Jumplets

Roman Andreev

To cite this version:

Roman Andreev. Jumplets. 2016. hal-01338101

HAL Id: hal-01338101
 https://hal.science/hal-01338101

Preprint submitted on 27 Jun 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

JUMPLETS

ROMAN ANDREEV ${ }^{\dagger}$

Abstract

In this note we describe a locally supported Riesz basis consisting of "jumplets" for the orthogonal complement of continuous splines on an interval in the space of discontinuous ones.

1. Introduction

Let $T>0$ and write $J:=[0, T]$. For $N \geq 1$ let a finite partition of J be given by

$$
\begin{equation*}
\mathscr{T}=\left\{0=: t_{0}<t_{1}<\ldots<t_{N}<t_{N+1}:=T\right\} . \tag{1}
\end{equation*}
$$

Let \mathbb{P}_{d} denote the space of real-valued polynomials on \mathbb{R} of degree at most d. We write

$$
\begin{equation*}
F:=\left\{f \in L_{2}(J):\left.f\right|_{\left(t_{n-1}, t_{n}\right)} \in \mathbb{P}_{p_{n}}\right\} \quad \text { and } \quad E:=F \cap H^{1}(J) \tag{2}
\end{equation*}
$$

for the space F of piecewise polynomials on the interval [$0, T$] of given polynomial degrees $p_{n} \geq 0$ and for its subset $E \subset F$ of the continuous ones. Here and throughout, L_{2} and H^{1} refer to the usual Lebesgue and Sobolev spaces of real-valued functions on J.

In the next Section 2 we construct a locally supported Riesz basis for the L_{2} orthogonal complement of E in F. Its dimension is obviously N, which is the number of interior nodes of \mathscr{T}. We refer to E as the continuous part of F, and to its L_{2}-orthogonal complement in F as the discontinuous part of F. An application to adaptive approximation in L_{2} is discussed in Section 3.

2. Construction of the basis

If $I \subset \mathbb{R}$ is an interval, we write $(\cdot, \cdot)_{I}$ for the $L_{2}(I)$ scalar product, and $\|\cdot\|_{I}$ for the norm. The euclidean norm is denoted by $|\cdot|$. For integer $d \geq 0$ let $\ell_{d} \in \mathbb{P}_{d}$ be the Legendre polynomial on the unit interval $[0,1]$ characterized by $\ell_{d}(1)=\sqrt{2 d+1}$ and $\int_{0}^{1} \ell_{d}(t) q(t) \mathrm{d} t=0$ for any $q \in \mathbb{P}_{d-1}$. Then $\left\{\ell_{k}: 0 \leq k \leq d\right\}$ is an orthonormal basis for $\mathbb{P}_{d} \cap L_{2}([0,1])$.

For integer $d \geq 0$ define the polynomial $R_{d}:=\sum_{k=0}^{d} \ell_{k}(1) \ell_{k}$. Its key property is that $\left(R_{d}, q\right)_{[0,1]}=$ $q(1)$ for any polynomial $q \in \mathbb{P}_{d}$, as can be verified by expanding q into the Legendre basis. Further, $\left\|R_{d}\right\|_{[0,1]}=1+d$. Together, these observations imply $R_{d}(1)=\left(R_{d}, R_{d}\right)_{[0,1]}=(1+d)^{2}$. Using $\ell_{k}(0)=$ $(-1)^{k} \ell_{k}(1)$ in the definition of R_{d} we also obtain $R_{d}(0)=(-1)^{d}(1+d)$.

For each $n=1, \ldots, N+1$, let $J_{n}:=\left(t_{n-1}, t_{n}\right)$ be the n-th subinterval in the partition \mathscr{T} from (1). Write $\alpha_{n}:=\left|t_{n}-t_{n-1}\right|^{-1}$ for the inverse of its length, and define the constants $\beta_{n}:=\alpha_{n}\left(1+p_{n}\right)^{2}$, where p_{n} is the polynomial degree from (2). Define the functions ψ_{n}^{-}and ψ_{n-1}^{+}in F having the values

