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Nitsche’s method for interface problems in computational 
mechanics

Peter Hansbo
Department of Applied Mechanics, Chalmers University of Technology, Göteborg, Sweden

We give a review of Nitsche’s method applied to interface problems, involving real or artificial 
interfaces. Applications to unfitted meshes, Chimera meshes, cut meshes, fictitious domain methods, 
and model coupling are discussed.

1 Introduction

In 1971 Nitsche [21] introduced a simple idea for handling Dirichlet boundary conditions
weakly without the use of Lagrange multipliers. Had this been the only use for his idea, it
would have remained a footnote in computational mechanics. However, the real strength of
the idea lies in the generality with which interface problems can be treated: arbitrary degree
polynomial approximations, arbitrary (shape regular) meshes, even different physical models
can be used on either side of a given (real or artificial) interface. In this review paper, I
will give several applications of the method in the hope that the power of the idea will come
through.

2 Nitsche’s method for handling Dirichlet boundary conditions

2.1 Formulation

Let us consider the typical Poisson model problem of finding u such that

−Δu = f in Ω, u = g on ∂Ω, (1)

where Ω is a bounded domain in two or three space dimensions, with outward pointing normal
n, and f and g are given functions. For simplicity, we shall assume that Ω is polyhedral
(polygonal). The normal way of formulating a finite element method for this problem is to
first write the problem in weak form, using a function space

Vg = {v ∈ H1(Ω) : v = g on ∂Ω}

and seek u ∈ Vg such that

(∇u,∇v)Ω = (f, v)Ω ∀v ∈ V0,



where (·, ·)Ω denotes the L2(Ω) scalar product. In this formulation it is thus understood that
the trace of the solution is equal to g on ∂Ω, which, in order to make sense, means that we
must have g ∈ H1/2(∂Ω). A finite element method may then be constructed by trying to
choose a discrete space V h

g ⊂ Vg . Since this is not possible in general, due to the fact that
g is involved in the definition of the space Vg , one must modify the definition of V h

g to, for
instance,

V h
g = {v ∈ H1(Ω) : v is a piecewise polynomial and v = Ihg on ∂Ω},

where Ih is the interpolant of the same polynomial degree as the finite element approximation
(here we tacitly assume that g has enough smoothness in order for pointwise interpolation to
make sense). We suppose that we have a regular finite element partitioning Th of the domain
Ω into shape regular simplexes K of size hK . In the following, when convenient, we consider
h as the function in L2(Ω) that takes on the value h(x) = h|K for x ∈ K. We also note that
the mesh Th implies a “trace” mesh on the boundary,

Gh = { E : E = K ∩ ∂Ω, K ∈ Th }. (2)

The standard finite element method consists of seeking U ∈ V h
g such that

(∇U,∇v)Ω = (f, v)Ω ∀v ∈ V h
0 .

This is the finite element method as used in the majority of codes run by engineers to solve
various kinds of problems. One might say, however, that there is a discrepancy in using
interpolation to define V h

g . Using pointwise values of the function g goes against the grain
of the main idea of the finite element method as a weak method that only fulfills equations in
the mean. And while the idea works fine for boundary value problems, the generalization to
interface problems is not straightforward.

Classical methods for avoiding interpolating g are the Lagrange multiplier method [2] and
the penalty method [3]. Nitsche’s method can be said to be intermediate between these. It can
be formulated as follows: find U ∈ V h ⊂ H1(Ω) such that

ah(U, v) = (f, v)Ω + (γ h−1g, v)∂Ω − (g, ∂nv)∂Ω, ∀v ∈ V h, (3)

where ∂nv := n · ∇v and

ah(U, v) := (∇U,∇v)Ω − (∂nU, v)∂Ω − (U, ∂nv)∂Ω + (γ h−1U, v)∂Ω.

Here, γ is a positive constant at our disposal.

2.2 Consistency and stability

The first point of Nitsche’s method is that it is consistent with the original problem: since
u = g on ∂Ω, we have

ah(u, v) − (f, v)Ω − (γ h−1g, v)∂Ω + (g, ∂nv)∂Ω =

(∇u,∇v)Ω − (∂nu, v)∂Ω − (f, v)Ω ≡ 0



by Green’s formula and (1). The second point is that it is stable in that it can guarantee that
the resulting stiffness matrix is positive definite. Defining a mesh dependent norm as

‖v‖2
h := ‖∇v‖2

L2(Ω) + ‖h−1/2v‖2
L2(∂Ω),

we find

ah(U, U) = ‖∇U‖2
L2(Ω) − 2(∂nU, U) + ‖γ1/2h−1/2U‖2

L2(∂Ω)

≥ ‖∇U‖2
L2(Ω) − 2‖h1/2 ∂nU‖L2(∂Ω)‖h−1/2U‖L2(∂Ω)

+‖γ1/2h−1/2U‖2
L2(∂Ω),

or, using the inequality (a/
√

ε − b
√

ε)2 ≥ 0 for real numbers (a, b,
√

ε),

ah(U, U) ≥ ‖∇U‖2
L2(Ω)−

1
ε
‖h1/2∂nU‖2

L2(∂Ω)−ε‖h−1/2U‖2
L2(∂Ω)+γ‖h−1/2U‖2

L2(∂Ω).

Now, invoking the inverse inequality

‖h1/2∂nv‖2
L2(∂Ω) ≤ CI‖∇v‖2

L2(Ω), (4)

valid for v ∈ V h (for a proof, see, e.g., Thomée [25]), we have

ah(U, U) ≥ ε − CI

ε
‖∇U‖2

L2(Ω) + (γ − ε)‖h−1/2U‖2
L2(∂Ω),

so if we choose γ > ε > CI we will have

ah(U, U) ≥ C‖U‖2
h,

i.e., a positive definite discrete problem.
Nitsche’s method resembles a mesh-dependent penalty method, but with added consistency

terms involving normal derivatives across the interface. However, the Nitsche method allows
us to deduce optimal order error estimates with preserved condition number of O(h−2) for
a quasiuniform mesh. The penalty method, in contrast, is not consistent, and optimal error
estimates require degrading the condition number for higher polynomial approximation (cf.
[7]).

