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JUMPLETS

ROMAN ANDREEV†

ABSTRACT. In this note we describe a locally supported Riesz basis consisting of “jumplets” for the orthog-
onal complement of continuous splines on an interval in the space of discontinuous ones.

1. INTRODUCTION

Let T > 0 and write J := [0, T]. For N ≥ 1 let a finite partition of J be given by

T = {0=: t0 < t1 < . . .< tN < tN+1 := T}.(1)

Let Pd denote the space of real-valued polynomials on R of degree at most d. We write

F := { f ∈ L2(J) : f |(tn−1,tn) ∈ Ppn
} and E := F ∩H1(J)(2)

for the space F of piecewise polynomials on the interval [0, T] of given polynomial degrees pn ≥ 0
and for its subset E ⊂ F of the continuous ones. Here and throughout, L2 and H1 refer to the usual
Lebesgue and Sobolev spaces of real-valued functions on J .

In the next Section 2 we construct a locally supported Riesz basis for the L2 orthogonal complement
of E in F . Its dimension is obviously N , which is the number of interior nodes of T . We refer to E as
the continuous part of F , and to its L2-orthogonal complement in F as the discontinuous part of F . An
application to adaptive approximation in L2 is discussed in Section 3.

2. CONSTRUCTION OF THE BASIS

If I ⊂ R is an interval, we write (·, ·)I for the L2(I) scalar product, and ‖ · ‖I for the norm. The
euclidean norm is denoted by | · |. For integer d ≥ 0 let `d ∈ Pd be the Legendre polynomial on the

unit interval [0, 1] characterized by `d(1) =
p

2d + 1 and
∫ 1

0
`d(t)q(t)dt = 0 for any q ∈ Pd−1. Then

{`k : 0≤ k ≤ d} is an orthonormal basis for Pd ∩ L2([0,1]).
For integer d ≥ 0 define the polynomial Rd :=

∑d
k=0 `k(1)`k. Its key property is that (Rd , q)[0,1] =

q(1) for any polynomial q ∈ Pd , as can be verified by expanding q into the Legendre basis. Further,
‖Rd‖[0,1] = 1+ d. Together, these observations imply Rd(1) = (Rd , Rd)[0,1] = (1+ d)2. Using `k(0) =
(−1)k`k(1) in the definition of Rd we also obtain Rd(0) = (−1)d(1+ d).

For each n = 1, . . . , N + 1, let Jn := (tn−1, tn) be the n-th subinterval in the partition T from (1).
Write αn := |tn − tn−1|−1 for the inverse of its length, and define the constants βn := αn(1 + pn)2,
where pn is the polynomial degree from (2). Define the functions ψ−n and ψ+n−1 in F having the values

ψ−n (t) := αnRpn
(αn(t − tn−1)) and ψ+n−1(t) := αnRpn

(αn(tn − t))(3)

if t ∈ Jn, and zero else. Note that ψ+n−1 is the reflection of ψ−n about the vertical at the middle of the
subinterval Jn. Since βn is associated with both, ψ+n−1 and ψ−n , we also write β+n−1 := β−n := βn. These
functions are designed towards the following observation.

Lemma 2.1. (ψ±n , f )J = limε→0 f (tn ± |ε|) for all f ∈ F and n= 1, . . . , N.

Proof. If f ∈ F then q : t 7→ f (tn−1 + s/αn) is a polynomial of degree pn on the unit interval [0, 1].
Since ψ−n is supported on Jn, we employ the definition of ψ−n and the properties of Rd to obtain
(ψ−n , f )J = (Rpn

, q)[0,1] = q(1) = limε→0 f (tn − |ε|). The proof for ψ+n is analogous. �
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FIGURE 1. The basis function ψ2 from (4) for polynomial degrees p = 1 (left) / p = 2 (right).

The announced basis for the discontinuous part of F is now defined by

ψn :=
ψ−n −ψ

+
n

p

β−n + β
+
n

, n= 1, . . . , N .(4)

Proposition 2.2. Assume that pn ≥ pmin ≥ 1 in (2). Then, Ψ := {ψn : n = 1, . . . , N} is a Riesz basis for
the L2-orthogonal complement of E in F. More precisely, for all vectors c ∈ RN ,

C−|c|2 ≤ ‖ΨTc‖2
J ≤ C+|c|2 with C± = 1±

1

1+ pmin
.(5)

Proof. Set ψ◦n :=ψ−n −ψ
+
n . Then (ψ◦n, e)J = limε→0 e(tn−|ε|)− limε→0 e(tn+ |ε|) = 0 for any e ∈ E by

continuity of e. Hence, each ψn is L2-orthogonal to E. By definition, ψn ∈ F . Therefore, once (5) has
been established, the fact that the L2-orthogonal complement of E in F is N -dimensional shows that
Ψ is a basis for it. Now we compute

γ◦n,n−1 := (ψ◦n,ψ◦n−1)J =−(ψ
−
n ,ψ+n−1)J =− lim

ε→0
ψ−n (tn−1 + |ε|) = αn(−1)1+pn(1+ pn),(6)

and similarly

β◦n := (ψ◦n,ψ◦n)J = ‖ψ
−
n ‖

2
J + ‖ψ

+
n ‖

2
J = β

−
n + β

+
n .(7)

Set δn := γ◦n,n−1/
p

β◦nβ
◦
n−1. Then the Gramian of Ψ is the tridiagonal symmetric N × N matrix

MΨ :=















1 δ2
δ2 1 δ3

δ3 1
...

