
HAL Id: hal-01338071
https://hal.science/hal-01338071v1

Submitted on 28 Jun 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Vote-Independence: A Powerful Privacy Notion for
Voting Protocols

Jannik Dreier, Pascal Lafourcade, Yassine Lakhnech

To cite this version:
Jannik Dreier, Pascal Lafourcade, Yassine Lakhnech. Vote-Independence: A Powerful Privacy Notion
for Voting Protocols. [Technical Report] VERIMAG UMR 5104, Université Grenoble Alpes, France.
2011. �hal-01338071�

https://hal.science/hal-01338071v1
https://hal.archives-ouvertes.fr

Vote-Independence: A Powerful
Privacy Notion for Voting Protocols

Jannik Dreier, Pascal Lafourcade, Yassine Lakhnech

Verimag Research Report no TR-2011-8

April 19, 2011
Updated July 13, 2011

Reports are downloadable at the following address
http://www-verimag.imag.fr

Unité Mixte de Recherche 5104 CNRS - INPG - UJF
Centre Equation
2, avenue de VIGNATE
F-38610 GIERES
tel : +33 456 52 03 40
fax : +33 456 52 03 50
http://www-verimag.imag.fr

http://www-verimag.imag.fr

Vote-Independence: A Powerful Privacy Notion for Voting Protocols

Jannik Dreier, Pascal Lafourcade, Yassine Lakhnech

April 19, 2011
Updated July 13, 2011

Abstract

Recently an attack on ballot privacy in Helios has been discovered [21], which is essentially
based on copying other voter’s votes. To capture this and similar attacks, we extend the classi-
cal threat model and introduce a new security notion for voting protocols: Vote-Independence.
We give a formal definition and analyze its relationship to established privacy properties such
as Vote-Privacy, Receipt-Freeness and Coercion-Resistance. In particular we show that even
Coercion-Resistant protocols do not necessarily ensure Vote-Independence.

Keywords: Electronic Voting, Privacy, Anonymity, Security, Formal Verification, Coercion-Resistance,
Receipt-Freeness

How to cite this report:

@techreport {TR-2011-8,
title = {Vote-Independence: A Powerful Privacy Notion for Voting Protocols},
author = {Jannik Dreier, Pascal Lafourcade, Yassine Lakhnech},
institution = {{Verimag} Research Report},
number = {TR-2011-8},
year = {2011}

}

Vote-Independence Jannik Dreier, Pascal Lafourcade, Yassine Lakhnech

1 Introduction

Electronic voting schemes are systems that allow casting and tallying votes using machines. This promises
to improve efficiency by providing results faster, using less personnel or adding comfort (e.g. the possibility
to vote from home). However the recent use of commercial electronic voting systems for presidential or
general elections in many countries has spread controversy on security issues [5, 6, 18, 23]. Primary
concerns are verifiability (the possibility to verify the elections’s outcome, i.e. to check if all votes have
been counted correctly) and privacy (i.e. anonymity of the voter, secrecy of the vote). To address this
issues, many different protocols have been developed to fulfill security requirements such as

• Eligibility: Only the registered voters can vote, and nobody can vote more than once.

• Fairness: No preliminary results are available which could influence other voters’ decisions.

• Individual Verifiability: Each voter can check whether his vote was counted correctly.

• Universal Verifiability: Anybody can verify that the announced result corresponds to the sum of all
votes.

• Vote-Privacy: The votes are kept private.

• Receipt-Freeness: A voter cannot construct a receipt which allows him to prove to a third party that
he voted for a certain candidate. This is to prevent vote-buying.

• Coercion-Resistance: Even when a voter interacts with a coercer during the entire voting process,
the coercer cannot be sure whether the voter followed his instructions or actually voted for another
candidate.

• Robustness: The protocol should be able to tolerate a certain number of misbehaving voters.

A common aim is to verify these properties using formal models and definitions. This concerns privacy
properties (privacy, receipt-freeness and coercion-resistance) [7, 8, 16], election verifiability [14, 22], or
both [11, 12, 13]. We concentrate on privacy-type properties of voting protocols (i.e. Vote-Privacy, Receipt-
Freeness and Coercion-Resistance).