The actual computation of the constant CI is of obvious practical interest. Since the inte-
grals in (4) are computed as sums of element contributions, we can consider a local inequality

‖h1/2
K ∂nv‖2

L2(∂K∩∂Ω) ≤ CK
I ‖∇v‖2

L2(K),

for each element K, followed by CI = maxK CK
I . Each constant CK

I can in general be
found as the largest eigenvalue λmax in the eigenproblem of finding U ∈ V h and λ ∈ R such
that

(h1/2∂nU, ∂nv)E = λ(∇U,∇v)K ∀v ∈ V h,



where E = ∂K ∩ ∂Ω. Clearly, CK
I will depend on the geometry of the element as well as the

polynomial degree of approximation (cf., e.g., Hansbo and Larson [16]). For affine elements,
∇v is constant on each element and thus we have

‖∂nv‖2
L2(E) = meas(E)|∂nv|2, (5)

where meas(·) denotes the length, area, or volume of the object in question, and

‖∇v‖2
L2(K) ≥ ‖∂nv‖2

L2(K) = meas(K)|∂nv|2 (6)

and it follows that

‖h1/2
K ∂nv‖2

L2(E) ≤
hK meas(E)

meas(K)
‖∇v‖2

L2(K). (7)

Hence, once hK has been defined, a bound for CK
I follows. We note in particular that if hK

is defined as the distance from the interior node to the boundary, then

meas(K) =
hKmeas(E)

2

and CK
I = 2.

Now, shape regularity of the elements is required in order not to destroy the conditioning
of the problem. Since the jump terms are divided by hK , we must avoid a degenerating case
where meas(E) is fixed but meas(K) → 0. Namely, in such a case we must either divide by
a vanishing number in the jump term or redefine hK ; redefining hK will not help, however.
For example, if we set hK = meas(E), we note that instead

CK
I =

meas(E)2

meas(K)

grows without bound and so must γ.

2.3 Convergence analysis

In this Section we only give a general outline regarding the convergence of the method. We
refer to Thomée [25] for details.

The consistency and stability of Nitsche’s method allows us to derive optimal convergence
properties in energy-like norms as well as in the L2–norm. We assume that the exact solution
fulfills u ∈ H2(Ω), which implies that ∂nu ∈ L2(∂Ω). The basic analysis may then be
performed in the mesh dependent norm

�v�2
h := ‖v‖2

h + ‖h1/2∂nv‖2
L2(∂Ω).

The reason for not directly using ‖ · ‖h lies in the fact that ah(·, ·) is not continuous on H2(Ω)
with respect to this norm. On the discrete space, however, the norms are equivalent because
of (4).

For handling the edge terms, the following continuous trace inequality (or variants thereof)
is invariably used:

‖w‖2
L2(∂K∩∂Ω) ≤ C

(
h−1

K ‖w‖2
L2(K) + hK‖∇w‖2

L2(K)

)
, ∀w ∈ H1(K). (8)



This inequality is proved by scaling from a trace inequality on a reference element. With (8),
the following interpolation estimate follows: let Ih : H2(Ω) → V h be the standard nodal
interpolation operator; then

�v − Ihv�h ≤ Chmax‖v‖H2(Ω), ∀v ∈ H2(Ω).

To prove that also

�u − U�h ≤ Chmax‖u‖H2(Ω), (9)

one then proceeds as follows. For any v ∈ V h, �u − U�h ≤ �u − v �h + � v − U�h.
Further, by stability, consistency, and continuity of ah(·, ·), we have that

�U − v�2
h ≤ Cah(U − v, U − v) = Cah(u − v, U − v)

≤ C � u − v �h �U − v�h,

and it follows that we have a “best approximation” result for the triple norm,

�u − U�h ≤ C � u − v �h ∀v ∈ V h.

Finally, taking v = Ihu, (9) follows. Error estimates in L2(Ω) can be deduced by the Aubin–
Nitsche duality trick.

3 Interface problems

Not long after the publication of [21], several papers on Nitsche’s method as applied to elliptic
and parabolic problems with piecewise discontinuous ansatz functions were published [5, 1,
27]. In this guise, Nitsche’s method is known as the Discontinuous Galerkin method, and is
currently undergoing a revival, partly because it presents a convenient way of discretizing the
viscous operator in flow problems with small viscosity (where discontinuous approximations
are standard), and partly because it allows more freedom in the choice of approximation than
the standard conforming finite element method. However, the approach was not suggested for
interface problems until much later in spite of the fact that it is so well suited for handling this
class of problems.

We shall begin by looking at a problem where the interface is taken into account when
meshing the domains. The Dirichlet boundary conditions will in the following be treated in
the traditional way; Nitsche’s method will only be used for handling the interface conditions.

3.1 Poisson’s equation with an artificial interface

Let Ω be as above, but with an (artificial) interface Γ dividing Ω into two open sets Ω1 and
Ω2. For ease of presentation, we consider only the case where Ω is divided into two non-
overlapping subdomains Ω1 and Ω2, Ω1∪Ω2, with interface Γ = Ω1∩Ω2. We further assume
that the subdomains are polyhedral (or polygonal in IR2) and that Γ is polygonal (or a broken
line).

For any sufficiently regular function u in Ω1 ∪ Ω2 we define the jump of u on Γ by [[u]] :=
u1|Γ − u2|Γ, where ui = u|Ωi is the restriction of u to Ωi. Conversely, for ui defined in Ωi



we identify the pair (u1, u2) with the function u which equals ui on Ωi. For definiteness, we
define n as the outward pointing unit normal to Ω1.

Consider now the following variant of Poisson’s equation:

−Δu = f in Ω1 ∪ Ω2,
u = 0 on ∂Ω,

[[u]] = 0 on Γ,
[[∂nu]] = 0 on Γ.

(10)

Invoking again the smoothness assumption u ∈ H2(Ω), we have that (10) is equivalent to (1)
(assuming g = 0) with u|Ωi

= ui, i = 1, 2. We may then write u = (u1, u2) ∈ V1 × V2

with the continuous spaces

Vi =
{
vi ∈ H1(Ωi) : ∂vi/∂ni ∈ L2(Γ), vi|∂Ω∩∂Ωi = 0

}
, i = 1, 2.

