter filament shape (ρ = ρ0), the
growth rate is given by µ = ˙A /A . Adding Equations 44 and 45 and mul-
tiplying the resulting sum by AL/A = 1− α gives:

µ =
˙A

A
= (1− α)

(
Foutput,L

NL
+
Foutput,T

NT

)
(46)

The time derivative of α is obtained by deriving Equation 43:

α̇ =
ȦT

A
− AT

A

˙A

A
=

AL

A

ȦT

AL
− AT

A

AL

A

˙A

AL
(47)

which, using the relations α = AT /A and 1 − α = AL/A , as well as
Equations 44 and 45, gives:

α̇ = (1− α)

(
Foutput,T

NT
− α

(
Foutput,L

NL
+
Foutput,T

NT

))
(48)

Nutrient influx The nutrient influx per unit area, Finput,S , is assumed propor-
tional to the fraction of total membrane surface area occupied by T , which is
α:

Finput,S = αφinput,S (49)

where φinput,S is the nutrient influx rate per unit surface area occupied by
T (or equivalently, φinput,S/NT is the nutrient influx rate per self-assembled
molecule of transporter). We shall consider two cases for φinput,S :

1. Facilitated diffusion (as with the GLUT glucose transporter family in mam-
malian cells, see Olson and Pessin 1996):

φinput,S =
D(cout,S − cS)

1+ | cout,S−cSKmS
|

(50)

where cout,S is the substrate concentration in the outside growth medium
and D is an effective diffusion constant.

13 Or equivalently, 1/NL (1/NT ) is the membrane surface area per self-assembled molecule
of L (T ), respectively.
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2. Active transport (as with the PTS glucose transporter in E. coli, see Jahreis
et al 2008): in the most general formulation, φinput,S = φinput,S(cout,S , cact)
which should be an increasing and saturating function of the outside nu-
trient concentration cout,S and of an inside activator concentration cact
(see also discussion in Section 7.2). Consistent with the original model of
Molenaar et al 2009 which has no explicit energy currency metabolite, we
arbitrarily assume that cact is constant, which gives:14

φinput,S =
KScout,S
1 +

cout,S
KmS

(51)

Applicability of necessary and sufficient conditions The model described here
is different from the one described in Section 3 because of the composite nature
of the membrane, and because nutrient flows only through the transporter T .
It can be easily seen that the general proofs of the two necessary conditions
are still valid, even with a composite membrane and selective nutrient flow.
Let us verify whether these conditions are met or not for the present example.

The embedded CRN is conservative and has a single moiety because there
is only one (up to a multiplying factor) solution to the mass conservation
problem: masses of all metabolites, S, P and L, must be equal, mS = mP =
mL = m; and the mass mi of any protein indexed by i is given by mi = ni×m.
The first necessary condition is thus met with a single nutrient influx of S.

The embedded CRN has three minimal siphons: Z1 = {S}, Z2 = {R} and
Z3 = {E1, P}. Z1 is fed. Z2 is not but nRP + R → 2R is a pass reaction
for Z2, with ∆mZ2

= mR as net mass inflow into Z2. Z3 is also not fed but
S + E1 → P + E1 is a pass reaction for Z3, with ∆mZ3 = mP . The second
necessary condition is met because every siphon is either fed or connected to
its complement through a pass reaction.

But it can also be easily seen that the proof of the sufficient condition is
no longer valid with a selective nutrient flow only through T (it would still be
valid with a composite membrane such that nutrient could flow through any of
its constituents). This is because (i) the α multiplicative term in Equation 49
might vanish even if φinput,S were to meet the condition that each siphon
be fed; and (ii) Equations 46 and 48 cannot be easily associated to pseudo-
reactions, even introducing new pseudo-species.15

The mathematical results of the main text do not enable us to make any
firm statement regarding the existence of a stationary growth state. Yet, Ap-
pendix B proves that a stationary growth state exists for any parameter set.
This shows that when necessary conditions are met but no sufficient condi-

14 As explained in the next discussion section, the transmembrane protein T is distinct
from the activator molecule which is a high-energy metabolite, down-converted to a lower-
energy molecule in the active transport process.
15 Even if the proof of the sufficient condition still held, this sufficient condition (which

grants the existence of a stationary growth state if every siphon is fed) would obviously not
even be met because neither Z2 nor Z3 are fed.
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tion is applicable, one cannot draw any firm conclusions without a detailed
analysis.

