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INTRODUCTION

Let T > 0 and write J := [0, T ]. For N ≥ 1 let a finite partition of J be given by = {0 =: t 0 < t 1 < . . . < t N < t N +1 := T }.

(1) Let d denote the space of real-valued polynomials on of degree at most d. We write

F := { f ∈ L 2 (J) : f | (t n-1 ,t n ) ∈ p n } and E := F ∩ H 1 (J) (2)
for the space F of piecewise polynomials on the interval [0, T ] of given polynomial degrees p n ≥ 0 and for its subset E ⊂ F of the continuous ones. Here and throughout, L 2 and H 1 refer to the usual Lebesgue and Sobolev spaces of real-valued functions on J.

In the next Section 2 we construct a locally supported Riesz basis for the L 2 orthogonal complement of E in F . Its dimension is obviously N , which is the number of interior nodes of . We refer to E as the continuous part of F , and to its L 2 -orthogonal complement in F as the discontinuous part of F . An application to adaptive approximation in L 2 is discussed in Section 3. 

CONSTRUCTION OF THE

0 d (t)q(t)dt = 0 for any q ∈ d-1 . Then { k : 0 ≤ k ≤ d} is an orthonormal basis for d ∩ L 2 ([0, 1]).
For integer d ≥ 0 define the polynomial R d :=

d k=0 k (1) k .
Its key property is that (R d , q) [0,1] = q(1) for any polynomial q ∈ d , as can be verified by expanding q into the Legendre basis. Further,

R d [0,1] = 1 + d. Together, these observations imply R d (1) = (R d , R d ) [0,1] = (1 + d) 2 . Using k (0) = (-1) k k (1) in the definition of R d we also obtain R d (0) = (-1) d (1 + d). For each n = 1, . . . , N + 1, let J n := (t n-1 , t n ) be the n-th subinterval in the partition from (1). Write α n := |t n -t n-1 | -1
for the inverse of its length, and define the constants

β n := α n (1 + p n ) 2 ,
where p n is the polynomial degree from (2). Define the functions ψ - n and

ψ + n-1 in F having the values ψ - n (t) := α n R p n (α n (t -t n-1 )) and ψ + n-1 (t) := α n R p n (α n (t n -t)) (3)
if t ∈ J n , and zero else. Note that ψ + n-1 is the reflection of ψ - n about the vertical at the middle of the subinterval J n . Since β n is associated with both, ψ + n-1 and ψ - n , we also write β + n-1 := β - n := β n . These functions are designed towards the following observation.

Lemma 2.1. (ψ ± n , f ) J = lim ε→0 f (t n ± |ε|) for all f ∈ F and n = 1, . . . , N . Proof. If f ∈ F then q : t → f (t n-1 + s/α n ) is a polynomial of degree p n on the unit interval [0, 1]. Since ψ -
n is supported on J n , we employ the definition of ψ - n and the properties of

R d to obtain (ψ - n , f ) J = (R p n , q) [0,1] = q(1) = lim ε→0 f (t n -|ε|).
The proof for ψ + n is analogous.
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FIGURE 1. The basis function ψ 2 from (4) for polynomial degrees p = 1 (left) / p = 2 (right).

The announced basis for the discontinuous part of F is now defined by

ψ n := ψ - n -ψ + n β - n + β + n , n = 1, . . . , N . (4) Proposition 2.2. Assume that p n ≥ p min ≥ 1 in (2). Then, Ψ := {ψ n : n = 1, . . . , N } is a Riesz basis for the L 2 -orthogonal complement of E in F . More precisely, for all vectors c ∈ N , C -|c| 2 ≤ Ψ T c 2 J ≤ C + |c| 2 with C ± = 1 ± 1 1 + p min . (5) Proof. Set ψ • n := ψ - n -ψ + n . Then (ψ • n , e) J = lim ε→0 e(t n -|ε|) -lim ε→0 e(t n + |ε|) = 0
for any e ∈ E by continuity of e. Hence, each ψ n is L 2 -orthogonal to E. By definition, ψ n ∈ F . Therefore, once (5) has been established, the fact that the L 2 -orthogonal complement of E in F is N -dimensional shows that Ψ is a basis for it. Now we compute

γ • n,n-1 := (ψ • n , ψ • n-1 ) J = -(ψ - n , ψ + n-1 ) J = -lim ε→0 ψ - n (t n-1 + |ε|) = α n (-1) 1+p n (1 + p n ), (6) 
and similarly