To formulate the method, we suppose that we have regular finite element partitionings T i
h

of the subdomains Ωi into shape regular simplexes. We shall in the following meet problems
where only one of the meshes contains shape regular elements bordering to the interface. For
definiteness, we define this to be T 1

h and define the corresponding trace mesh as

Gh = { E : E = K ∩ Γ, K ∈ T 1
h }. (11)

We shall seek the approximation U = (U1, U2) in the space V h = V h
1 × V h

2 , where

V h
i =

{
vi ∈ Vi : vi|K is a polynomial of degree p for all K ∈ T i

h

}
.

The Nitsche method for the problem (10) can then be written as follows: find U ∈ V h such
that

ah(U, v) = L(v) ∀v ∈ V h, (12)

with

ah(w, v) :=
2∑

i=1

(∇wi,∇vi)Ωi
+ γ(h−1 [[w]] , [[v]])Γ (13)

−(∂nw1, [[v]])Γ − (∂nv1, [[w]])Γ

and

L(v) :=
2∑

i=1

(f, vi)Ωi
. (14)

Again, this is a consistent method: multiplying the first equation in (10) with vi, integrating
over Ωi, using Greens formula and the fact that ∂nu1 = ∂nu2 on Γ yields

L(v) =
2∑

i=1

(f, vi)Ωi =
2∑

i=1

(∇ui,∇vi)Ωi − (∂nu1, v1)Γ + (∂nu2, v2)Γ

=
2∑

i=1

(∇ui,∇vi)Ωi − (∂nu1, [[v]])Γ. (15)



Since [[u]] = 0 on Γ we have

0 = −(∂nv1, [[u]])Γ + γ(h−1 [[u]] , [[v]])Γ. (16)

Finally, adding (15) and (16) shows consistency in that the solution u = (u1, u2) to (10)
satisfies

ah(u, v) = L(v) ∀v ∈ V h. (17)

Remark 3.1 In [10], the normal derivative on the interface was taken as the mean, replac-
ing ∂nw1 with (∂nw1 + ∂nw2)/2. Indeed, one may use any convex combination α∂nw1 +
(1 − α)∂nw2, 0 ≤ α ≤ 1, without upsetting the consistency of the method (cf. [24]). The
only reason for choosing one-sided “mortaring” on the trace mesh of T 1

h is the possible lack
of shape regularity in T 2

h .
Remark 3.2 The error estimates in [10] requires Hs(Ω)–regularity, s > 3/2, due to the

use of the trace inequality. By use of weighted norms, Heinrich and Pietsch [19] and Heinrich
and Nicaise [18] have performed a more precise analysis in the case when we only have
u ∈ H1(Ω).

Remark 3.3 There is an interpretation of the Nitsche method in terms of Lagrange mul-
tipliers due to Stenberg [23]. Let us start with a classical formulation for imposing weak
continuity on the interface by the use of a Lagrange multiplier: Find (u, λ) ∈ V × Λ, such
that:

2∑
i=1

(∇ui,∇vi)Ωi + (λ, [[v]])Γ + ([[u]] , μ)Γ = L(v), (18)

for all (v, μ) ∈ V ×Λ, with appropriate spaces V and Λ. A typical finite element discretization
of (18), consisting of choosing discrete approximations U ∈ V h ⊂ V and λh ∈ Λh ⊂ Λ,
must balance the discrete spaces carefully. Choosing Λh too large compared with V h will lead
to an over-constrained problem which is unstable. There are two possible strategies to obtain
a stable discretization: either choose well balanced discrete spaces or change the discrete
bilinear form to increase stability.

The first strategy is followed by the mortar element method, see [26]. Here one basically
takes the traces of the finite element functions on one specified side of the interface. At the
interface boundaries, special conditions have to be satisfied.

The second possibility is to add stabilization terms in order to achieve more freedom on the
choice of Λh. This was first proposed for the inhomogenuous Dirichlet problem by Barbosa
and Hughes [6] (see also [23]) and extended to domain decomposition by Baiocchi, Brezzi,
and Marini [4]. To (18) is added the stabilizing least squares term

−(λh + ∂nU1, δ
−1(μ + ∂nv1))Γ.

For a properly choosen parameter δ of order O(h−1), stability then follows. The Lagrange
multiplier can be directly eliminated:

λh = Ph (−∂nU1 + δ [[U ]]) ,

where Ph denotes the L2−projection on the discrete multiplier space.



If we now imagine a multiplier space Λh large enough to ensure that ∂nv1 − δ [[v]] ∈ Λh,
∀v ∈ V h, we recover Nitsche’s method as presented above, since then Ph = I and

(λ, [[v]])Γ− (λ+∂nU1, δ
−1∂nv1)Γ = −(∂nU1, [[v]])Γ− (∂nv1, [[U ]])Γ +(δ [[U ]] , [[v]])Γ.

In this sense, the Nitsche method can be interpreted as a stabilized multiplier method.
A comparison of the relative performances of the mortar and the Nitsche methods, in the

case of transmission problems in elasticity, can be found in [8].

3.2 Elasticity with imperfect bonding on the interface

For the elasticity problem we have the notational difficulty of separating the components of a
vector from the values on the different Ωi. We shall use subscripts to denote the restriction of
a function to Ωi; vectors and tensors are typed in bold face and superscripts are used for their
components. Thus, u = [ui]ni=1 may denote a vector valued function in Ω with components
ui, while ui = u|Ωi

denotes its restriction to Ωi.
We consider the following elasticity problem with a discontinuity in the Lamé parameters

across Γ: Find the displacement u and the symmetric stress tensor σ =
[
σij

]n

i,j=1
such that

σ = λ ∇ · uI + 2με(u) in Ω1 ∪ Ω2,

−∇ · σ = f in Ω1 ∪ Ω2,

u = 0 on ∂Ω, (19)
[[σ · n]] = 0 on Γ,

[[u]] = −Kσ · n on Γ,

where the load f ∈ [L2(Ω)]n. Here λ and μ are the Lamé parameters, assumed constant in
Ωi, ε (u) =

[
εij(u)

]n

i,j=1
is the strain tensor with components

εij(u) =
1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
,

∇ · σ =
[∑2

j=1 ∂σij/∂xj
]n

i=1
, I =

[
δij

]n

i,j=1
with δij = 1 if i = j and δij = 0 if i �= j,

and n is the outward normal to Ω1. Finally, K is a positive semi-definite tensor representing
the compliancy of the interface, assumed isotropic and constant on Γ. Isotropy implies that
we can write

K = α I + (β − α)n ⊗ n, or Kij = αδij + (β − α)ninj ,

with α ≥ 0 and β ≥ 0 denoting the complicancy in the direction tangential and normal to the
interface, respectively.