. . .
. . .















.(8)

Note cTMΨc = |c|2 +
∑N

n=2 2δncncn−1 for any c ∈ RN , so we wish to compare the magnitude of the
second term to |c|2. Observe

|2δncncn−1|= |γ◦n,n−1| × 2
|cn|
p

β◦n

|cn−1|
p

β◦n−1

≤
βn

1+ pmin
×
�

c2
n

β◦n
+

c2
n−1

β◦n−1

�

,(9)

so that
∑N

n=2 |2δncncn−1| ≤
1

1+pmin
|c|2. Therefore, C−|c|2 ≤ cTMΨc ≤ C+|c|2, with C± = 1± 1

1+pmin
. �

On a uniform mesh T and with uniform polynomial degree p one obtains δn =−
1
2
(−1)p

1+p
for each n

in the Gramian (8). It is a tridiagonal symmetric Toeplitz matrix with eigenvalues {1+ 1
1+p

cos kπ
N+1

:
k = 1, . . . , N}. Letting N →∞ shows that the constants in (5) cannot be improved in general.

The fact that the Gramian (8) is well-conditioned (5), together with Lemma 2.1, allows for fast
computation of the discontinuous part of a function f ∈ F . Let ∆ ∈ RN denote the vector of jumps
of f , whose components are ∆n = limε→0{ f (tn − |ε|)− f (tn + |ε|)} for n = 1, . . . , N . Then Lemma
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FIGURE 2. Left: L2 error achieved by the adaptive approximation algorithm for
g : t 7→ t−1/3 on J = (0,1) by piecewise constant functions, and the error of the L2
best approximation of g on a uniform mesh, as a function of the mesh size. Right: g
and its adaptive approximation g4 for θ = 3/4.

2.1 and definition (4) of ψn imply bn := (ψn, f )J = ∆n/
p

β−n + β
+
n . The coefficients c ∈ RN of

the discontinuous part of f with respect to the basis (4) satisfy the linear system MΨc = b, which
can be quickly solved approximatively by the conjugate gradient method. This may be cheaper than
projecting onto E and then taking the difference because the dimension of E is significantly larger than
N when the polynomial degrees pn in (2) are large.

3. APPLICATION: ADAPTIVE APPROXIMATION

As an application of the above construction we describe an algorithm for the adaptive approxi-
mation of a given function g ∈ L2(J). Suppose Ti , i = 0, 1,2, . . ., is a sequence of meshes as in the
introduction, which are nested, Ti ⊂ Ti+1. Let Fi ⊂ Y be the space of piecewise affine splines on with
respect to Ti , and set Ei := Fi ∩H1(J), which is then the space of continuous piecewise affine splines.
Note that Fi = E′i + Ei , where the prime denotes the derivative. Let E⊥i denote the L2-orthogonal
complement of Ei in Fi , and let Q⊥

i : L2(J)→ E⊥i be the surjective L2-orthogonal projection.
Suppose gi ∈ E′i is an approximation of g. Then we consider g⊥i := Q⊥

i gi ∈ E⊥i , and use the
coefficients of g⊥i with respect to the Riesz basis (4) for E⊥i as error indicators for the marking of
subintervals to be adaptively refined. The adaptive algorithm is as follows. Let T0 be given. Fix a
threshold parameter θ ∈ (0,1]. For each i = 0,1, 2, . . ., do: 1) Compute the L2-orthogonal projection
gi of g onto E′i , or an approximation thereof. 2) Compute the projection g⊥i := Q⊥

i gi . Set Ni =
#(Ti ∩ (0, T )) for the number of interior nodes in Ti , and [Ni] := {1, . . . , Ni}. Let c ∈ RNi be the vector
of the coefficients of g⊥i ∈ E⊥i with respect to the Riesz basis (4) for E⊥i . Select Mi ⊂ [Ni] of minimal
size such that
∑

n∈Mi
c2

n ≥ θ
2|c|2. 3) If Ti = {0 = t0 < t1 < . . . < tNi

< tNi+1 = T}, let the new mesh

Ti+1 contain Ti , and the new nodes 1
2
(tn−1 + tn) and 1

2
(tn + tn+1) for all n ∈ Mi .

The Riesz basis property guarantees that the part of the indicator g⊥i corresponding to the marked
subset Mi carries a fraction of its total L2(J) norm that is comparable to θ .

As an example we take g : t 7→ t−1/3 on J := [0, T] with T := 1. We set T0 := {0, 1
4
, 1

2
, 3

4
, 1} for the

initial mesh. Instead of the L2-orthogonal projection we use the 4-point Gauss–Legendre quadrature
rule on each subinterval to obtain gi . The error ‖g− gi‖J for the above adaptive is shown in Figure 2.
Due to the lack of smoothness of the given function g, it is approximated by piecewise constant
functions on a uniform mesh with a rate of ≈ 1/6 with respect to the mesh size #Ti , while adaptivity
recovers the asymptotic rate of one.

This note was mainly written while at RICAM, Linz (AT), 2014.
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