While analyzing privacy in Helios [2], a web based voting system, B. Smyth and V. Cortier [20, 21]
recently discovered an attack based on the possibility for an attacker to copy another voter’s vote and to
submit it as his own. If the number of participating voters is small or if a noticeable fraction of voters
can be corrupted, this can break privacy as the contents of the vote can be inferred from the published
election outcome. For example in the case of three voters (two honest ones and one under the control of
the attacker), the attacker can try to copy the vote of the first honest voter. The candidate chosen by the
targeted voter will then have at least two votes, and can thus be recognized in the official outcome. This
reveals the content of the targeted vote.

Our Contributions Based on this attack, we extend the established threat model and give a formal def-
inition for the notion of “Vote-Independence (VI)” in the applied pi calculus. We show that our definition
of “Vote-Independence” implies Vote-Privacy as defined in the literature [7] and that the concept can be
generalized to improve Receipt-Freeness and Coercion Resistance as well. We define “Vote-Independence
with passive Collaboration (VI-PC)” (which corresponds to Vote-Independence in same setting as Receipt-
Freeness, i.e. with passive collaboration of the voter) and “Vote-Independence with active Collaboration
(VI-AC)” (which corresponds to Coercion Resistance). We prove the hierarchy of the definitions and illus-
trate each level with a real world example: the protocol by Fujioka et al. [10] provides Vote-Independence
(VI), the protocol due to Okamoto [19] ensures VI-PC, and the protocol by Bohli et al. [4] guarantees VI-
AC. We also show that even Coercion-Resistant protocols may not ensure Vote-Independence (i.e. that our
definitions are strictly stronger than the usual privacy notions) by analyzing the protocol by Lee at al. [15].

Verimag Research Report no TR-2011-8 1/35

Jannik Dreier, Pascal Lafourcade, Yassine Lakhnech Vote-Independence

Outline of the Paper The remainder of the paper is structured as follows. In Section 2, we recall the
applied pi calculus and the standard privacy definitions. In Section 3 we elaborate our definitions of Vote-
Independence. Then we analyze the hierarchy of our definitions, the relation to standard privacy properties
and discuss several examples in Section 4. Finally, we conclude and discuss future work.

A short version of this report has been presented at FPS 2011 [9].

2 Preliminaries
In this section we introduce the applied pi calculus, define our model of voting processes and recall existing
privacy definitions.

2.1 The Applied Pi Calculus
We use the applied pi calculus [1] to model our security properties and the protocols to analyze. The
calculus is an abstract language to describe concurrent processes and interactions, and is supported by the
tool “ProVerif” [3].

The calculus consists of names (which typically correspond to data or channels), variables, and a sig-
nature Σ of function symbols which can be used to build terms. Functions typically include encryption
and decryption (for example enc(message, key), dec(message, key)), hashing, signing etc. Terms are
correct (i.e. respecting arity and sorts) combinations of names and functions. We distinguish the type
“channel” from other base types. To model equalities we use an equational theory E which defines a rela-
tion =E . A classical example for symmetric encryption is dec(enc(message, key), key) =E message.

Processes are constructed using the following grammar:

P , Q, R := plain processes
0 null process
P |Q parallel composition
!P replication
νn.P name restriction (“new”)
ifM = N then P else Q conditional
in(u, x) message input
out(u, x) message output

Active or extended processes are plain processes or active substitutions:

A, B, C := active processes
P plain process
A|B parallel composition
νn.A name restriction
νx.A variable restriction
{M/x} active substitution

The substitution {M/x} replaces the variable x with term M . We denote fv(A), bv(A), fn(A), bn(A) the
free variables, bound variables, free names or bound names respectively. A process is closed if all variables
are bound or defined by an active substitution.

The frame Φ(A) of an extended process A is obtained when replacing all plain processes in A by 0.
This frame can be seen as a representation of what is statically know to the exterior about a process. The
domain dom(Φ) of a frame Φ is the set of variables for which Φ defines a substitution. An evaluation
context C[_] denotes an extended process with a hole for an extended process.

The semantics are described in Appendix A. We concentrate here on the equivalences needed to define
our properties:

Definition 1 (Equivalence in a Frame). Two terms M and N are equal in the frame φ, written (M = N)φ,
if and only if φ ≡ νñ.σ, Mσ = Nσ, and {ñ} ∩ (fn(M) ∪ fn(N)) = ∅ for some names ñ and some
substitution σ.

