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Abstract. Embedded devices usually gather and store personal data
about the behaviours of their holders. For example, a public transporta-
tion card may record the last trips of the passenger, or a car ignition
key may store the fuel consumption and the average engine speed of the
vehicle. Being able to interpret these raw data without the knowledge of
the specifications can be useful to establish digital evidence, for example
in connection with criminal investigations.
This paper investigates memory carving techniques for embedded de-
vices. Given that cryptographic material in memory dumps makes carv-
ing techniques inefficient, we introduce a methodology to distinguish
meaningful information from cryptographic material in small-sized mem-
ory dumps. The proposed methodology uses an adaptive boosting tech-
nique with statistical tests. Experimented on EMV cards, the methodol-
ogy reaches a successful recognition rate greater than 99.8%.

Keywords: forensics, memory carving, randomness, embedded devices, smart-
cards, privacy.

1 Introduction

Embedded devices usually gather and store personal data about the behaviours
of their holders. They are typically low-cost devices including (but not limited
to) credit cards, mass transportation passes, electronic passports, keyless entry
and start systems, and ski passes. They usually gather and store a lot of personal
data, for example an electronic passport contains the identity and the picture of
its holder [3], a mass transportation pass may store the last trips of its holder [5],
a ski pass may also contain the location of the ski lifts the skier used [1], an EMV
card records the last payments done by the customer [9], a car ignition key in
recent cars contains plenty of information about the car and the behaviour of the
driver, including the monthly fuel consumption, the external temperature during
the last trip, and the average engine speed. In most cases, the personal data
contained in these devices are accessible without requiring any authentication,



and can be obtained using, for example, the ISO/IEC 7816 interface or by sniffing
a genuine communication between the device and a reader.

Interpreting the meaning of the captured raw data is hard when the system
specifications are not available. However, such a task is important today when
investigations must be carried out. It can be to find digital evidence for example
in connection with criminal investigations – when information related to a sus-
pect is stored in a device – or to verify that a system complies with the national
privacy regulations.

A large body of literature exists in the field of memory forensics. Many off-
the-shelf tools exist, too. The analyses typically focus on hard drives [19] and
volatile memories [4]. Analyses of hard drives are typically based on file carv-
ing, i.e., a technique that consists in searching for files in the considered data.
The main difficulty is the file fragmentation in the system. File carving is conse-
quently performed using machine learning techniques, the entropy of the blocks,
or the file headers and footers. The technique targets specific file formats, e.g.,
PDF, ZIP [6], or file systems such as NTFS [26]. Analyses of volatile memories
consist in searching for special strings or signatures, interpreting internal kernel
structures, or enumerating and correlating all page frames, in order to retrieve
running and terminated processes, open ports, sockets, hidden data, etc.

The analysis of the non-volatile memory of an embedded device differs from
classical memory forensics techniques for several reasons. (i) First of all, the
memory typically consists of a few kilobits only. (ii) The data available in these
devices are poorly structured: in most cases, there are no file headers, sentinels,
or field separators. (iii) Home-made encoding systems are commonly used in
practice to save memory or to naively hide information. (iv) Performing a bit-
by-bit copy of the memory is rarely possible because the only way to access
the memory is to use the application program interface (API) or to eavesdrop a
genuine communication. This means that the captured data is not necessarily a
perfect copy of the memory.

A naive technique to interpret data retrieved from embedded devices con-
sists in applying several encoding functions on the dumps until retrieving the
correct one for each information stored. Due to the nature of the dumps, there
is unfortunately no oracle that can efficiently determine whether the decoding of
the information is correct. As a consequence, the technique outputs many false
positives that renders it unusable in practice. Most existing contributions on
the memory carving problem for embedded devices consider ad-hoc, hand-made
analyses, e.g., for retrieving keys hidden in an EEPROM [7].