Such a mechanistic coarse-grained full-cell model could be analyzed further
to re-derive some of the already established bacterial growth laws (Scott et al
2010; Weiße et al 2015). But the point we wish to make is different: Appendix A
presents a simple protocell example for which the necessary conditions are met
but the sufficient condition is not, and for which a stationary growth state only
exists within a certain range of parameters; this second example is a coarse-
grained whole-cell model for which the necessary conditions are met but the
sufficient condition is not even applicable. Yet, a stationary growth state exists
for any parameter set. This shows that when necessary conditions are met but
no sufficient condition is applicable, one cannot draw any firm conclusions
without a detailed analysis.

7 Discussion

7.1 Production, degradation, and leakage of chemical species

The proposed protocell model relies upon any conservative CRN. This also
encompasses any situation where elementary building blocks (e.g. nucleotides)
may be degraded or produced from simpler constituents inside the protocell.

The proved necessary and sufficient conditions even hold in the case where
some species may leak out of the membrane. We shall assume that Sleak,
Sleak ∩ Snu = ∅, is the set of leaking species. With leakage, any conserved
quantity bTc decreases at a faster rate, which implies that inequalities 14 and
19 still hold, and so do the necessary conditions.

Likewise, the density upper bound granted by Lemma 3 in case of per-
sistence of any species in Sme also holds. The only outstanding question is
whether persistence of any species in Sme (in case every siphon containing
any species in Sme is fed) still holds. The following pseudo-reactions must be
added to the non-conservative extended CRN to account for leakage:

Ai → 0, for Ai ∈ Sleak

By definition of a siphon, such pseudo-reactions have no impact on siphons,
because no species appears on the product side.This proves that Lemma 4 also
holds with leakage of some species, and so does the sufficient condition.

In writing the above pseudo-reaction, we have implicitly assumed that
leakage occurs through a passive mechanism such as diffusion, and that the
leaking species are absent from the outside growth medium. If the leaking
species are also present in the outside growth medium, they should be handled
as any other nutrient species. The sufficient condition grants the existence of a
fixed point, but does not tell us which species concentration settles at a higher
or lower inside vs. outside concentration. In such a stationary growth regime,
we can simply observe that stationary concentrations settle to values such that
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as a whole there is a net positive material influx to ensure a positive growth
rate, i.e. the rate of mass nutrient influx exceeds the rate of mass leakage.

This proves that the same necessary conditions hold even with leakage of
any kind, and that the sufficient condition holds even with leakage by passive
diffusion.

7.2 Active transport vs. passive diffusion

The necessary conditions of Theorems 1 and 2 hold for any type of nutrient
influx (e.g. passive diffusion or active transport). But the sufficient condition
of Theorem 3 only holds in the case where nutrient flux results from passive
diffusion (and for a constant surface area-to-volume ratio).

Considering active transport instead of passive diffusion, and assuming
a single nutrient species for simplicity, a third species participating in the
CRN should be assigned a specific role, beyond the membrane precursor and
nutrient: the activator Aact, the consumption of which would be required to
import the primary nutrient Apnu from the outside growth medium inside the
protocell. The corresponding reaction could be modeled as a unidirectional
surfacic reaction occurring across the membrane:

Apnu +Aact → Atnu +
∑
Ai∈Sbyprod

ηiAi

where Atnu is the transformed nutrient under the action of Aact and where
Ai ∈ Sbyprod are additional potential byproduct species that may be produced
with stoichiometry coefficient ηi.