Let the interface stiffness S be defined by

S =

⎧⎪⎪⎨
⎪⎪⎩

K−1 for α > 0, β > 0,
α−2K = α−1(I − n ⊗ n) for α > 0, β = 0,
β−2K = β−1n ⊗ n for α = 0, β > 0,
0 for α = 0 , β = 0 ,



and define the space V of test functions by

V = {v ∈ V1 × V2 : [[v]] = SK [[v]]} where Vi = {vi ∈ [H1(Ωi)]n : vi|∂Ω = 0}.

Note that when S = K−1 then V = V1 × V2. A weak form of (19) may be formulated as
follows: find u = (u1,u2) ∈ V such that

aS(u,v) = L(v) ∀v ∈ V. (20)

Here,

aS(u,v) :=
∑

i

( σ(ui) , ε(vi) )Ωi + (S [[u]] , [[v]] )Γ,

where

( σ , ε )Ωi =
∫

Ωi

σ : ε dx =
∫

Ωi

∑
kl

σklεkl dx,

and

L(v) :=
∑

i

(f ,vi)Ωi
.

Now, for α > 0, β > 0, the continuous problem (20) could simply be approximated by a
straightforward use of the discrete space V h: find U ∈ V h such that

aS(U ,v) :=
∑

i

( σ(U i) , ε(vi) )Ωi
+ (S [[U ]] , [[v]] )Γ = L(v) ∀v ∈ V h. (21)

However, in the case of small compliancy parameters α and β this would lead to a badly
conditioned problem, and, furthermore, the question of locking would have to be considered.
This formulation would also fail in the limit case α = 0 or β = 0 since the functions in V h do
not fulfill any interface conditions over Γ. On the other hand, for the case α = 0 and β = 0,
the boundary conditions may still be imposed weakly over the interface by using Nitsche’s
method.

To be able to treat all cases using the same method, we considered in [12] a more general
consistent penalty approach: Find U ∈ V h such that

aSh
(U ,v) = L(v), ∀v ∈ V h, (22)

where

aSh
(U ,v) :=

∑
i

(σ(U i) , ε(vi) )Ωi

−( [[U ]] + K σ(U1) · n ,σ(v1) · n )Γ

−(σ(U1) · [[v]] + K σ(v1) · n )Γ

+(Kσ(U1) · n ,σ(v1) · n )Γ

+(Sh([[U ]] + Kσ(U1) · n) , [[v]] + Kσ(v1) · n )Γ.

(23)



Here Sh is a matrix which depends on the interface conditions of the problem, the local
meshsize, and a penalty parameter γ which has to be large enough for the method to be stable.
More precisely, on an element K with diameter hK ,

Sh|K = (hK/γ + K)−1.

We remark that the form aSh
(·, ·) formally coincides with aS(·, ·) in the limit case Sh =

K−1 corresponding to hK = 0. Note also that, in the case K = 0, aSh
(·, ·) coincides with

the standard Nitsche form. Thus the proposed method extends these methods into one single
method for all compliancy parameters α ≥ 0, β ≥ 0.

In [12], optimal convergence was shown for the method (22) in the energy–like norm

�v�2
h :=

∑
i

( σ(vi) , ε(vi) )Ωi
+ ‖S1/2

h [[v]] ‖2
L2(Γ) + ‖γ−1h σ(v1) · n‖2

L2(Γ),

i.e.,

�u − U�h ≤ Chmax

∑
i

‖u‖H2(Ωi), (24)

provided γ is chosen large enough; γ = 8CI(2μm + 3λm) is sufficient. Here λm := maxΩ λ,
μm := maxΩ μ, and CI is the constant in a suitably modified version of the trace inequality
(8):

‖h1/2 σ(v1)‖2
L2(Γ) ≤ CI‖σ(v1)‖2

L2(Ω1)
, ∀v1 ∈ V h

1 .

The convergence is uniform with respect to the complicancy of the interface, i.e., the error
constant is independent of α and β. Optimal error estimates in L2(Ω) were also derived.

3.3 Composite meshes

Nitsche’s method also lends itself directly to handling overlapping meshes as shown in [13].
As before, let us consider two given triangulations T i

h , i = 1, 2, and assume that they together
cover Ω, so that Ω = Ω

∗
1 ∪ Ω

∗
2 where Ω

∗
i = ∪K∈T i

h
K. We then choose an (artificial) internal

interface Γ composed of edges from the triangles in T 1
h and dividing Ω into two open disjoint

sets Ωi, i = 1, 2, such that Ωi ⊂ Ω∗
i and Ω = Ω1 ∪ Ω2 ∪ Γ. To distinguish elements from the

two meshes, we will sometimes use indexed element notation Ki ∈ Th
i for clarity.

The nodes on Γ of the elements in T 1
h , together with the points of intersection between

elements in T 2
h and Γ, define a partition of Γ, Γ = ∪j∈Jh

Γ
j . Note that each part Γj belongs

to two elements, one from each mesh. We denote these elements by Kj
1 and Kj

2 , respectively.
A local meshsize on Γ is defined by

h(x) = hKj
1
, x ∈ Γj . (25)

The situation is illustrated in Fig. 1
It is clear that functions in V h still approximates functions v ∈ H1

0 (Ω) ∩ Hp+1(Ω) to the
order hp in the norm ‖ · ‖h, since we can define an interpolant Ihv ∈ V h of v by Ihv = Ih

i v
on Ωi, i = 1, 2. Here Ih

i is the standard Lagrange nodal interpolant on the mesh T i
h of Ω∗

i .
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Fig. 1 The approximation on Kj
2 is defined by the usual three nodes (as indicated), but the integration

is only performed on Kj
2 ∩ Ω2.

Note, however, that a node of interpolation used to define Ih
2 v lies in Ω

∗
2 = ∪K∈T 2

h
K but not

necessarily in Ω2.
Stability, consistency, and convergence follows using the same arguments as above. Since

the elements on T 2
h are cut, we however need a slight modification of the trace inequality (8)

so that if l is the intersection between a line (plane) and an element K, then

‖w‖2
L2(l)

≤ C
(
h−1

K ‖w‖2
L2(K) + hK‖∇w‖2

L2(K)

)
, ∀w ∈ H1(K), (26)

where the constant C is independent of l. See [13] for details.
For composite meshes constructed as above, shape regularity is fulfilled on one side of the

(artificial) interface. Note, however that the boundary has to be “protected” by at least one
layer of elements. In contrast, using the Nitsche method for Dirichlet boundary conditions on
cut elements would not be wise since the cut elements will not be shape regular.