2/35 Verimag Research Report no TR-2011-8

Vote-Independence Jannik Dreier, Pascal Lafourcade, Yassine Lakhnech

Definition 2 (Static Equivalence (≈s)). Two closed frames φ and ψ are statically equivalent, written φ ≈s
ψ, when dom(φ) =dom(ψ) and when for all terms M and N (M = N)φ if and only if (M = N)ψ.

Two extended processes A and B are statically equivalent (A ≈s B) if their frames are statically
equivalent.

The intuition behind this definition is simple: Two processes are statically equivalent if the messages
exchanged with the environment cannot be distinguished by an attacker (i.e. all operations on both sides
give the same results). This idea can be extended to labelled bisimilarity.

Definition 3 (Labelled Bisimilarity (≈l)). Labelled bisimilarity is the largest symmetric relation R on
closed extended processes, such that AR B implies

1. A ≈s B,

2. if A→ A′, then B → B′ and A′ R B′ for some B′,

3. if A α−→ A′ and fv(α) ⊆ dom(A) and bn(α) ∩ fn(B) = ∅, then B →∗ α−→→∗ B′ and A′ R B′ for
some B′.

In this case each interaction on one side can be simulated by the other side, and the processes are stati-
cally equivalent at each step during the execution, thus an attacker cannot distinguish both sides. Labelled
bisimilarity implies “classic” bisimilarity [1], but is often easier to prove and can be used to express many
classical security properties, in particular anonymity properties.

2.2 Voting Process
We use the definition by Delaune et al. [7] to model voting protocols in the applied pi calculus. The
basic idea is simple: A voting process is the parallel composition of all voters and the trusted authorities,
whereas untrusted authorities are left to the context (i.e. the attacker). Messages are exchanged over public
or private channels. We limit ourselves to protocols where each voter votes only once.

Definition 4 (Voting Process [7]). A voting process is a closed plain process

V P ≡ νñ.(V σ1| . . . |V σn|A1| . . . |Am).

The V σi are the voter processes, the Ajs the honest election authorities, and the ñ are channel names. We
also suppose that v ∈ dom(σi) is a variable which refers to the value of the vote. We define an evaluation
context S which is like V P , but has a hole instead of three V σi, and an evaluation context S′ which is like
V P , but has a hole instead of two V σi.

Note that S and S′ contain – by construction – only honest voters, i.e. voters that follow the protocol
and do not collude with the attacker.

2.3 Privacy
Before discussing Vote-Independence, we recall the definition of the three basic privacy properties as given
by Delaune et al. [7].

2.3.1 Vote-Privacy

The intuition for Vote-Privacy is the following: An attacker cannot distinguish two runs of the voting
protocols where two voters swap their votes. This does not change the outcome and if the votes are private,
the attacker should not know which vote belongs to which voter:

Definition 5 (Vote-Privacy [7]). A voting process respects Vote-Privacy (P) if for all votes a and b

S′ [VA {a/v} |VB {b/v}] ≈l S′ [VA {b/v} |VB {a/v}]

Verimag Research Report no TR-2011-8 3/35

Jannik Dreier, Pascal Lafourcade, Yassine Lakhnech Vote-Independence

2.3.2 Receipt-Freeness

To define Receipt-Freeness, we use the transformation P ch which can be applied to a process P . The
transformed process outputs all its inputs and its private data (in particular new names, for example random
values) on a special channel ch to the attacker. In the case of a voting process V , this corresponds to trying
to create a receipt of the vote. If a protocol is receipt-free, a voter should be able to fake all these outputs
to the coercer, i.e. to output fake values without the attacker noticing. This means that there should exist
some process V ′ so that the attacker is not able to distinguish between a successfully coerced voter V ch

that votes c and outputs the correct values, and a voter V ′ that fakes the values and votes a instead. To
ensure that the coercer cannot tell both cases apart from the result, Delaune et al. introduce another voter
that counterbalances the vote, and require that V ′ actually votes for a using Definition 7.