The original primary nutrient Apnu (e.g. glucose) may never be present
inside the protocell (unless it can also diffuse across the membrane) while Atnu

is the transformed nutrient inside the protocell (e.g. glucophosphate). This
nutrient input reaction may thus be the only reaction in which the nutrient
species Apnu participates.16 In that case the full set of species excluding the
primary nutrient, S \ {Apnu}, is obviously a siphon Z. The nutrient input
reaction is a pass reaction for Z but this siphon is not fed (i.e. there is no
species in Z crossing the membrane). This means persistence of Ame can no
longer be ensured. In fact, the zero concentration vector (all species inside the
protocell going extinct) is a fixed point of the ODE system, which is not the
case with passive diffusion because there is still a constant strictly positive
nutrient flux Finput,max,nu = Dcout,nu when all concentrations are null.

16 The activator molecule is distinct from the transmembrane protein introduced in the
example of Section 6.2, which acts as a channel for Apnu and which was not included in
the generic model of Section 3. In the case of the PTS glucose transport system for E.
coli, this activator is phosphoenolpyruvate (pep) which is down-converted to pyruvate (pyr)
while having at the same time glucose (glu) converted to glucophosphate (g6p) (Jahreis et al
2008). The corresponding transport reaction is glu + pep → g6p + pyr, which only occurs
across the membrane so that only glucophosphate (and not glucose) is present inside the
cell. This activator molecule should also not be confused with a co-factor, which is typically
left unchanged by a biochemical reaction. The activator molecule should rather be seen as
an energy currency fueling the active transport process.
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The fact that the sufficient condition is not met does not preclude the exis-
tence of a fixed point, as shown by the examples of Section 6 and Appendices A
and B.

7.3 Applicability to modern evolved cells or to protocells

Similar to other CRNT results, the proved necessary and sufficient conditions
only rely upon stoichiometric and topological characteristics of the embed-
ded CRN, and are independent of the reaction kinetics. That living systems
might ’work’ for any parameter set is counterintuitive and calls for a specific
discussion.

In actual chemical reaction networks, kinetics are constrained by thermo-
dynamics (Ederer and Gilles 2007). A CRN in a closed system must verify
detailed balance at thermodynamic equilibrium, which induces constraints
such as the Wegscheider condition on the choice of kinetic parameters. As
proofs hold for any conservative CRN, they also hold for the particular class
of thermodynamically-consistent CRNs. Yet, there are several reasons why
living systems might only ’work’ within specific parameter ranges.

1. A first reason is that even if the sufficient condition is met, Theorem 3
only ensures a strictly positive growth rate, which could be so low that
in practice this would correspond to no growth. Indeed, endowing random
conservative CRNs with thermodynamically-consistent kinetics, numerical
simulations show that a significant growth rate is only achieved when the
nutrient (membrane precursor) Gibbs energy per unit molecular weight is
high (low), respectively (Bigan et al 2015a).

2. A second reason is that non-fed siphons might be quite widespread:
(a) With respect to modern evolved cells, biochemical reaction networks

exhibit non-fed siphons. Besides the above-discussed active transport
case, the subset of species Z = {R} consisting of only the ribosome R
always constitute a siphon, as illustrated by the coarse-grained mech-
anistic whole-cell model presented in Appendix B. This is because the
reactions where R appears on the reactant side are: (i) either protein
synthesis reactions of the kind P + R → E + R where P is a lumped
term designating all amino-acid precursors and E is the synthesized
protein; or (ii) a ribosome synthesis reaction of the kind P +R→ 2R.
Z = {R} verifies the definition of a siphon, and this siphon is not fed
because ribosomes are not imported from the outside growth medium
but only synthesized inside.

(b) With respect to protocells, non-fed siphons may be key to the effective
chemical insulation between the inside and the outside of the protocell.
Nutrients could remain stable in the outside growth medium and be
metabolized into all protocell constituents inside the protocell. This
suggests that the set of all cell constituents excluding the nutrient would
be a siphon, which would be empty in the outside growth medium. We
have proposed that such chemical architectures, combined with a pass
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reaction catalyzed by the membrane, might have led to the emergence
of active transport (which provides the ultimate insulation between the
inside and the outside) by an evolutionary scenario (Bigan et al 2015c).