The shape regularity on composite meshes means that the cut mesh technique can also
be used in place of fictitious domain computations where a structured mesh is intersected
by a boundary which is not fitted to the mesh, and where the Dirichlet boundary condition
is enforced by use of Lagrange multipliers. The convergence rate in the fictitious domain
method is typically not optimal, cf. [9] (see also Remark 3.4) so the cut mesh approach might
be competitive.

As a fictitious domain type example using the cut mesh approach, with optimal con-
vergence properties, consider −Δu = f in Ω = (0, 1) × (0, 1) with u = 0 on ∂Ω and
f = 2 ((1 − x) x + (1 − y) y). A numerical solution of this problem is given in Figure 2.
Here the mesh close to the boundary is taken to be the shape regular mesh, and the boundary
conditions are imposed on the corresponding finite element space in the usual way.

Remark 3.4 The Nitsche approach also allows for a more standard fictitious domain ver-
sion. Consider then a mesh Th covering Ω, denote by V h the corresponding discrete space,
and suppose that we want to insert a Dirichlet boundary Γ inside Ω without changing the ap-
proximation, i.e., without cutting the elements. Γ thus divides Ω into two parts, Ω1 inside of
Γ and Ω2 outside. Assume further that we want to solve −Δu = f in Ω1, u = g on Γ. For
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Fig. 2 Fictitious domain type simulation using cut elements.

the triangles outside of Γ, we can use extensions of the load and solve the problem over the
whole of Ω. We let n denote the normal vector on Γ pointing from Ω1 to Ω2.

Consider now the discrete problem of finding U ∈ V h such that

ah(U, v) = Lg(v) ∀v ∈ V h, (27)

where

ah(U, v) := (∇U,∇v)Ω − (U, ∂nv)Γ − (v, ∂nU)Γ + (γh−1 U, v)Γ,

h|K is the size of the element being intersected by Γ, and

Lg(v) := (f, v)Ω − (g, ∂nv)Γ + (γh−1 g, v)Γ.

This a variant of the standard Nitsche approach, directly applicable to fictitious domain com-
putations. We give an example where Γ is a circle with radius R = 4/10 in a domain
Ω = (0, 1) × (0, 1), and f = 4/R2, giving the exact solution on Ω1 as

u = 1 − (x − 1/2)2 + (y − 1/2)2

R2
.

In Figure 3 we give the mesh with Γ indicated together with the isolines of the discrete solu-
tion. Here f was extended to the whole domain and zero Dirichlet boundary conditions were
applied at ∂Ω. In Figure 4 we give the obtained L2–convergence which in not much better
than first order. This should be contrasted with the optimal second order obtained using the
cut meshes.



Fig. 3 Fictitious domain simulation using uncut elements.
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Fig. 4 Convergence plot for the fictitious domain method.

3.4 Letting the interface cut through elements

Finally, consider the following stationary heat conduction problem with a discontinuity in the
conductivity across Γ and an inhomogeneous conormal derivative condition on the interface:

−∇ · (α∇u) = f in Ω1 ∪ Ω2,
u = 0 on ∂Ω,

[[u]] = 0 on Γ,
[[α ∂nu]] = g on Γ.

(28)



In a standard finite element method, the jump in normal derivative resulting from the con-
tinuity of the flux, when α1 �= α2, can be taken into account by letting Γ coincide with mesh
lines, following the approaches described above. We will now take an alternative approach
and define a method for solving (10) approximately using piecewise linear finite elements on
a family of conforming triangulations Th of Ω which are independent of the location of the
interface Γ. Instead, we shall allow the approximation to be discontinuous inside elements
which intersect the interface.

We will use the following notation for mesh related quantities. For any element K, let
Ki = K ∩ Ωi denote the part of K in Ωi. By G∗

h := {K ∈ Th : K ∩ Γ �= ∅} we here
denote the set of elements that are intersected by the interface. For an element K ∈ G∗

h, let
ΓK := Γ ∩ K be the part of Γ in K.

We shall, as before, seek a discrete solution U = (U1, U2) in the space V h = V h
1 × V h

2 ,
where

V h
i = {vi ∈ H1(Ωi) : vi|Ki

is linear, vi|∂Ω = 0}.

Since Γ may intersect two edges of a triangle arbitrarily, the size of the parts Ki are not fully
characterized by the meshsize parameters. Thus, to guarantee stability of this method using
elements with internal discontinuities, further conditions on the combinations of numerical
fluxes (co-normal derivatives) must be imposed by choosing appropriate mesh and geometry
dependent weights κ. One simple approach is to choose the numerical fluxes by

κ1|K =
{

1 if meas(K1) ≥ meas(K2),
0 if meas(K1) < meas(K2)

, and κ2 = |1 − κ1|, (29)

where meas(K) denotes the size (area or volume) of K, and use on Γ

{α∂nv} := (α1κ1∂nv1 + α2κ2∂nv2) |Γ
instead of the flux α1∂nv1 which we have used in the previous Sections. Thus, for an inter-
sected element, we compute the numerical stress at that side of the interface where the larger
part of the element resides. When an element side is entirely contained in the interface, one
may indeed chose any convex combination of the fluxes on each side.

The method is defined by the variational problem of finding U ∈ V h such that

ah(U, v) = L(v), ∀v ∈ V h, (30)

where

ah(U, v) :=
∑

i

( αi∇Ui ,∇vi )Ωi
− ( [[U ]] , {α∂nv} )Γ

−( {α∂nU} , [[v]] )Γ + ( γh−1 [[U ]] , [[v]] )Γ

with γ sufficiently large and

L(v) :=
∑

i

(f, vi)Ωi
+ (κ2g, v1)Γ + (κ1g, v2)Γ.

With these definitions, the discrete problem (30) is consistent in the sense that, for u solving
(10),

ah(u, v) = L(v), ∀v ∈ V h.



