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Abstract
This papers proposes to combine several downscaling processes based on expert knowledge and

objective functions from Operations Research to fill a table of social data about illiteracy in the

USA during the Thirties.
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I THE PROBLEM OF SPATIAL DOWNSCALING ON CENSUS DATA
This paper deals with the well-known downscaling problem (Bierkens et al. (2000)) related to

the ecological inference fallacy (King (1997)), change of support problem (King et al. (2004))

or aggregation problem (Josselin et al. (2008)) in general. Many applications and research

fields (environment, social science, geography) are concerned and this problem notably impairs

census data analysis (Gehlke and Biehl (1934); Robinson (1950); Tranmer and Steel (1998)).

1.1 Example
Let us consider that we have information (attribute values) for a complete statistical population

of a territory. We want to disaggregate this information into a set of smaller sub-areas that

compose the whole territory, at a finer scale. To do so, we need to make assumptions on the

way we distribute the values into the spatial partition elements. Fortunately, we also have a few

relevant information about the complete population and about individuals aggregates, for all the

categories of the variable, and also in each sub-area. But we do not know the exact distribution

of the category-specific values in each area. We have to make assumptions to estimate it. This

is illustrated in the Table 1 with an example about housing.

Region House owner Tenant Free accommodation Inhabitants (millions)
PACA ? ? ? 5

Rhône-Alpes ? ? ? 6.5

Centre ? ? ? 2.5

Quantity 8 5.6 0.4 14
Table 1: 14 millions of people from 3 French regions to distribute in 9 cells of the table according to

different types of housing.

Depending on the number of sub-areas (e.g. regions) and classes of the attribute (e.g. housing

types), there exist many ways to fill the partition of the Table 1. At this point, those are all
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equivalent solutions to the problem since they respect the constraints of the (known) summed

values in the row and column margins. For instance, the most simple table (that would corre-

spond to a freedom degree of only one in a contingency table) with only 20 individuals and 4

cells, i.e. 2 categories for both variables, has already 5 possible solutions.

To find the solution that fits the reality the best way –in the unreachable case of knowing the

complete table content, i.e. how many people really live in a given region with a given type

of housing–, we sometimes need to use statistical tools or to fix complementary assumptions

related to complementary knowledge.

However, we are not completely deprived of means. What is interesting here is that we can

firstly set simple constraints based on aggregated information. Indeed, we know that:

• the sum of the values in every line or column should be equal to the corresponding margin

values;

• the sum of the margin values should be equal to the total number of individuals.

To find what is the ”good” solution, then we have to fix an objective to maximize or minimize,

according to assumptions from experts. This is the main idea of this paper. On the one hand,

getting reliable information using census is very costly and cannot be made very frequently.

On the other hand, there are experts in social science who may know a lot about socio-spatial

characteristics of people. It can strongly help in making assumptions to drive disaggregation

process, although we know that we definitely cannot find the real and exact distribution of the

data at a given time. However, it seems anyway better than reading in a crystal ball.

In this paper, we propose an approach mixing statistics and optimization to find an optimal

data distribution in a table, according to aggregated constraints and expert knowledge. Our

objectives are the following:

• getting a better accuracy in statistical data due to a downscaling process driven by a

statistical criterion optimized using a mathematical solver;

• finding the solution the most related to a given statistical criterion or to expert knowledge

translated to a new matrix of expected values;

• assessing the quality of the solution when taking into account uncertainty in downscaling

estimations, providing min and max values in each cell of the contingency table.

This method is tested on data studied by Robinson (1950), for which we know the complete

matrix. Thence it enables to compare the results of our method to the real observed data.

1.2 Our data set: USA census data about illiteracy in 1930 used by Robinson (1950)
We use the data about the illiteracy in the population of USA in 1930, which are reference data

in the field of sociology 1. They include the number and the percentage of illiterate people in

each State and in regions, by population color and nativity. We study four groups of population:

• native white with native parentage people;

• native white with foreign or mixed parentage people;

• foreign born white people;

• black people.

In this paper, optimization methods are used for the whole matrix M and results are provided

and only discussed about black people in USA in 1930. Indeed, we test a complementary hy-

pothesis on the role of history (slavery in confederate states before civil war) in black population

illiteracy (for instance, see map provided in the Figure 1).

1http://www.ru.nl/sociology/mt/rob/downloads/
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Figure 1: Illiterate black people in USA in 1930: a location related to history (unified vs confederate

states in East-Southern).

Using these data, Robinson (1950) noticed that the correlation between illiteracy rate of black

people and the different regions was close to 1. But if we consider the statistics at another more

accurate scale (the States), it goes down to 0.2. This lead Robinson to define the ecological
fallacy in social science and more generally on census data. On a practical point of view,

it seems indeed very difficult to apply a knowledge learnt using the same statistics provided

at a certain aggregated level, on a more disaggregated and finer level. That is the purpose

of our proposition: trying to improve local estimation accuracy and downscaling process by

modifying the data according to hypothesis and new constraints from aggregated statistics and

from expert knowledge. Because we know the complete information about illiteracy in each

type of population and in all the States in USA in 1930, we can compare and discuss the results

of our method to the real data of the census. In this first stage, we fix the objective function

criteria and the expert assumptions by ourselves to test the method.