This raises the question of what may be needed to make a living system
’work’ when necessary conditions are met, but the sufficient condition is
not. Equation 18 shows that the pass reaction should transfer mass into
the siphon at a sufficient rate for the siphon not to go empty (persistence of
species in the non-fed siphon ensures a bounded density and the existence of
a fixed point). This rate is expected to increase on (i) increasing the kinetic
coefficient of the pass reaction, (ii) increasing the standard Gibbs energy
drop across the pass reaction if it is reversible (so as to keep sufficiently low
the rate at which this reverse reaction removes matter from the siphon),
or (iii) increasing the synthesis rate of other species in Z appearing on the
reactant side of the pass reaction (which play the same role as Aact in the
case of active transport). These three factors should contribute to making
the system ’work’.
This is consistent with the ’working’ parameter range identified for the
simple example analyzed in Appendix A: the active transport pass reac-
tion is unidirectional (corresponding to an infinite standard Gibbs energy
drop), and the existence of a stationary growth state is granted provided
the kinetic coefficient (k−2 ) of the reaction synthesizing the species in Z
appearing on the reactant side of the pass reaction (B), is sufficiently high.
It is also consistent with the example of Section 6.2 and Appendix B: the
pass reactions are also unidirectional, and the existence of a stationary
growth state is granted for any parameter set.
It should be noted that multiple pass reactions may have to be crossed to
reach a non-fed siphon starting from a nutrient: combining the above ribo-
some siphon example (Z = {R}) with nutrient influx by active transport,
would require at least two pass reactions to be crossed: the nutrient influx
pseudo-reaction; and the ribosome synthesis reaction, P +R→ 2R.

3. A third and last reason is that the assumption of a fixed-diameter filament
shape might not necessarily hold.17 Although filamentation is a widely ob-
served growth mode (Jensen and Woolfolk 1985; Dickinson 2008), vesicles
most often take a spherical shape (Stano and Luisi 2010). Besides, even
for rod-shaped bacteria growing by elongation, the rod diameter is not
necessarily constant: it has been observed to increase on increasing nutri-
ent quality and growth rate for some Gram-negative bacteria (Schaechter
et al 1958). This suggests a complex interplay between osmotic pressure,
metabolism and the mechanical properties of the membrane. Further the-

17 Such an assumption does not automatically grant synchronization of the rates of syn-
thesis of membrane and cytoplasmic constituents: a counterexample is given by the simple
example of Appendix A, for which the existence of a fixed point is only granted within some
parameter range.
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oretical work is needed to investigate protocell behavior with a refined
modeling of the membrane taking into account its mechanical properties.18

On the other hand, and in spite of these caveats, results presented in this
work also suggest that, even if living systems might not ’work’ for any param-
eter set, they may well do so over very broad ranges of parameters. In partic-
ular for protocells, synchronization between the rate of synthesis of membrane
and cytoplasmic constituents may not require any fine tuning of kinetic or
membrane parameters, but may simply emerge as a system-level property.19

This result is expected to be relevant for the origins of life and the artifi-
cial life research communities, because it shows that the emergence of cellular
self-replication is more likely than one might think at first sight. The results
presented in this work are only a first step towards a finer delineation of mini-
mal conditions for cellular self-replication. In particular, more theoretical work
is required towards identifying the conditions under which pass reactions can
transfer mass into siphons at a sufficient rate to make the cell ’work’. The
present results should also stimulate the further development of fully mech-
anistic whole-cell models (i.e. including a mechanistic description of elemen-
tary processes leading to cellular growth, starting with membrane surface area
growth). The conclusions of such models should have a lesser dependence on
global phenomenological assumptions (such as constant density in Weiße et al
2015, or constant RNA polymerase concentration in Tadmor and Tlusty 2008).