This can be shown as follows. We first note that, for u solving (10),

g − {α∂nu} = (κ1 + κ2) g − {α∂nu} − κ1(g − [[α∂nu]])
= κ2g − κ1α1∂nu1 − κ2α2∂nu2 + κ1α1∂nu1 − κ1α2∂nu2

= κ2g − α2∂nu2,

and, similarly,

g − {α∂nu} = (κ1 + κ2) g − {α∂nu} + κ2(g − [[α∂nu]])
= κ1g − κ1α1∂nu1 − κ2α2∂nu2 − κ2α1∂nu1 + κ2α2∂nu2

= (1 + κ2)g − α1∂nu1,

so that

{α∂nu} = α1∂nu1 − κ2g = α2∂nu2 + κ1g. (31)

Since [[u]] = 0, we may use (31) and Green’s formula to obtain

ah(u, v) =
∑

i

( αi∇ui ,∇vi )Ωi
− ( {α∂nu} , v1 − v2 )Γ

=
∑

i

( αi∇ui ,∇vi )Ωi − (α1∂nu1 − κ2g, v1)Γ + ( α2∂nu2 + κ1g , v2 )Γ

= −
∑

i

(∇ · (αi∇ui) , vi )Ωi + ( κ2g, v1)Γ + (κ1g , v2)Γ

= (f, v)Ω + (κ2g, v1)Γ + (κ1g, v2)Γ = L(v),

implying consistency.
A FE basis for V h is easily obtained from a standard FE basis on the mesh by the introduc-

tion of new basis functions for the elements that intersect Γ. Thus, we replace each standard
basis function living on an element that intersects the interface by two new basis functions,
namely its restrictions to Ω1 and Ω2, respectively. The collection of basis functions with
support in Ωi is then clearly a basis for V h

i , and hence we obtain a basis for V h by the iden-
tification ψ = (ψ|Ω1 , ψ|Ω2). If the interface coincides exactly with an element edge, no new
basis functions are introduced on these elements but the approximating functions may still be
discontinuous over such an edge. As a consequence, there are six non-zero basis functions on
each element that properly intersects Γ. Perhaps this process is most easily seen as creating
two new separate meshes with doubling of the elements crossed by the interface, see Figure
5.

We now have to show that the approximation property of V h is still optimal in the following
mesh dependent norm:

�v�2
h :=

∑
i

‖∇vi‖2
L2(Ωi)

+
∑

K∈G∗
h

hK‖{∂nv}‖2
L2(ΓK) +

∑
K∈G∗

h

h−1
K ‖ [[v]] ‖2

L2(ΓK).

We thus wish to show that functions in V h approximates functions v ∈ H1
0 (Ω)∩H2(Ω1∪Ω2)

to the order h in the norm � · �h. For this purpose, we construct an interpolant of v by
nodal interpolants of H2-extensions of v1 and v2 as follows. Choose extension operators
Ei : H2(Ωi) → H2(Ω) such that (Eiw)|Ωi

= w and

‖Eiw‖s,Ω ≤ C‖w‖s,Ωi
∀w ∈ Hs(Ωi), s = 0, 1, 2. (32)



Fig. 5 A mesh with the interface indicated is being divided into two new meshes. The doubled elements
are shaded.

Let Ih be the standard nodal interpolation operator and define

I∗hv := (I∗h,1v1, I
∗
h,2v2) where I∗h,ivi := (IhEivi)|Ωi

. (33)

We then have the following result. Let I∗h be an interpolation operator defined as in (33). Then

�v − I∗hv�h ≤ C hmax

∑
i

‖v‖H2(Ωi), ∀v ∈ H1
0 (Ω) ∩ H2(Ω1 ∪ Ω2).

In the proof of this result, we need to estimate the interpolation error at the interface. To
that end, the following variant of the trace inequality (8) is necessary: under reasonable mesh
assumptions (see [11, 12]) there exist a constant C, depending on Γ but independent of the
mesh, such that

‖w‖2
L2(ΓK) ≤ C

(
h−1

K ‖w‖2
L2(K) + hK‖∇w‖2

L2(K)

)
, ∀w ∈ H1(K). (34)

The crucial fact is that the constant in this inequality is independent of the location of
the interface relative to the mesh. Optimal interpolation estimates follow, as does optimal
convergence of the method irrespective of the location of the interface relative to the mesh.
For details, see [11].

4 A Nitsche type stabilization method with Lagrange multipliers

As was pointed out in Remark 3.3, the Nitsche method is closely related to stabilized Lagrange
multiplier methods. One problem with these stabilization methods is the need to integrate
products of piecewise polynomials defined on completely unrelated meshes. The searching
problem involved in this integration is expensive (though it should be mentioned that exact
integration has been proposed in another context [22]). It would be beneficial if the multiplier



space Λh could be defined independently of the trace meshes and the stabilization method
subsequently could avoid least-squares terms involving the jumps.

Such a method was proposed in [17] and analysed in the case of global (or piecewise)
polynomial multiplier spaces. We emphasize, however, the possibility of using any reason-
able space for defining the multipliers; this may simplify the implementation considerably in
many cases. Let us again take as a model problem (28), for simplicity with g = 0. Concerning
the meshes, we assume that we are again in the setting of Section 3.1, i.e., that have regular
finite element partitionings T i

h of the subdomains Ωi into shape regular simplexes. The ap-
proximation space V h is assumed as in Section 3.1, and on Γ we introduce a family of spaces
Λh of discrete multipliers such that P 0(Γ) ⊂ Λh, P 0(Γ) being the space of constants on the
whole interface Γ (this natural condition is set in order to have a discrete Poincaré inequality).
As a particular example, consider the case of Ω ∈ R

2 with a space Λh of global polynomials
defined as follows: the interface Γ is decomposed as the union Γ =

⋃
Γj of nΓ straight lines

Γj , and we associate with each Γj the non-negative integer pj . We then choose

Λh = {μ : μ|Γj ∈ P pj (Γj), j = 1, . . . , nΓ}, (35)

with P pj (Γj) denoting the space of polynomials of degree at most pj on Γj with respect
to a local coordinate. In this particular case the elements of Λh can be discontinuous at the
endpoints of the Γj’s.