There exist few techniques designed for an automatic analysis of embedded
devices. A seminal work, though, is due to Ton Van Deursen et al. [25], who
investigated the memory carving problem for sets of memory dumps, and ap-
plied it to public transportation cards. It is worth noting that they obtained the
memory dumps using the API of the cards, meaning that there is no guarantee
that the dumps are indeed bit-by-bit copy of the memory. The authors aimed
to singulate the memory data fields using the concept of commonalities and dis-
similarities applied to a dump set. A commonality occurs for a given bit position
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if the value of the bit is the same for all the dumps of a given set, whereas a
dissimilarity occurs otherwise. Using these commonalities and dissimilarities, as
well as contextual information (as data printed on the coupon), the technique
deduces the data fields. Once the data fields are singulated, a manual investi-
gation is needed to retrieve the encoding function. The authors applied their
technique on the E-Go System (the public transportation card in Luxembourg)
and retrieved a dozen of fields, e.g., the date and time of the last validation.
Their work does not provide an automatic interpretation of the data and it re-
quires contextual information to complete the analysis. Another work related to
ours is due to Jean-Louis Lanet et al. [15], who investigated the reverse engineer-
ing of EEPROM area of Java Cards, retrieving the location of the Java Card
source code and data (package, class, instance . . . ) related to the Java Card.
Source code is located computing the index of coincidence (IC) [12] as for the
cryptanalysis of the Vigenère cipher, whereas the data is found using pattern
matching on headers (or metadata) that differ for each data type. In our case,
the number of bits used by the encoding function of each information is variable
(and not known), and each information seem to be stored on too few bits to look
at the repetition of patterns, that complicate the use of the IC. Concerning the
pattern matching, as said before, there is no header or metadata in our dumps.

Given the difficulty to retrieve personal data from the memory dump of
an embedded device, this work focuses on a narrower problem that consists in
distinguishing meaningful information (encoded with ASCII, BCD, etc.) from
cryptographic material (ciphered data, hash value, secret key, etc.). The ratio-
nale behind this restriction is that cryptographic materials generate many false
positives and no personal information can be obtained from these values, assum-
ing the algorithms used to create the materials are cryptographically secure. As
a consequence, we introduce a technique that separates the wheat from the chaff,
namely a preliminary step in the forensics process that distinguishes meaningful
information from cryptographic materials, considered as random data. Unfor-
tunately, the size of the considered dumps does not allow to use classical tools
(e.g., NIST’s statistical tests [20]) that usually require several kilobytes of data to
make the statistical tests relevant. Moreover, the tests cannot be naively applied
to the data because the considered dumps contain data fields, which must be
analysed separately. For the same reason, techniques for locating cryptographic
keys hidden in gigabytes of sparse data, proposed by [22] and based on the
entropy computation, are not possible on such dumps.

This paper introduces a statistical and automatic recognition technique that
distinguished meaningful information from cryptographic material, obtained from
non-volatile memory dumps of embedded devices. The technique, based on a
machine learning method, called boosting [10], requires information neither on
the dump structure, nor on the application context, for the classification be-
tween these two sets of data. The technique performs a differential analysis:
comparing dumps of different devices belonging to the same application. Our
technique reaches quite a high success rate: we applied it on EMV-based dumps
and Calypso-based dumps, obtaining a 99% success rate.
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2 Dump examples

To illustrate the problem considered in this paper, Section 2 provides details on
two dumps extracted from EMV and Calypso cards. The cards contain elemen-
tary files that have been retrieved using the cards’ APIs. The files are made of
records. Files can be linear fixed (linear data structure of fixed length), lin-
ear variable (linear data structure of variable length), or cyclic (oldest data are
erased to store newest data). The information is contained in (non-necessarily
contiguous) fields, e.g., holder’s name, holder’s zip code, a cryptographic key,
etc. A pedestrian approach has been used to analyse the dumps, given that there
does not exist automatic tools that can achieve this task.

2.1 EMV dump

Figure 1 is a (partial) anonymised dump of a credit card compliant with the
EMV specifications [9]. A binary representation of the data is used because the
fields are not byte-aligned. The four highlighted and numbered sequences are
fields that contain the holder name, the issuer’s public key modulus of the card,
the amount and the date of one of the last transactions.

Fig. 1: Extract of an anonymised credit card dump.

Holder name. The yellow bit sequence (or sequence 1) represents the name of the
holder of the credit card (MR James Smith) encoded using ASCII and padded
with the repeated pattern 0x20.

Issuer’s public key modulus. The green sequence (or sequence 2) represents the
issuer public key modulus used by the authentication protocol.

Transaction. The sequences highlighted in grey (sequence 3) and red (sequence 4)
come from the same transaction (cash withdrawal). The grey sequence represents
the transaction amount (230.00 euros) and the red one is the date of the trans-
action (2010/05/02).
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The EMV card also contains a cyclic file that stores information on the
transactions. For any new transaction, the information in the cyclic file is rotated
such that the record about the oldest transaction is discarded to save room for
the newest transaction.