8 Conclusion

We have proposed a generic protocell model consisting of any conservative
chemical reaction network embedded within a membrane resulting from the
self-assembly of one the chemical species participating in the reaction net-
work. The membrane is assumed to be semi-permeable to some other chemical
species (nutrients) flowing across the membrane. With these assumptions, we
have proved that a necessary condition for the protocell to grow and divide
periodically is that every moiety must be fed, and that a stronger necessary
condition implies that every siphon must be connected to its complement
through a pass reaction resulting in net positive mass transfer into the siphon.
With the additional assumptions of constant surface area-to-volume ratio and
of nutrient flow by passive diffusion, we have proved that a sufficient condi-
tion for the existence of a stationary growth state is that every siphon be fed.

18 Since the original submission of the present work, we have carried out additional nu-
merical and theoretical work on protocells having a membrane that is so flexible that the
osmotic pressure is quasi-instantaneously balanced across the membrane. Filamentation was
found to be an emerging growth mode in such a case, but with a filament diameter that
depends on the environmental conditions as well as on the membrane and chemical reaction
network parameters (Bigan et al 2015d).
19 This statement only applies to protocells. Some modern evolved cells have acquired

complex regulatory mechanisms to regulate their size or shape, which are presumably fine-
tuned. An example is the osmotic stress pathway and osmoadaptation in yeast (Hohmann
2002).
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These conditions hold for any kinetics, membrane parameters or diffusion con-
stants. This work is a first step towards a finer delineation of chemical reaction
networks compatible with cellular growth. It shows that cellular growth may
simply emerge as a system-level property without requiring any fine tuning of
kinetic or membrane parameters. We hope this work will further stimulate the
development of formal fully mechanistic fine-grained whole-cell models, which
might eventually lead to the identification of a new generation of ’growth laws’
without requiring any global phenomenological assumption.
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A Analytical treatment of a simple example protocell with nutrient
influx by active transport

Consider the same simple CRN example endowed with mass-action kinetics as described in
Section 6, but where the first reaction is assumed unidirectional and only occurs across the
membrane:

A+B → C
2B � C

A is the primary nutrient present in the outside growth medium, cout,A > 0 and is absent
from the protocell, C is the transformed nutrient under activation by B. B and C are the
only species present inside. C also plays the role of membrane precursor with incorporation
kinetic coefficient Kme per unit area. We shall assume a constant surface area-to-volume
ratio ρ0 so that the surfacic kinetic coefficient of the first surfacic reaction can be transformed
in a volumic kinetic coefficient, k+1 . As in Section 6, the kinetic coefficients for the second

reaction are k±2 .
The protocell ODE system is given by:

˙cB = −k+1 cout,AcB − 2k+2 cB
2 + 2k−2 cC − µinstcB (52)

˙cC = k+1 cout,AcB + k+2 cB
2 − k−2 cC − ρ0KmecC − µinstcC (53)

with the growth rate µinst given by:

µinst =
KmecC

Nme
(54)

Looking for a fixed point, we set all time derivatives to zero. Adding Equations 52 and
53 with time derivatives set to zero results in the same equation as Equation 32 which we
restate here:

k+2 cB
2 + µinst(cB + cC) = (k−2 − ρ0Kme)cC (55)

Replacing the growth rate µinst by its expression given in Equation 54 gives a quadratic
equation that uniquely determines cB as a function of cC provided k−2 > ρ0Kme and cC <

Nme(
k−2
Kme

− ρ0):

cB = φ1(cC) =
−KmecC +

√
(KmecC)2 + 4k+2 cCNme((k−2 − ρ0Kme)Nme −KmecC)

2k+2 Nme

(56)

It can be verified that φ1(cC) = 0 for cC = 0 and for cC = Nme(
k−2
Kme

− ρ0), that it

is strictly positive for cC in between those two zeros, and that its derivative is infinite at
cC = 0.