We now seek U := (U1, U2) ∈ V h and λh ∈ Λh such that
∑

i

(αi∇Ui · ∇vi)Ωi
+ (λh, [[v]])Γ − (δ−1λh, α1∂nv1)Γ

−(δ−1α1∂nU1, α1∂nv1)Γ =
∑

i

(f, vi)Ωi ∀v ∈ V h,

([[U ]] , μ)Γ − (δ−1α1∂nU1, μ)Γ − (δ−1λh, μ)Γ = 0 ∀μ ∈ Λh,

(36)

where δ = O(h−1). This formulation completely avoids integrals containing products of
functions defined on the two different trace meshes.

Clearly, (36) is symmetric, and it is also consistent: inserting a sufficiently regular analyti-
cal solution (u, λ) in the place of (U, λh), we find, since [[u]] = 0 and λ = −α1∂n∇u1 on Γ,
that

∑
i

(αi∇(ui − Ui),∇vi)Ωi + ((λ − λh), [[v]])Γ − (δ−1(λ − λh), α1∂nv1)Γ

−(δ−1α1(∂nu1 − ∂nU1), α1∂nv1)Γ = 0,

([[u − U ]] , μ)Γ − (δ−1α1∂n(u1 − U1), μ)Γ − (δ−1(λ − λh), μ)Γ = 0,

for all v ∈ V h and μ ∈ Λh. Writing

Bh(w, ν; v, μ) :=
∑

i

(αi∇wi,∇vi)Ωi + (ν, [[v]])Γ

−(δ−1ν, α1∂nv1)Γ − (δ−1α1∂nw1, α1∂nv1)Γ

−([[w]] , μ)Γ + (δ−1α1∂nw1, μ)Γ + (δ−1ν, μ)Γ,



we thus have that the method (36) is consistent in the sense that

Bh(u − U, λ − λh; v, μ) = 0,

for all v ∈ V h and μ ∈ Λh. Stability (in the inf-sup sense) can be shown and again relies
heavily upon the inverse inequality (4) in order to control the normal derivatives on Γ in terms
of the energy scalar product. For details, see [17].

Remark 4.1 The formulation (36) does not allow the use of mean values of co-normal
derivatives: this would reintroduce cross products of functions on the two trace meshes in the
integral containing products of co-normal derivatives. Thus (36) must be used in conjunction
with one-sided mortaring. The alternative would be to use a non-symmetric formulation, see
[17].

5 Coupling different elasticity models using Nitsche’s method

5.1 The continuous problem

In order to arrive at the Nitsche form used for the numerical solution of the model reduced
problems, one idea is to first consider the discretized coupling of two elastic media, and then
use the standard trick of model reduction at the discrete level.

Thus, we consider the following simplified version of (19): find the displacement u and
the symmetric stress tensor σ = [σij ]

n
i,j=1 such that

σ = λ ∇ · uI + 2με(u) in Ω1 ∪ Ω2,

−∇ · σ = f in Ω1 ∪ Ω2,

u = 0 on ∂Ω,

[[σ · n]] = 0 on Γ,

[[u]] = 0 on Γ.

We shall, for simplicity, consider the case where displacements in Ω1 are approximated using
a standard constant strain finite element method. Thus we assume that Ω1 is discretized by
a shape regular mesh Th and seek a discrete solution U = (U1,U2) in the space V h =
V h

1 × V h
2 , where we first define

V h
1 = {v1 ∈ [H1(Ω1)]n : v1|K is a polynomial of degree p, v1|∂Ω = 0},

but we leave the definition of V h
2 open for a moment. A typical example of interest is the

case where Ω2 is an extremely thin domain, i.e., when V h
2 is used to approximate the Euler–

Bernoulli–Kirchhoff model for elasticity (beams and plates).
The stress on Ω1 is always easily computed for functions in V h

1 , and thus we will, as before,
choose to define a Nitsche method as: find U ∈ V h such that

ah(U ,v) = L(v), ∀v ∈ V h, (37)

where the symmetric bilinear form ah(·, ·) is given by

ah(U ,v) :=
∑

i

( σ(U i) , ε(vi) )Ωi
− ( [[U ]] ,σ(v1) · n )Γ

−(σ(U1) · n , [[v]] )Γ + ( γ h−1 [[U ]] , [[v]] )Γ.



We emphasize that by choosing to compute the numerical stress in V h
1 , the space V h

2 does not
matter for the stability of the method. In this respect, we are thus completely free to choose
V h

2 .
We will now give two examples of choosing V h

2 : coupling of elasticity and rigid bodies,
and coupling of elasticity and beam/plate models.

Standard approaches to model coupling typically employ multipoint constraint equations or
transition elements (e.g., [20]). We argue that the Nitsche approach is both easier to implement
and more general.

5.2 Coupling elasticity with rigid bodies

This coupling is of obvious interest in the simulation of multibody dynamics where some parts
are elastic and others may be viewed as rigid.

Let us denote by xm the gravitational center of Ω2, and let ξ := x − xm. We can then
model (linearized) rigid body motions by defining

V h
2 = {v2 ∈ P 1(Ω2) : v2(ξ) = a + b (−ξ2, ξ1), a ∈ R

2, b ∈ R}, (38)

and the displacement field in Ω2 is determined by the three unknowns (a1, a2, b). Since
ε(v2) = 0, the bilinear form reduces to

ah(U ,v) := (σ(U) , ε(v) )Ω1 − ( [[U ]] ,σ(v1) · n )Γ

−(σ(U1) · n , [[v]] )Γ + ( γ h−1 [[U ]] , [[v]] )Γ.

We note that the rigid body is not actually meshed; one element is enough to define the dis-
placement field. This “element” may of course have an arbitrary shape (as long as Γ can be
meshed).

In Figure 6 we show a mesh of an elastic material, with ν = 0.3, E = 1, where

λ =
E ν

(1 − 2ν)(1 + ν)
, μ =

E

2 (1 + ν)
,

with zero body force and with a rigid inclusion, and in Figure 7 we show the deformation
and isolines of the stress σ = (σ : σ)1/2 (projected onto V h

1 ). The boundary conditions
were: traction free boundaries at the top and bottom and prescribed displacement boundary
conditions to the left and to the right, stretching the domain horizontally.

5.3 Coupling elasticity with the Bernoulli beam model and Kirchhoff plate
model

Two different applications come to mind in this situation:

• Model reduction, where the higher order theory is sufficiently accurate in some regions
but not in others (accurate modeling of edge effects in plates, for example).

• Modeling of sandwich structures, where thin, stiff, structures are glued to a core of softer
material.