2.2 Calypso dump

Figure 2 is a (partial) anonymised dump of a transportation card compliant with
the Calypso specifications [5]. The record names (ICC, Holder1, Holder2, etc.)
are available in the specifications, but the content of the records is not defined by
Calypso. The content is indeed let to the discretion of the public transportation
operator. The provided example illustrates that a single card may contain several
encoding rules, and the information in the card is not necessarily byte-aligned.

Fig. 2: Anonymised transportation car dump.

On the Holder1 line, the first frame represents the BCD-encoded birth date
of the holder: 1984/10/23. The second frame that continue on the Holder2 line
represents the name of the holder, namely “James Smith”. To decode this infor-
mation the binary representation of the sequence must be split into 5-bit pieces
(omitting the first bit of the sequence), which are then decoded with the rule
(decimal representation): A=1, B=2, C=3, etc.

EvLog1, EvLog2, and EvLog3 are the last three trips performed by the card,
stored in a cyclic file. For example, the first frame in the EvLog1 line corresponds
to the validation time, which is here “11:53 am”. This information is retrieved
using the binary representation of 0x592 (omitting the last bit), and converting
it to an integer that represents the number of minutes since the beginning of the
day. The second frame represents the validation date of the card during the trip:
2008/12/09. This information is retrieved by using the binary representation
of 0x5108 (omitting the two first bits) and by converting it to an integer that
represents the number of days since 1997/01/01. Other information on this line
are the transportation means (metro, bus, tramway), the bus line number, the
number of travellers who shared the card for that trip, the station, etc. Additional
information can be found in the dump, e.g., the serial number of the card, the
manufacturer, the date of manufacture, etc.
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3 Statistical analysis

Retrieving the meaningful information from a dump using a statistical analysis
is a difficult problem. In particular, the meaningful information is drowned in
a mass of information that include pseudo-random values generated by crypto-
graphic means. This paper consequently focuses on a preliminary step in the
forensics process that distinguishes meaningful information from cryptographic
materials. To start with, we explain below the difficulty to use statistical tests
to perform this task in our framework.

3.1 Statistical tests for (pseudo-) random generators

There exist many statistical tests for random and pseudo-random number gen-
erators. The NIST statistical test suite includes the most important ones, while
keeping small the redundancy between them. We consequently decided to con-
sider this suite for our experiments.

A statistical test aims to verify a given null hypothesis, which is data are
random in our experiments. A p-value represents the strength of the evidence
against the null hypothesis. This p-value is computed from the reference distri-
bution of the tested statistical property. NIST uses an asymptotic distribution.

The hypothesis is rejected if the p-value is lower than the level of significance
of the test (for example 0.01 or 0.001). Thus, a threshold of 0.01 means that one
sequence among 100 sequences is expected to be rejected. A p-value greater than
this threshold (respectively lower) indicates that the sequence is considered to
be random (respectively non-random) with a 99% confidence.

The NIST proposes two methods to decide whether or not a generator is
suitable for a cryptographic use. A set of sequences is produced by the generator,
and its quality is evaluated by means of statistical tests. The result is determined
from the rate of sequences that successfully pass each test (p-value greater than
the level of significance), or from the uniformity of the p-values.

Even if tests like the monobit test, the longest runs test, or the approximate
entropy test could be theoretically applied on short sequences (100 bits), the rec-
ommended length is 20, 000 bits long according to the NIST, because asymptotic
approximations are used to determine the limiting distribution.

Moreover, some tests like the linear complexity test or the random excursions
test require at least 106 bits to be applied. For short sequences, the NIST sug-
gests that asymptotic distribution would be inappropriate and would need to
be replaced by exact distributions that, according to them, would commonly be
difficult to compute. Thus, some new tests [23] [8] [2] together with their exact
distribution were proposed and a new method to take the decision of randomness
for short sequences [24], but they still require a set of sequences to determine
the randomness.