Adding Equation 52 to Equation 53 multiplied by two (thus obtaining the time derivative
of the system density) and setting all time derivatives to zero, we obtain:

k+1 cout,AcB − 2ρ0KmecC − µinst(cB + 2cC) = 0 (57)

Replacing the growth rate µinst by its expression given in Equation 54 and rearranging
terms gives the following expression for cB as a function of cC :

cB = φ2(cC) =
2KmecC(ρ0Nme + cC)

k+1 cout,ANme −KmecC
(58)

It can be verified that φ2(cC) = 0 for cC = 0, that φ2(cC) → +∞ with cC →
k+1 cout,ANme

Kme
, that it takes strictly positive values for cC in between, and that its derivative

is finite at cC = 0.



38 Erwan Bigan et al.

Because at cC = 0, the derivative of φ1 is infinite and that of φ2 is finite, φ1(cC) >
φ2(cC) in the neighbourhood of cC = 0. Besides, φ2(cC) > φ1(cC) in the neighbourhood of
some strictly positive cC value because of the following considerations:

1. If k+1 cout,A > k−2 − ρ0Kme, then φ2(cC) > φ1(cC) = 0 at cC = Nme(
k−2
Kme

− ρ0).

2. Else if k+1 cout,A ≤ k
−
2 −ρ0Kme, then φ2(cC)→ +∞ and φ1(cC)→ φ1(Nme(

k−2
Kme

−ρ0))

(which is finite) when cC → Nme(
k−2
Kme

− ρ0).

This implies that cB = φ1(cC) and cB = φ1(cC) intersect for some strictly positive set
of concentrations (cB0, cC0).

We have thus proved the existence of a fixed point provided k−2 > ρ0Kme. This simple
example illustrates the fact that in the case of active transport, the protocell may or may
not exhibit a fixed point (other than the degenerate zero concentration vector corresponding
to an empty protocell) depending on kinetic and membrane parameters.
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B Analytical treatment of a mechanistic, coarse-grained whole-cell
model inspired by Molenaar et al 2009

This appendix proves analytically that the whole-cell model described in Section 6.2 exhibits
a stationary growth state for any parameter set.

B.1 ODE system

The ODE system governing the cell dynamics is composed of:

1. Three differential equations for metabolites:

˙cS = ρ0αφinput,S − νP − µcS (59)

˙cP = νP − νL − n1ν1 − n2ν2 − nRνR − nT νT − µcP (60)

˙cL = νL − ρ0Foutput,L − µcL (61)

2. Four differential equations for proteins:

ċi = νi − µci (62)

where i = 1, 2 or R, and:

˙cT = νT − ρ0Foutput,T − µcT (63)

3. One differential equation for α (Equation 48)

B.2 Expressing all concentrations as functions of α and of the normalized
precursor concentration p = cP /KmR

Looking for a stationary state, we set all time derivatives to zero. Combining Equations 62
and 41, both taken for i = R, gives:

µ =
kcatRnRp

1 + ntotp
(64)

where p = cP /KmR is the normalized precursor concentration. Combining Equations 62
and 41 for j = 1, 2 and R together gives:

ci =
ni

nR
cR (65)

where i = 1 or 2.
Combining Equations 63, 62 (taken for i = R) and 41 (taken for i = R and T ) gives:

cR =
nR

nT
cT (1 + ρ0

KT

µ
) (66)

Equation 48 for α gives (excluding the degenerate case α = 1 for which µ = 0):

α =

Foutput,T

NT

Foutput,L

NL
+
Foutput,T

NT

(67)

or equivalently:

1− α =

Foutput,L

NL

Foutput,L

NL
+
Foutput,T

NT

(68)
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We are now in a position to express all concentrations (except cS) as a function of two
unknowns, α and the normalized precursor concentration p. For simplicity, we shall keep
µ in these expressions, knowing than it is a simple function of p given by Equation 64.
Combining the above equation with Equation 46, gives:

µ =
Foutput,L

NL
(69)

and:

α

1− α
µ =

Foutput,T

NT
(70)

From which cL and cT are extracted:

cL = µ
NL

KL
(71)

cT = µ
α

1− α
NT

KT
(72)

Feeding Equation 72 in Equation 66, and feeding the result in Equation 65, gives:

ci =
α

1− α
ni

nT
NT (ρ0 +

µ

KT
) (73)

where i = 1, 2 or R. Finally, we recall that, by definition, cP = p×KmR .