Fig. 6 Mesh used for computation with rigid inclusion.

Fig. 7 Deformations (exaggerated) and stress isolines..

Thus one may want to consider coupling the beam equations to elasticity in two ways: cou-
pling to the end of a beam and coupling to the top of a beam. Here we will focus on the latter
situation, but the first is equally simple to handle.

For definiteness, let us assume that Ω2 = (0, L) × (−t/2, t/2) with t << L. For the
elasticity equations in Ω2 we can then introduce the following simplifying assumptions:

∂u2

∂x2
= 0,

1
2

(
∂u1

∂x2
+

∂u2

∂x1

)
= 0, σ11 = E

∂u1

∂x1
, σ22 = 0.

These conditions define (Euler-Bernoulli) beam theory where σ11 is the predominant stress.
We note that we can get these relations by simply assuming plane stress conditions and, for
v = v(x1), let u := (−x2v

′, v), where v′ := ∂v/∂x1, in the equations of elasticity. This
means that it is natural to enforce C1–continuity for the approximation in the standard fashion.



Thus, we divide Ω2 into one line of elements {K} and define V h
2 as

V h
2 = {v2 := (−x2v

′, v) : v = v(x1) ∈ Wh}.

where

Wh := {v : v ∈ C1([0, L]), v|K ∈ P 3(K)}.

Then, with U = (−x2u
′, u), we find

( σ(U) , ε(v) )Ω2 =
∫ L

0

∫ t/2

−t/2

x2
2 E u′′ v′′ dx1dx2 =

t3

12

∫ L

0

E u′′ v′′ dx1.

Here, t3/12 is more generally replaced by the second moment of inertia, but for simplicity we
compute per unit length in the suppressed x3-direction.

We give an example where an elastic material is coupled to two beams, one at the top and
one at the bottom. The beams are fixed, with fixed rotations, at the left side and free at the
right side. No boundary conditions are applied to the elastic material other than the Nitsche
coupling conditions. A body force f = (0,−1) is applied in Ω1 = (0, 1)× (0, 1), no external
forces are applied to the beams. Further data were: ν = 0.3, E|Ω1 = 102, E|Ω2 = 108,
t = 1/100. Three elements were used to discretize each of the beams.

In Figure 8 we give the deformations (exaggerated) and the corresponding strain energy
(projected onto V h

1 ) isolines. The beams are indicated using thicker lines.

Fig. 8 Deformations (exaggerated) and strain energy isolines.

5.4 The choice of approximating space for the plate problem

Assume that Ω2 = Ω × (−t/2, t/2) with Ω ∈ R
2 and t << L. Simplifying assumptions in

analogy with the Bernoulli theory result in the Kirchhoff theory for thin plates. We subdivide
Ω into triangular elements {K} and define V h

2 as

V h
2 =

{
v2 :=

(
−x3

∂v

∂x1
,−x3

∂v

∂x2
, v

)
: v = v(x1, x2) ∈ Wh

}
.



Then, with U = (−x3∂u/∂x1,−x3∂u/∂x2, u), we find

( σ(U) , ε(v) )Ω2 =
∫

Ω

(DνΔu Δv + D(1 − ν)κ(u) : κ(v)) dx1dx2.

Here, Δ is the Laplacian,

κij(u) =
∂2u

∂xi∂xj
(39)

defines the curvature tensor, and

D =
Et3

12(1 − ν2)

is the flexural rigidity of the plate.
From an implementation point of view, the demand Wh ⊂ C1(Ω) is somewhat cumber-

some. Consider therefore instead the nonconforming Morley approximation:

Wh := {v : v|K ∈ P 2(K), v is continuous at the nodes and the normal
derivative of v is continuous at the midpoint of the edges}.

Since the Morley element is nonconforming, it is not so easy to see how to handle the model
coupling by use of specially constructed transition elements. In the setting of Nitsche’s
method, however, the coupling is of course completely straightforward.

Simplifying assumptions leading to models that include shear deformation (Timoshenko
beams, Reissner plates) are handled in very much the same way.

We give a numerical example coupling the Morley element to three dimensional wedge
elements (cross product of a triangular and a bilinear element). This choice makes it possible
for the trace mesh to match the Morley mesh and create a simple three-dimensional mesh
by extrusion, making for a straightforward implementation. The domain is Ω = [(0, 1)]3,
f = (0, 0,−1), and the material data are the same as for the beam example above. Displace-
ment boundary conditions are applied only to the plates which have zero displacements and
rotations at x1 = 0. The problem is thus a three-dimensional version of the previous example.

In Figure 9 we give the deformations (exaggerated) of the elastic medium and of the top
plate (in a different scale).

Remark 5.1 For all the model coupling examples discussed here, the discrete normal
stress on Γ from the Ω2–side is in fact zero. Thus one could, in these cases, drop the nor-
mal stress altogether from Nitsche’s method and regain Babus̆ka’s simpler mesh dependent
penalty method [3] without affecting convergence. The advantage would be that there is then
no need to take into acount inverse estimates of the type (4) for stability. It should however be
noted that choosing a γ smaller than the value indicated by the inverse estimate may lead to
quite discernible jumps in the solution on a fixed mesh (this is usually not the case in Nitsche’s
method).

6 Concluding remarks

We have given some application of Nitsche’s method in computational mechanics. The ex-
position has focused on solid mechanics, but this is by no means the only field of applica-
tion for the approach. In [14] we study a fluid–structure acoustic eigenvalue problem, where



Fig. 9 Deformations (exaggerated) of the elastic medium and the top plate (different scaling).

Raviart-Thomas elements were used in the fluid domain and standard conforming elements
for the solid domain. Nitsche’s method makes the coupling between the H(div)–conforming
Raviart-Thomas elements and the standard elements particularly straightforward. In [15], we
give applications to fluid-structure interaction where one mesh may have to move relative to
the other. Again, the Nitsche approach simplifies the fluid-structure coupling.

Obviously, the Nitsche method has a very wide range of applicability. It is also very “phys-
ical” in that it employs only continuity conditions regarding the primal variable and the fluxes
or stresses. Thus, many possibilities remain to be investigated. It would be surprising indeed
if the Nitsche method did not before long find a central place among numerical methods for
interface problems.

References
[1] D. Arnold, An interior penalty finite element method with discontinuous elements, SIAM J. Num.

Anal. 19, 742–760 (1982).
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