3.2 Application of statistical tests in our context

Dumps obtained from embedded devices typically contain information fields
whose lengths are between 1 bit and 1, 024 bits (the size of an entire dump
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is typically 100-bit to 40, 000-bit long). The location and the size of each infor-
mation is not known, therefore we need to apply statistical tests on overlapping
sequences with different sequence lengths. Each sequence tested can be seen as an
output of a different generator (name, date, ciphered or hashed data, etc.), then
for a dump, only one sequence per generator can be tested. Section 3.1 and the
above-mentioned arguments justify that most of statistical tests are not suited
to short sequences, and the technique used by the NIST to decide whether or not
a sequence is random is therefore not applicable. Moreover, there is no technique
that use a combination of statistical tests to take the decision of randomness. In
our context, the decision of the classification of each bit into meaningful infor-
mation or cryptographic material is only done by directly comparing a p-value
to a threshold, but this threshold need to be determined.

4 Machine learning for dump analysis

A first step to distinguish meaningful information from cryptographic materials
in a memory dump consists in identifying the more appropriate statistical tests
and associated parameters. To do so, we use a boosting algorithm, namely a ma-
chine learning approach that consists in creating a strong classifier by combining
weaker ones [13]. The boosting algorithm also determines the best threshold to
be used for the classification. In our case, the set of weak learners is a selected
set of traditional statistical tests with parameters and a small subset of these
tests is our strong learner for the final decision. We have chosen this approach
due to its ability to determine the best features to use (i.e. statistical tests in our
case). The AdaBoost algorithm [10] is a popular boosting algorithm: it is effi-
cient both in terms of recognition and time computation. This section describes
the feature descriptors (parameters of the statistical tests), the definition of data
used during the learning and classification steps, then the AdaBoost algorithm
and finally a process to merge results of the classification in a set of dumps.

4.1 Feature descriptors

A set of potential parametrised statistical tests T = {Ti, i = 1 : N} is described
in this section. These tests are our feature descriptors of binary sequences, in
which each Ti is defined by Ti = [Test, Sequence length, Shift length, Inter-
nal parameters, Selection p-value]. A set of data are parametrised with a label
meaningful information or cryptographic material U = {ui ∈ {1, 2}, i = 1 : N}
for each bit. All those parameters lead to have a set T of approximately 2, 000
features. Theses features are defined as follows:

Test: It describes the statistical test that is applied on the binary sequence.
All these tests are the NIST tests except those that require 106 bits or a specific
pattern to test. It represents 8 tests : Monobit, Runs, Block Frequency, Se-
rial, Discrete Fourier Transform, Approximate Entropy, Cumulative Sum, and
Longest Runs. These 8 tests provided in the NIST suite are completed by the
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Autocorrelation Test [14] and the tests for short sequences: TBT test [2] and
Saturation Point Test [23].

Sequence length: It is the length of sequences on which the statistical
tests are applied. We have decided to bound those sequences to 32 bits for the
minimum length. This value of 32 bits is chosen because tests on too short se-
quences are not relevant and meaningful information (like date, name, address,
etc.) require at least a certain amount of bits to be encoded. Considering that
one character is encoded on 5 bits at least (minimum value to encode the 26
latin letters, as used by Mobib cards), sequences of 6 characters are represented
with 30 bits. Consequently, sequence lengths used in our experiments are chosen
in the set [33, 41, 49, 56, 69, 77, 85, 96]. Experiments have shown that considering
more than 96 bits is useless.

Shift length: It is the length of the shift between the two start bits of
two consecutive tested sequences in a dump. This means that all the bits of the
dump are tested Sequence length/Shift length times, except beginning bits and
ending bits. Each bit is tested in several different sequences, and one p-value per
test is generated for the bit. For each possible sequence length, 10 shift lengths
are used, represented by a percentage of the length : [10%, 20% . . . 90%].

Internal Parameter: For some tests, there are additional inputs. For ex-
ample, the serial test looks at the proportion of all blocks of m bits in the tested
sequence, m is an additional input for the test. So, for each test that requires an
additional input, 5 − 10 values for the parameter are defined. Some values are
only used for longer sequences, because when the value grows up, the required
sequence length grows up, too.

Selection p-value: Due to the use of a shift, as explained before, each bit
has several p-values linked to it. However, to apply the boosting, we need only
one p-value per bit. The parameter Selection p-value represents the method that
chooses this p-value, it can be the mean, min, max or the geometric mean of the
p-values assigned to the bit.

4.2 Data generation for learning and classification

Boosting requires a large number of elements of each class (meaningful informa-
tion and cryptographic material) from different embedded objects, to be repre-
sentative of all the existing embedded devices.