Definition 6 (Process P ch [7]). Let P be a plain process and ch be a channel name. We define P ch as
follows:

• 0ch =̂ 0,

• (P |Q)ch =̂ P ch|Qch,

• (νn.P)ch =̂ νn.out(ch, n).P ch when n is a name of base type,

• (νn.P)ch =̂ νn.P ch otherwise,

• (in(u, x).P)ch =̂ in(u, x).out(ch, x).P ch when x is a variable of base type,

• (in(u, x).P)ch =̂ in(u, x).P ch otherwise,

• (out(u,M).P)ch =̂ out(u,M).P ch,

• (!P)ch =̂ !P ch,

• (ifM = N then P else Q)ch =̂ ifM = N then P ch else Qch.

In the remainder we assume ch /∈ fn(P) ∪ bn(P) before applying the transformation.

Definition 7 (Process A\out(ch,·) [7]). Let A be an extended process. We define the process A\out(ch,·) as
νch.(A|!in(ch, x)).

Definition 8 (Receipt-Freeness [7]). A voting process respects Receipt-Freeness (RF) if there exists a
closed plain process V ′ such that for all votes a and c we have

V ′\out(chc,·) ≈l VA {a/v}

and
S′
[
VA {c/v}chc |VB {a/v}

]
≈l S′ [V ′|VB {c/v}]

2.3.3 Coercion-Resistance

Similarly to Receipt-Freeness, Delaune et al. define a process that outputs all its inputs and secret values
to the attacker. To express interactive coercion, it additionally waits for input from the context that tells it
what to do before outputting values or branching (Definition 9).

Definition 9 (Process P c1,c2 [7]). Let P be a plain process and c1, c2 be channel names. We define P c1,c2
as follows:

• 0c1,c2 =̂ 0,

• (P |Q)c1,c2 =̂ P c1,c2 |Qc1,c2 ,

• (νn.P)c1,c2 =̂ νn.out(c1, n).P c1,c2 when n is a name of base type,

4/35 Verimag Research Report no TR-2011-8

Vote-Independence Jannik Dreier, Pascal Lafourcade, Yassine Lakhnech

• (νn.P)c1,c2 =̂ νn.P c1,c2 otherwise,

• (in(u, x).P)c1,c2 =̂ in(u, x).out(c1, x).P c1,c2 when x is a variable of base type and x is a fresh
variable,

• (in(u, x).P)c1,c2 =̂ in(u, x).P c1,c2 otherwise,

• (out(u,M).P)c1,c2 =̂ in(c2, x).out(u, x).P c1,c2 ,

• (!P)c1,c2 =̂ !P c1,c2 ,

• (ifM = N then P else Q)c1,c2 =̂ in(c2, x).if x = true then P c1,c2
else Qc1,c2 where and x is a fresh variable and true is a constant.

The definition then follows the same basic idea as for Receipt-Freeness: there exists a process V ′ that
can interact with the attacker and fake all necessary messages without the attacker noticing. Yet one has to
add some condition to ensure that the attacker cannot distinguish both sides of the bisimilarity simply based
on the result by forcing the coerced voter to vote d, which would change the outcome. Tho enforce this,
Delaune et al. use a context C that models the part of the attacker which interacts with VA. The conditions
on C ensure that the attacker actually forces the voter to vote c, and not d and thus make sure the vote is
counterbalanced by VB .

Definition 10 (Coercion-Resistance [7]). A voting process respects Coercion-Resistance (CR) if there ex-
ists a closed plain process V ′ such that for any C = νc1.νc2.(_|P) satisfying ñ ∩ fn(C) = ∅ and

S [C [VA {?/v}c1,c2] |VB {a/v}] ≈l S
[
VA {c/v}chc |VB {a/v}

]
we have for all votes a and c

C [V ′]
\out(chc,·) ≈l VA {a/v}

and
S′ [C [VA {?/v}c1,c2] |VB {a/v}] ≈l S′ [C [V ′] |VB {c/v}]

Note that we write {?/v} to represent the fact that the coerced voters vote does not depend on the
substitution, but on the interaction with the context C.

3 Vote-Independence
In the previous privacy definitions the attacker has the role of an outside observer that tries to infer some-
thing about someone’s vote. In the case of Coercion-Resistance or Receipt-Freeness he might communicate
with the targeted voter, but he cannot necessarily vote himself or collude with other voters - unlike what
would generally happen in real-world elections.