II A METHOD TO DOWNSCALE CENSUS DATA

2.1 Downscaling in areal units
In geography, it is very common to disaggregate spatial data into more accurate layers. Usually,

a hypothesis of proportionality is applied. The assumption is the following: space is somehow

isotropic and densities are the same all over geographical space or inside a given type of char-

acterized area. This corresponds to the H0 hypothesis in Chi2 statistics. For instance, as in a

contingency table, the expected number of individuals x̂ij in a cell of the table is estimated by

the product of the margin values of the corresponding column xi. and row x.j , divided by the to-

tal number of individuals x... Here we consider that illiteracy and regions where individuals are

located are independent statistical variables. If there are significant differences in the number

of individuals between regions or between classes of the variable, this can lead to very various

values in the cells of the table.
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Another way to compute downscaling may be to find the solutions minimizing a certain statisti-

cal criterion. For instance, variance of the values in the matrix M of the table can be minimized.

In this case, experts consider a kind of homogeneity in downscaling, i.e. that cell values should

not differ too much from each others whatever the margin value weights. This approach is

slightly different from the previous one, because a global statistical criterion is now considered.

Moreover, it is possible to minimize many different functions f(θ) on such a table, according

to several Lp-norms as we shall see in the next sections.

In an analog way, experts can use information about sub-areas peculiarities to provide proba-

bilities or ranges (probability min and max) in each cell. Then the problem leads to find the

solution that is the closest to the probability matrix M given by the expert. Practically, experts

can provide bounds in which (s)he expects the values to be, in each cell of M . Whatever the

function to minimize and levels of uncertainty (intervals), the optimal solution can be reached

using an optimizer, as we propose in the following section.

2.2 Variability criteria to optimize
We denote by xij the value of row i and column j in the resulting matrix M and x̄ the mean of

all xij .

θij = |xij − x̄| (1)

We aim at minimizing 4 different objective criteria f(θ), each of them representing one ap-

proach to weight the variability among the different components of x. Then, given each specific

objective criteria, we analyze the resulting optimal distributions of x̂ij in M .

A first criterion is based on the L∞-norm, which illustrates an equity process: outliers have an

important weight in this solution.

f(θ) = max
i,j

(θij) (2)

A second is similar but takes into account squared residuals θij . Outliers are even more consid-

ered.

f(θ) = max
i,j

(θ2ij) (3)

The following case corresponds to the least absolute deviation case (L1-norm) which depicts an

efficiency purpose.

f(θ) =
∑
i,j

θij (4)

This last criterion is the variance and corresponds to the L2-norm (equality).

f(θ) =
∑
i,j

θ2ij (5)

The drawback of the objective functions (2) and (4) is that many optimal solutions may exist,

and in particular, optimal solutions that contain many components of x set to 0 which does not

provide interesting insights. To avoid that situation, we smoothed the objective functions by

replacing θ with θ′ defined as

θ′ij = θij + 0.001.θ2ij (6)
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Smoothing ensures unicity of the optimal solutions and, more importantly, increase the number

of positive coefficients.

These functions are tested with different data relating to different assumptions and in two cases:

• No information is provided about the range of the value in each cell (no information

known or expressed about uncertainty of x̂ij);

• In each cell, the value is bounded and the solution must take into account this constraint

to be included in the interval (uncertainty modeling for x̂ij).

2.3 Mathematical model: optimization under constraints
Let Cj be the given value for the sum of all elements in column j ∈ {1, . . . ,m} and Ri be the

sum of all elements in row i ∈ {1, . . . , n}. We denote by xij the value of row i and column j
in the resulting matrix M . The problem of finding the optimal values for x can be stated as the

following optimization problem

(P ) ≡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min f(θ)

s.t.

n∑
i=1

xi = Cj j ∈ {1, . . . ,m}
n∑

j=1

xj = Ri i ∈ {1, . . . , n}

x ≥ 0
θij ≥ xij − x̄ i ∈ {1, . . . , n}, j ∈ {1, . . . ,m}
θij ≥ −xij + x̄ i ∈ {1, . . . , n}, j ∈ {1, . . . ,m}

where the function f models the preference used in the construction of the matrix M as ex-

plained in the previous section, and the last two groups of inequalities are a linearization for the

definition of θ from (1). Notice that the objective functions involving max can be linearized by

introducing the artificial optimization variable Θ linked to θij through

Θ ≥ θij i ∈ {1, . . . , n}, j ∈ {1, . . . ,m},
and optimizing the objective function f(Θ) = Θ. Finally, the model can be completed by

adding bounds on variables xij as explained in the previous section.

Since the four cases of functions f presented in the previous section are convex quadratic func-

tions, (P ) turns to a convex quadratic and linearly constrained optimization problem, which can

be solved very quickly with state-of-the-art optimization solvers (e.g. CPLEX, Gurobi).