As a consequence, although we extracted the data of about 300 devices (us-
ing CardPeek [17] or RFIDIOT [16]) from various applications: access control,
transportation, credit cards, French health insurance and loyalty cards, train
coupons, Belgium e-passports, ski passes, etc. these data cannot be used for the
learning phase, because the class of the bit sequences is not known for every
card. In order to solve this problem, we decide to set up a large synthetic dump
containing data similar to real dumps, inspired by our 300 dumps. This synthetic
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dump is modeled by several sequences of variable lengths, separated or not by a
repetition of 0 or 1 bits, containing cryptographic materials (hashed or ciphered
data, cryptographic keys etc.) or meaningful information (dates, names, etc.).

We have generated a synthetic dump of 40, 000-bit long. It contains approx-
imately 65% of meaningful information, where sequences are between 20 and
80-bit long. Cryptographic materials are generated from various cryptographic
algorithms as RSA, AES, SHA-1, etc. They are truncated to obtain the ex-
pected length. Meaningful information includes dates with different encoding,
e.g., ASCII, BCD, and various formats like YYYY-MM-DD, YY/MM/DD, etc.
There are also names, textual information, and postal codes with various encod-
ing techniques.

4.3 AdaBoost

A weak classifier is a statistical test associated with its parameters. The Ad-
aBoost algorithm [10] (adaptive boosting algorithm) aims to identify the best
combination of weak classifiers to build a stronger one. A weak classifier can
correctly guess whether a sequence is random or not with a probability that is
slightly better than 50%. The SAMME.R [27] algorithm (SAMME is for Stage-
wise Additive Modeling using a Multi-class Exponential loss function and the R
for Real) is an improved multi-class variant of the AdaBoost algorithm [21][11]
that is used in the next section.

The boosting first selects the best parametrised test to classify the bits of
the dump, then misclassified bits receives a more important weight. The booting
then selects the second better test taking into account the bit weights, and it
then updates the weights. Repeating those actions until all the bits are correctly
classified, or a certain number of tests preset have been reached.

4.4 Merging results in a set of dumps

One may expect dumps associated to a given application to be identically struc-
tured, i.e., containing the same fields, in the same locations. For example, in
Mobib dumps, the name, the birth date and the postal code of the holder or de-
tails of its last trips are always similarly located in the dumps. The data of these
fields vary for each dump but the class (meaningful information or cryptographic
material) is the same. Therefore a classification of the bits of the application is
computed rather than a classification for each dump. More precisely, the class
of the ith bit of the application is decided by a majority vote on the results of
the ith bit of each dump. The merger process is also applied on cyclic records,
because they contain the same fields in the same locations. A set of dumps of
the same application can be obtained by dumping memory of different cards, or
by dumping the cards at different time of the card lifetime.

In reality, the structure of all dumps for a given application is not always
identical : some records are possibly missing, or are not of the same length,
the number of repetitions of cyclic records can vary or the data stored in the
field is not always of the same length and the value of the non-used bits of the
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allocated space for the field is uncertain. For example, EMV cards that come
from different banks do not store necessary the same number of transactions, do
not contain all possible records of the EMV specification, and the field of the
name is padded with 0x20 when the name is shorter than the allocated space,
etc. Consequently, a pre-processing phase is needed to identify the records in
each dump of the application. This operation does not require the knowledge of
the card specification, because it is performed by analysing the structure of the
data, including the size and the location of the records in the dump, combined
with the presence of runs of 0 or 1 separating fields in the record.

5 Experiments

Figure 3 is a summary of the performed experiments to obtain the best sta-
tistical tests to distinguish meaningful information and cryptographic materials
from dumps. The tested sequence of 6 bits represents a (short) dump. The first
step consists in applying each feature Ti (a parametrised statistical test) to all
subsequences of the tested sequence, each feature generates a p-value Pi. As
subsequences overlap, several p-values are attributed to each bit of the tested
sequence, the boosting algorithm requires only one, thus the p-value selection
is done, for example the mean pi of its p-values Pi is attributed to each bit.
These two steps are done for each feature and all p-values are stored in an array
together with the class of each bit, then the boosting algorithm is applied on it
to extract the features that lead to the best classification of the data from the
tested dump.