$$
\begin{equation*}
\psi_{n}^{-}(t):=\alpha_{n} R_{p_{n}}\left(\alpha_{n}\left(t-t_{n-1}\right)\right) \quad \text { and } \quad \psi_{n-1}^{+}(t):=\alpha_{n} R_{p_{n}}\left(\alpha_{n}\left(t_{n}-t\right)\right) \tag{3}
\end{equation*}
$$

if $t \in J_{n}$, and zero else. Note that ψ_{n-1}^{+}is the reflection of ψ_{n}^{-}about the vertical at the middle of the subinterval J_{n}. Since β_{n} is associated with both, ψ_{n-1}^{+}and ψ_{n}^{-}, we also write $\beta_{n-1}^{+}:=\beta_{n}^{-}:=\beta_{n}$. These functions are designed towards the following observation.

Lemma 2.1. $\left(\psi_{n}^{ \pm}, f\right)_{J}=\lim _{\epsilon \rightarrow 0} f\left(t_{n} \pm|\epsilon|\right)$ for all $f \in F$ and $n=1, \ldots, N$.
Proof. If $f \in F$ then $q: t \mapsto f\left(t_{n-1}+s / \alpha_{n}\right)$ is a polynomial of degree p_{n} on the unit interval [0,1]. Since ψ_{n}^{-}is supported on J_{n}, we employ the definition of ψ_{n}^{-}and the properties of R_{d} to obtain $\left(\psi_{n}^{-}, f\right)_{J}=\left(R_{p_{n}}, q\right)_{[0,1]}=q(1)=\lim _{\epsilon \rightarrow 0} f\left(t_{n}-|\epsilon|\right)$. The proof for ψ_{n}^{+}is analogous.

Figure 1. The basis function ψ_{2} from (4) for polynomial degrees $p=1$ (left) $/ p=2$ (right).
The announced basis for the discontinuous part of F is now defined by

$$
\begin{equation*}
\psi_{n}:=\frac{\psi_{n}^{-}-\psi_{n}^{+}}{\sqrt{\beta_{n}^{-}+\beta_{n}^{+}}}, \quad n=1, \ldots, N \tag{4}
\end{equation*}
$$

Proposition 2.2. Assume that $p_{n} \geq p_{\min } \geq 1$ in (2). Then, $\Psi:=\left\{\psi_{n}: n=1, \ldots, N\right\}$ is a Riesz basis for the L_{2}-orthogonal complement of E in F. More precisely, for all vectors $c \in \mathbb{R}^{N}$,

$$
\begin{equation*}
C_{-}|c|^{2} \leq\left\|\Psi^{\top} c\right\|_{J}^{2} \leq C_{+}|c|^{2} \quad \text { with } \quad C_{ \pm}=1 \pm \frac{1}{1+p_{\min }} \tag{5}
\end{equation*}
$$

Proof. Set $\psi_{n}^{\circ}:=\psi_{n}^{-}-\psi_{n}^{+}$. Then $\left(\psi_{n}^{\circ}, e\right)_{J}=\lim _{\epsilon \rightarrow 0} e\left(t_{n}-|\epsilon|\right)-\lim _{\epsilon \rightarrow 0} e\left(t_{n}+|\epsilon|\right)=0$ for any $e \in E$ by continuity of e. Hence, each ψ_{n} is L_{2}-orthogonal to E. By definition, $\psi_{n} \in F$. Therefore, once (5) has been established, the fact that the L_{2}-orthogonal complement of E in F is N-dimensional shows that Ψ is a basis for it. Now we compute

$$
\begin{equation*}
\gamma_{n, n-1}^{\circ}:=\left(\psi_{n}^{\circ}, \psi_{n-1}^{\circ}\right)_{J}=-\left(\psi_{n}^{-}, \psi_{n-1}^{+}\right)_{J}=-\lim _{\epsilon \rightarrow 0} \psi_{n}^{-}\left(t_{n-1}+|\epsilon|\right)=\alpha_{n}(-1)^{1+p_{n}}\left(1+p_{n}\right) \tag{6}
\end{equation*}
$$

and similarly

$$
\begin{equation*}
\beta_{n}^{\circ}:=\left(\psi_{n}^{\circ}, \psi_{n}^{\circ}\right)_{J}=\left\|\psi_{n}^{-}\right\|_{J}^{2}+\left\|\psi_{n}^{+}\right\|_{J}^{2}=\beta_{n}^{-}+\beta_{n}^{+} . \tag{7}
\end{equation*}
$$