2.4 Several cases and hypothesis to test
For all the studied cases, the process is similar: we set an hypothesis that will change the

estimation of each value xij in M . Then we recompute the sums of individuals in rows and

columns and we adjust the constraints accordingly (e.g. bounds). Several types of solutions are

searched, based on margin values and according to different hypothesis:

• Models without optimization:

– [Variable independence H0]. As explained in the introduction, this model is based

on the H0 table of contingency; so x̂ij = xi.x.j/xii;

– [Global Illiteracy Rate GIR]. In the second model, we apply the global rate (%)

of illiterate people observed in the whole USA on each type of population in every

State;
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– [Population Illiteracy Rate PIR]. In this model, we take into account the part of

illiteracy in each type of population (%);

– [Effect of Old Confederacy EOF ]. Here we add a historical hypothesis based on

whether or not a given State belong (or was close) to the Confederation area during

the civil war in USA (1861-1865); indeed, this could partly explain the capacity of a

State to potentially integrate black or foreign population including language learning

facilities. The probability of illiteracy is multiplied by 2 for the Confederate states

and by 1.5 for a few bordering States which used to allow slavery and to belong to

the Union however.

• Models with optimization but without any local information about value range (no infor-

mation about uncertainty, in all of them, we only use recalculated margin values in rows

and columns):

– [Raw Data RW ]. We try to find out an optimal solution;

– [Global Illiteracy Rate GIR]. We look for an optimal solution using GIR;

• Models with local bounded values (the solver finds a solution given new local con-

straints of uncertainty in each matrix cell); we use recalculated margin values in rows

and columns and we fix min and max bounds in each cell of M using two different

formula 7 and 8; are concerned by this procedure:

– [Global Illiteracy Rate GIR] data (for the whole USA);

– [Population Illiteracy Rate PIR] data (by type of population);

– [Population Illiteracy Rate PIR] data (by type of population) updated by [Effect of
Old Confederacy EOF ] data.

For the models with local bounded values, we apply a function to find the minimum inf(x̂ij)
and maximum sup(x̂ij) values of the interval centered on the estimated x̂ij:

sup(x̂ij) = round(x̂ij.k
1/length(x̂ij)) (7)

and

inf(x̂ij) = round(2x̂ij − sup(x̂ij)) (8)

These functions (equations 7 and 8) allow to have symmetric intervals, larger for low values of

x̂ij (indeed length counts the digits of x̂ij) depending on k.

For models dealing with uncertainty, we consider two cases:

• k = 2; for instance [109− 185] and [6023− 8835]
• k = 4; resp. [0− 294] and [2363− 12495]

III RESULTS
We focus on the relation between illiteracy and black people in USA in 1930. To do so, we

compute a LS regression model between observed data and estimations we obtained. We study

the coefficient of determination r2 and the slope of the regression. Closer to 1, better the quality

solution, for both indicators.

In the Figure 2, we can notice that using optimization increases the estimation quality when

expert assumption is weak (case with H0 and Global Illiteracy Rate GIR). For other hypothesis

(Population Illiteracy Rate PIR and Effect of Old Confederacy EOF ), optimization has no

effect compared to estimations based on accurate hypothesis from experts.

Globally, Figures 3 and 4 show that:
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• The results are better for bounded optimization methods;

• The difference between objective functions is not marked; indeed they all somehow com-

pute a sort of variability minimization;

• Generally, solutions are better with k = 2 (more narrow intervals);

• Most of the time, functions including the max operator seem to get better estimates;

• The best optimization reaches a coefficient of determination r2 of 0.86 and a slope of

0.76, both quite close to 1.

Figure 2: Comparison of different estimation methods according to the values of the coefficient of deter-

mination r2 and of the slope of regression line (on left, 4 solutions without optimization; on right, 4 best

solutions using optimization). Only the black population in USA in 1930 is considered.

IV CONCLUSION
In this paper, we explore how we can mix optimization methods and expert knowledge trans-

lated in statistical method to improve data estimation in contingency table downscaling. Al-

though the results do not strongly demonstrate that the use of optimization is determinant on

the result quality compared to other current methods from experts of the domain, it shows that,

in certain conditions (weak assumptions or bounds knowledge from experts for instance), es-

timations can be improved, especially prediction quality (slope of the regression line between

estimations and observed data).

Moreover, using optimization allows to find the most optimal solution among a large set of

possible solutions, according to a given objective. These solutions can be then compared and

participate in the data exploration.

Other experiments will be made, on the whole set of data whatever the type of population

nativity, also on other types of data and with other compared methods (multiple regressions for

example) to assess in which conditions, such a mixed approach may be useful for predicting

data in contingency tables.
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Figure 3: Comparison of different estimation methods according to the r2 of the matrix M and to 4

different objective functions of θ. Only the black population in USA in 1930 is considered.

Figure 4: Comparison of different methods to estimate the slope of the regression line according to 4

different objective functions of θ. Only the black population in USA in 1930 is considered.
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