5.1 Learning with AdaBoost

Additionally to the parameters of the statistical tests, there is one parameter to
set related to the boosting algorithm such as the number of features used in the
classification. The boosting algorithm combines many weak classifiers to obtain
the optimal value. It seems unlikely to obtain a classification 100% correct. This
parameter limits the number of statistical tests of the set.Regarding their influ-
ence on the results, experiments suggest a number of statistical tests between 1
and 15.

Two synthetic dumps are generated, (one represents the learning set and the
second the classification one) and the boosting looks for the best set of tests from
the learning database. Then, varying the number of tests in the set given by the
boosting on the learning dump, each set of tests is applied on the testing dump.
The set of tests which leads to the best rate of recognition on the testing base is
saved. Experiments have been realised with our own python program using the
AdaBoost-SAMME.R algorithm from Scikit-learn [18]. Creation of the p-values
array takes several hours to be computed, parallelised on 48 cores processor (on
4 AMD Opteron 6174 2,2 GHz) and uses tens of gigabytes of RAM. Application
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of the AdaBoost algorithm takes between some minutes and two hours depend-
ing the number of tests of the set on a single core. The application of the set of
statistical tests on a real dump, as described in the next subsection, is almost
instantaneous, for big dumps (40, 000 bits), it takes few seconds.

The best set of statistical tests obtained after learning with AdaBoost is
composed of two tests: approximate entropy and longest runs. The approximate
entropy test compares the frequency of overlapping blocks of length m and m+1
to the expected result for random data. The longest runs test compares the length
of the longest run of ones to the expected result for random data, as detailed in
[20]. Parameters of these tests are obtained as following:

– Approximate entropy with a length of 96 bits, a shift of 86 bits between
sequences tested, an internal parameters of 2 and the p-value selected is the
maximum for each bit.

– Longest Runs with a length of 96 bits, a shift of 86 bits between sequences
tested, an internal parameters of 8 and the p-value selected is the mean for
each bit.

The recognition rate of these tests is 83.94% (about 87% for cryptographic
bits and 82% for bits of meaningful information) on the learning dump and
83.42% (about 80% for cryptographic bits and 85% for bits of meaningful infor-
mation) on the testing one. The boosting algorithm selects the most pertinent
statistical tests in relation to our context of short sequences belonging to mem-
ory dumps. Note that, slightly varying the learning data, the boosting Algorithm
returns other strong classifier (with different statistical tests and parameters)
providing similar recognition rate. It can be surprising to only use two statisti-
cal tests but as presented in the following section, those two tests lead to good
results on real dumps. Another advantage in the use of only two tests is the
efficiency in term of computation time: less than 2 seconds to analyse an EMV
dump of 30, 000 bits. One can notice that these two statistical tests use 96 bits
to take their decision, but they are able to detect the class of sequences that are
shorter than 96 bits, because all bits are tested several times due to the shift
between tested sequences.

5.2 Recognition on real dumps

In this subsection, the classifier trained on synthetic data is used to classify
meaningful information and cryptographic materials on real dumps of memory.
This set is applied on more than 30 EMV cards [9], 2 VITALE cards (the french
health insurance card) and on 7 Mobib cards. In these cards, the meaning of
an important part of the data is publicly known (EMV, VITALE) or a previous
work of the authors allows to determine it, so, the ground truth (i.e. theoretical
classification of the data) is easily accomplished. It represents more than 600, 000
bits of data with 140, 000 cryptographic bits and 500, 000 bits of meaningful in-
formation. As result, we obtain a recognition rate of 86.11% for cryptographic
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bits and 96.97% for bits of meaningful information. Figure 4 shows an example of
the classification result for an EMV card dump. When the set of tests is applied
on Mobib cards, we get between 95% and 100% of recognition rate for each card.

Fig. 4: Example of EMV dump analysis result

– Dark Green: Bits of meaningful information detected as meaningful infor-
mation

– Light Green: Cryptographic bits detected as cryptographic
– Orange: Cryptographic bits detected as meaningful information
– Red: Bits of meaningful information detected as cryptographic

Some further analysis can improve the results, for example if a single cryp-
tographic (or from meaningful information) bit is surrounded by a significant
amount of meaningful information (or cryptographic) bits, then this bit is cer-
tainly misclassified. Errors are often localised on the transition between a cryp-
tographic sequence and a meaningful one. In Mobib cards, only one field is not
always recognised as meaningful information (the name of the holder of the card
where each letter is encoded with 5 bits). It should be noted that in Mobib card,
there is only meaningful information, and the sequences are quite short, most
of them are shorter than 100 bits. Table 1 presents the obtained results on real
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dumps with the proposed approach.