β • n := (ψ • n , ψ • n ) J = ψ - n 2 J + ψ + n 2 J = β - n + β + n . (7) Set δ n := γ • n,n-1 / β • n β • n-1 . Then the Gramian of Ψ is the tridiagonal symmetric N × N matrix M Ψ :=        1 δ 2 δ 2 1 δ 3 δ 3 1 . . . . . . . . .        . (8) Note c T M Ψ c = |c| 2 + N n=2
2δ n c n c n-1 for any c ∈ N , so we wish to compare the magnitude of the second term to |c| 2 . Observe

|2δ n c n c n-1 | = |γ • n,n-1 | × 2 |c n | β • n |c n-1 | β • n-1 ≤ β n 1 + p min × c 2 n β • n + c 2 n-1 β • n-1 , (9) so that N n=2 |2δ n c n c n-1 | ≤ 1 1+p min |c| 2 . Therefore, C -|c| 2 ≤ c T M Ψ c ≤ C + |c| 2 , with C ± = 1 ± 1 1+p min .
On a uniform mesh and with uniform polynomial degree p one obtains δ n = -1 2 (-1) p 1+p for each n in the Gramian (8). It is a tridiagonal symmetric Toeplitz matrix with eigenvalues {1 + 1 1+p cos kπ N +1 : k = 1, . . . , N }. Letting N → ∞ shows that the constants in (5) cannot be improved in general.

The fact that the Gramian ( 8) is well-conditioned ( 5), together with Lemma 2.1, allows for fast computation of the discontinuous part of a function f ∈ F . Let ∆ ∈ N denote the vector of jumps of f , whose components are Left: L 2 error achieved by the adaptive approximation algorithm for g : t → t -1/3 on J = (0, 1) by piecewise constant functions, and the error of the L 2 best approximation of g on a uniform mesh, as a function of the mesh size. Right: g and its adaptive approximation g 4 for θ = 3/4.

∆ n = lim ε→0 { f (t n -|ε|) -f (t n + |ε|)} for n = 1, . . . , N . Then Lemma
2.1 and definition (4) of

ψ n imply b n := (ψ n , f ) J = ∆ n / β - n + β + n .
The coefficients c ∈ N of the discontinuous part of f with respect to the basis (4) satisfy the linear system M Ψ c = b, which can be quickly solved approximatively by the conjugate gradient method. This may be cheaper than projecting onto E and then taking the difference because the dimension of E is significantly larger than N when the polynomial degrees p n in (2) are large.

APPLICATION: ADAPTIVE APPROXIMATION

As an application of the above construction we describe an algorithm for the adaptive approximation of a given function g ∈ L 2 (J). Suppose i , i = 0, 1, 2, . . ., is a sequence of meshes as in the introduction, which are nested, i ⊂ i+1 . Let F i ⊂ Y be the space of piecewise affine splines on with respect to i , and set E i := F i ∩ H 1 (J), which is then the space of continuous piecewise affine splines. Note that F i = E i + E i , where the prime denotes the derivative. Let E ⊥ i denote the L 2 -orthogonal complement of E i in F i , and let Q ⊥ i : L 2 (J) → E ⊥ i be the surjective L 2 -orthogonal projection. Suppose g i ∈ E i is an approximation of g. Then we consider g

⊥ i := Q ⊥ i g i ∈ E ⊥ i
, and use the coefficients of g ⊥ i with respect to the Riesz basis (4) for E ⊥ i as error indicators for the marking of subintervals to be adaptively refined. The adaptive algorithm is as follows. Let 0 be given. Fix a threshold parameter θ ∈ (0, 1]. For each i = 0, 1, 2, . . ., do: 1) Compute the L 2 -orthogonal projection g i of g onto E i , or an approximation thereof. 2) Compute the projection g

⊥ i := Q ⊥ i g i . Set N i = #( i ∩ (0, T ))
for the number of interior nodes in i , and

[N i ] := {1, . . . , N i }. Let c ∈ N i be the vector of the coefficients of g ⊥ i ∈ E ⊥ i with respect to the Riesz basis (4) for E ⊥ i . Select M i ⊂ [N i ] of minimal size such that n∈M i c 2 n ≥ θ 2 |c| 2 . 3) If i = {0 = t 0 < t 1 < . . . < t N i < t N i +1 = T },
let the new mesh i+1 contain i , and the new nodes 1 2 (t n-1 + t n ) and 1 2 (t n + t n+1 ) for all n ∈ M i . The Riesz basis property guarantees that the part of the indicator g ⊥ i corresponding to the marked subset M i carries a fraction of its total L 2 (J) norm that is comparable to θ .

As an example we take g : t → t -1/3 on J := [0, T ] with T := 1. We set 0 := {0, 1 4 , 1 2 , 3 4 , 1} for the initial mesh. Instead of the L 2 -orthogonal projection we use the 4-point Gauss-Legendre quadrature rule on each subinterval to obtain g i . The error gg i J for the above adaptive is shown in Figure 2. Due to the lack of smoothness of the given function g, it is approximated by piecewise constant functions on a uniform mesh with a rate of ≈ 1/6 with respect to the mesh size # i , while adaptivity recovers the asymptotic rate of one.
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  FIGURE 2. Left: L 2 error achieved by the adaptive approximation algorithm for g : t → t -1/3 on J = (0, 1) by piecewise constant functions, and the error of the L 2 best approximation of g on a uniform mesh, as a function of the mesh size. Right: g and its adaptive approximation g 4 for θ = 3/4.