Set $\delta_{n}:=\gamma_{n, n-1}^{\circ} / \sqrt{\beta_{n}^{\circ} \beta_{n-1}^{\circ}}$. Then the Gramian of Ψ is the tridiagonal symmetric $N \times N$ matrix

$$
M_{\Psi}:=\left(\begin{array}{cccc}
1 & \delta_{2} & & \tag{8}\\
\delta_{2} & 1 & \delta_{3} & \\
& \delta_{3} & 1 & \ddots \\
& & \ddots & \ddots
\end{array}\right)
$$

Note $c^{\top} M_{\Psi} c=|c|^{2}+\sum_{n=2}^{N} 2 \delta_{n} c_{n} c_{n-1}$ for any $c \in \mathbb{R}^{N}$, so we wish to compare the magnitude of the second term to $|c|^{2}$. Observe

$$
\begin{equation*}
\left|2 \delta_{n} c_{n} c_{n-1}\right|=\left|\gamma_{n, n-1}^{\circ}\right| \times 2 \frac{\left|c_{n}\right|}{\sqrt{\beta_{n}^{\circ}}} \frac{\left|c_{n-1}\right|}{\sqrt{\beta_{n-1}^{\circ}}} \leq \frac{\beta_{n}}{1+p_{\min }} \times\left(\frac{c_{n}^{2}}{\beta_{n}^{\circ}}+\frac{c_{n-1}^{2}}{\beta_{n-1}^{\circ}}\right) \tag{9}
\end{equation*}
$$

so that $\sum_{n=2}^{N}\left|2 \delta_{n} c_{n} c_{n-1}\right| \leq \frac{1}{1+p_{\min }}|c|^{2}$. Therefore, $C_{-}|c|^{2} \leq c^{\top} M_{\Psi} c \leq C_{+}|c|^{2}$, with $C_{ \pm}=1 \pm \frac{1}{1+p_{\min }}$.
On a uniform mesh \mathscr{T} and with uniform polynomial degree p one obtains $\delta_{n}=-\frac{1}{2} \frac{(-1)^{p}}{1+p}$ for each n in the Gramian (8). It is a tridiagonal symmetric Toeplitz matrix with eigenvalues $\left\{1+\frac{1}{1+p} \cos \frac{k \pi}{N+1}\right.$: $k=1, \ldots, N\}$. Letting $N \rightarrow \infty$ shows that the constants in (5) cannot be improved in general.

The fact that the Gramian (8) is well-conditioned (5), together with Lemma 2.1, allows for fast computation of the discontinuous part of a function $f \in F$. Let $\Delta \in \mathbb{R}^{N}$ denote the vector of jumps of f, whose components are $\Delta_{n}=\lim _{\epsilon \rightarrow 0}\left\{f\left(t_{n}-|\epsilon|\right)-f\left(t_{n}+|\epsilon|\right)\right\}$ for $n=1, \ldots, N$. Then Lemma

Figure 2. Left: L_{2} error achieved by the adaptive approximation algorithm for $g: t \mapsto t^{-1 / 3}$ on $J=(0,1)$ by piecewise constant functions, and the error of the L_{2} best approximation of g on a uniform mesh, as a function of the mesh size. Right: g and its adaptive approximation g_{4} for $\theta=3 / 4$.
2.1 and definition (4) of ψ_{n} imply $b_{n}:=\left(\psi_{n}, f\right)_{J}=\Delta_{n} / \sqrt{\beta_{n}^{-}+\beta_{n}^{+}}$. The coefficients $c \in \mathbb{R}^{N}$ of the discontinuous part of f with respect to the basis (4) satisfy the linear system $M_{\Psi} c=b$, which can be quickly solved approximatively by the conjugate gradient method. This may be cheaper than projecting onto E and then taking the difference because the dimension of E is significantly larger than N when the polynomial degrees p_{n} in (2) are large.