Table 1: Detection of cryptographic bits and bits of meaningful information in
EMV, VITALE and Mobib dumps

Dump type Cryptographic bits Detected bits Meaningful bits Detected bits

EMV 131, 384 85.97 % 379, 352 95.95 %

VITALE 9, 168 88.14 % 126, 160 99.93 %

Mobib 0 – 9, 681 98.34 %

5.3 Merging results on EMV cards

As seen in the previous section, the classification of meaningful information and
cryptographic bits by the proposed approach provides good results. While the
experiments for Mobib dumps exhibit a successful rate of 100%, the EMV ones
gives around 90%. Therefore, we propose to use the merger process to improve
the last results.

Since all our EMV dumps do not contain same records, therefore we have to
firstly locate and analyse the structure and the presence of some fields into our
EMV dumps, which is not a trivial task. These fields are information about the
holder, the card or cryptographic materials. Fields having already a recognition
rate equal to 100% are discarded for this merger experiment. In the following
experiments, 10 fields representing in total 3, 560 bits are selected, split as 3, 312
cryptographic bits and 248 bits of meaningful information. Since these fields are
repeated numerous time in each dump and our database is composed of 34 EMV
dumps, our merger process has to classify 21, 120 bits of meaningful information
and 124, 512 cryptographic bits.

Applying the merger process for all these fields on 34 EMV dumps, we obtain
nearly 100% of rate of recognition. More precisely, only two bits of a crypto-
graphic field (a certificate of 1, 024 bits) are not recognised. We experimented a
second time this process by merging the minimum of results in order to obtain a
score nearly of 100%. More precisely, for fields that are between 16 and 256-bit
length, with a mean of rate of recognition on each dump between 80% and 95%,
only three scores are needed to be merged to obtain a score of 100% regardless
the class. For fields that are longer, about 1, 000 bits with a mean of recognition
rate on each dump of 85%, more scores are needed to obtain a score of 100%.
Except for one field, with only 3 merged results, we improve the recognition by
10 points, that is reaching 95%, and with 10 merged results, we obtain the score
of 100%. For the fields that we never obtain 100%, we improve the recognition
rate up to 97% with only 10 merged results. Due to the use of a majority vote,
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Table 2: Fusion results by field
Field name Class Length (bits) Mean result Fusion Sequences merged

Issuer PK Certificate 2 1,024 85.85 % 99.8 % 22

Signed Static App. Data 2 960 87.04 % 100 % 5

ICC PK Certificate 2 1,024 84.21 % 100 % 9

ICC PK Remainder 2 144 82.32 % 100 % 3

Issuer PK Remainder 2 160 87.16 % 100 % 3

Cardholder Name 1 168 97.54 % 100 % 3

App. Label 1 16 89.0 % 100 % 3

App. Preferred Name 1 16 83.23 % 100 % 3

App. Effective Date 1 24 97.6 % 100 % 3

App. Expiration Date 1 24 99.53 % 100 % 3

it is better to merge an odd number of results, above all if we merge few results.

Table 2 presents the fusion result for each selected field from EMV cards,
where the class is 1 for meaningful information and 2 for cryptographic material,
the mean result is the mean of recognition rates of the analysis applied on each
dump separately. The Fusion represents the best recognition rate after applying
the Fusion, and sequences merged is the required number of sequences merged
to obtain the best result.

6 Conclusion and perspectives

This paper investigates memory carving techniques for embedded devices. Given
that cryptographic material in memory dumps makes carving techniques ineffi-
cient, we introduce a methodology to distinguish meaningful information from
cryptographic material in memory dumps. Our approach is based on an adap-
tive boosting algorithm based on statistical tests for randomness. We propose to
combine several weak classifiers to build a stronger one. Experiments return a
detection of meaningful bits from 95.95% of success for EMV cards to 99.93% for
VITALE ones, and a cryptographic bits recognition greater than 85%. We also
introduced a fusion strategy to improve the previous results, merging the classi-
fication of several dumps of the same application. With only 3 merged dumps,
the experiments exhibit a recognition rate of 99.8%.

Future work includes an automatic interpretation of meaningful information
of the dumps, by retrieving names, dates, address, etc. Another possible work
is the classification of dumps into several categories to adjust the interpretation
method.
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