B.3 Relating α to p

Setting the time derivative of cL (given by Equation 61) to zero, using Equation 40, and
rearranging terms gives:

kcat2cP c2

Km2 + cP
= KL(ρ0 +

µ

KL
)cL (74)

Defining θ = KmR/Km2 , using Equations 71 (for cL), 73 (for c2) and 64 (for µ), and
rearranging terms gives:

1− α
α

=

kcat2θ

1+θp

kcatRnR

1+ntotp

n2

nT

NT

NL

ρ0 + µ
KT

ρ0 + µ
KL

(75)

Equation 75 defines a monotonic univocal relation between α and p, such that 0 < α(p =
0) = α0, α(p = +∞) = α∞ < 1. α0 may be lower or greater than α∞ depending on the
specific choice of parameters.

B.4 Determining two independent relations of the kind cS = φ1,2(p)

Setting the time derivative of cP (Equation 60) to zero, dividing by cR and rearranging
terms, gives:

kcat1cS

Km1 + cS

n1

nT
=
kcat2θp

1 + θp

n2

nT
+ µ

(n1
2 + n2

2 + nR
2 + nT

2)nR

nT
+ µ

pKmR

NT (ρ0 + µ
KT

)

1− α
α

(76)

Combined with Equation 75, this defines a function cS = φ1(p) over the interval
[0; pmax,1[, where pmax,1 is the value for which the right-hand side (RHS) of Equation 76
verifies RHS(pmax,1) = kcat1n1/nT . This function is such that φ1(p = 0) = 0 (and this is
the only zero of φ1), and φ1(p)→ +∞ if p→ pmax,1.
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Setting the sum of the time derivatives of cS , cP and cL (sum of Equations 59, 60 and
61) to zero and rearranging terms gives:

(77)
ρ0αφinput,S = µcS + µ

(n1
2 + n2

2 + nR
2 + nT

2)

nT
NT (ρ0 +

µ

KT
)

α

1− α
+ µpKmR + µ(ρ0 +

µ

KL
)NL

Combined with Equation 75, this defines a function cS = φ2(p). Considering in turn the
two different cases for nutrient influx:

1. Facilitated diffusion: φinput,S is the function of cout,S and of cS given by Equation 50.
If p = 0, then the RHS of Equation 77 is null, and the LHS is also null iff cS = cout,S .
We thus have φ2(p = 0) = cout,S . If p→ +∞, then RHS → +∞ while the LHS cannot
exceed a maximum value ρ0α∞Dcout,S which is reached if cS = 0. Therefore, there
must exist pmax,2 such that φ2(pmax,2) = 0.

2. Active transport, φinput,S is only a function of cout,S and is thus a constant with respect
to the internal state variables. It can be verified that φ2(p) is a decreasing function of p
such that φ2(p = 0) = +∞ and φ2(p = pmax,2) = 0 where pmax,2 is defined by letting
cS = 0 in Equation 77.

In any of the two above cases, we have φ2(p = 0) > φ1(p = 0) and φ2(p = pmax) < φ1(p =
pmax) where pmax = min{pmax,1, pmax,2}. This implies that φ1(p) and φ2(p) thus intersect
for a finite pst which fully defines a stationary growth state.

In the second above case, it is to be expected that if active transport had been more
rigorously modeled by taking into account the activator introduced in Section 7.2 (equivalent
to an energy currency, which would be consumed or down-converted by the active transport
process), a stationary growth state might only exist provided the rate of synthesis of this
energy currency is sufficient. This would be a situation similar to that described by the
simple example of Appendix A.
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