3. Application: adaptive approximation

As an application of the above construction we describe an algorithm for the adaptive approximation of a given function $g \in L_{2}(J)$. Suppose $\mathscr{T}_{i}, i=0,1,2, \ldots$, is a sequence of meshes as in the introduction, which are nested, $\mathscr{T}_{i} \subset \mathscr{T}_{i+1}$. Let $F_{i} \subset Y$ be the space of piecewise affine splines on with respect to \mathscr{T}_{i}, and set $E_{i}:=F_{i} \cap H^{1}(J)$, which is then the space of continuous piecewise affine splines. Note that $F_{i}=E_{i}^{\prime}+E_{i}$, where the prime denotes the derivative. Let E_{i}^{\perp} denote the L_{2}-orthogonal complement of E_{i} in F_{i}, and let $Q_{i}^{\perp}: L_{2}(J) \rightarrow E_{i}^{\perp}$ be the surjective L_{2}-orthogonal projection.

Suppose $g_{i} \in E_{i}^{\prime}$ is an approximation of g. Then we consider $g_{i}^{\perp}:=Q_{i}^{\perp} g_{i} \in E_{i}^{\perp}$, and use the coefficients of g_{i}^{\perp} with respect to the Riesz basis (4) for E_{i}^{\perp} as error indicators for the marking of subintervals to be adaptively refined. The adaptive algorithm is as follows. Let \mathscr{T}_{0} be given. Fix a threshold parameter $\theta \in(0,1]$. For each $i=0,1,2, \ldots$, do: 1$)$ Compute the L_{2}-orthogonal projection g_{i} of g onto E_{i}^{\prime}, or an approximation thereof. 2) Compute the projection $g_{i}^{\perp}:=Q_{i}^{\perp} g_{i}$. Set $N_{i}=$ $\#\left(\mathscr{T}_{i} \cap(0, T)\right)$ for the number of interior nodes in \mathscr{T}_{i}, and $\left[N_{i}\right]:=\left\{1, \ldots, N_{i}\right\}$. Let $c \in \mathbb{R}^{N_{i}}$ be the vector of the coefficients of $g_{i}^{\perp} \in E_{i}^{\perp}$ with respect to the Riesz basis (4) for E_{i}^{\perp}. Select $M_{i} \subset\left[N_{i}\right]$ of minimal size such that $\sum_{n \in M_{i}} c_{n}^{2} \geq \theta^{2}|c|^{2}$. 3) If $\mathscr{T}_{i}=\left\{0=t_{0}<t_{1}<\ldots<t_{N_{i}}<t_{N_{i}+1}=T\right\}$, let the new mesh \mathscr{T}_{i+1} contain \mathscr{T}_{i}, and the new nodes $\frac{1}{2}\left(t_{n-1}+t_{n}\right)$ and $\frac{1}{2}\left(t_{n}+t_{n+1}\right)$ for all $n \in M_{i}$.

The Riesz basis property guarantees that the part of the indicator g_{i}^{\perp} corresponding to the marked subset M_{i} carries a fraction of its total $L_{2}(J)$ norm that is comparable to θ.

As an example we take $g: t \mapsto t^{-1 / 3}$ on $J:=[0, T]$ with $T:=1$. We set $\mathscr{T}_{0}:=\left\{0, \frac{1}{4}, \frac{1}{2}, \frac{3}{4}, 1\right\}$ for the initial mesh. Instead of the L_{2}-orthogonal projection we use the 4-point Gauss-Legendre quadrature rule on each subinterval to obtain g_{i}. The error $\left\|g-g_{i}\right\|_{J}$ for the above adaptive is shown in Figure 2. Due to the lack of smoothness of the given function g, it is approximated by piecewise constant functions on a uniform mesh with a rate of $\approx 1 / 6$ with respect to the mesh size $\# \mathscr{T}_{i}$, while adaptivity recovers the asymptotic rate of one.

This note was mainly written while at RICAM, Linz (AT), 2014.

[^0]
[^0]: †Université Paris Diderot, Sorbonne Paris Cité, LJLL (UMR 7598 CNRS), F-75205, Paris, France
 E-mail address: roman. andreev@upmc.fr