To address this shortcoming and obtain a more realistic model of the attacker’s abilities, we introduce
the notion of Vote-Independence for different levels of collaboration. The idea is to extend the existing
definitions to the case where the attacker can vote himself and might try to relate his vote to the vote of
a targeted voter to compromise privacy (for example copy it as in the attack by B. Smyth and V. Cortier
[21]).

3.1 Vote-Independence (without Collaboration)
Definition 11 (Vote-Independence). A voting process respects Vote-Independence (VI) if for all votes a
and b

S [VA {a/v} |VB {b/v} |V c1,c2C] ≈l S [VA {b/v} |VB {a/v} |V c1,c2C]

The intuition behind our definition is the following: We start from the definition of privacy, but add a
voter under the control of the attacker in both cases. If an attacker can relate his vote to the vote of one
of the voters (for example copy VA’s vote, i.e. vote for the same candidate), he will be able to distinguish

Verimag Research Report no TR-2011-8 5/35

Jannik Dreier, Pascal Lafourcade, Yassine Lakhnech Vote-Independence

both sides as the result of the vote will be different. This is the most basic definition, as the attacker has
only access to publicly available data. Subsequently we add the possibility of collaborating voters.

Smyth and Cortier [21] used a similar idea in a recent extension to their original paper. Contrary to our
definition, they implicitly include corrupted voters in the context S (or S′ resp.). We chose to make the
corrupted voter explicit to be able to easily compare both notions.

3.2 Vote-Independence with Passive Collaboration
Definition 12 (Vote-Independence with Passive Collaboration). A voting process respects Vote - Indepen-
dence with Passive Collaboration (VI-PC) if there exists a closed plain process V ′ such that for all votes a
and c

V ′\out(chc,·) ≈l VA {a/v}

and
S
[
VA {c/v}chc |VB {a/v} |V c1,c2C

]
≈l S [V ′|VB {c/v} |V c1,c2C]

Vote-Independence with Passive Collaboration can be seen analogously to Receipt-Freeness. The at-
tacker should not be able to link his vote to another voter’s vote, even if this voter collaborates with him
and gives him access to his secret values after voting (secret keys, random values, nonces, etc.). This is
ensured in the definition as the attacker cannot decide if he is in a case where the attacked voter actually
collaborates with him, or if the voter only pretends to collaborate and in reality votes differently. If he could
use the information provided by the attacked voter to e.g. copy his vote, he would be able to distinguish
these cases.

3.3 Vote-Independence with Active Collaboration
Definition 13 (Vote-Independence with Active Collaboration). A voting process respects Vote - Inde-
pendence with Active Collaboration (VI-AC) if there exists a closed plain process V ′ such that for any
C = νc1.νc2.(_|P) satisfying ñ ∩ fn(C) = ∅ and

S [C [VA {?/v}c1,c2] |VB {a/v} |V c3,c4C] ≈l S
[
VA {c/v}chc |VB {a/v} |V c3,c4C

]
and for all votes a and c we have

C [V ′]
\out(chc,·) ≈l VA {a/v}

and
S [C [VA {?/v}c1,c2] |VB {a/v} |V c3,c4C] ≈l S [C [V ′] |VB {c/v} |V c3,c4C]

In this definition, the attacker is even more powerful. Similarly to Coercion-Resistance, he can interact
with the attacked voter during the entire voting process.

4 Hierarchy and Relation to Privacy

4.1 Hierarchy
Intuitively, V I − AC is a stronger property than V I − PC, which is a stronger property than V I . The
following proposition confirms this intuition:

Proposition 1. We have:

• If a protocol respects Vote-Independence with Active Collaboration, it also respects Vote - Indepen-
dence with Passive Collaboration.

• If a protocol respects Vote-Independence with Passive Collaboration, it also respects Vote - Indepen-
dence (without collaboration).

The detailed proofs can be found in Appendix B.1 and B.2.

6/35 Verimag Research Report no TR-2011-8

Vote-Independence Jannik Dreier, Pascal Lafourcade, Yassine Lakhnech

4.2 Relation to Privacy
The only difference between P and V I (or V I−PC and RF , or V I−AC and CR) is the process V c1,c2C ,
i.e. the existence of a legitimate voter that is under control of the attacker. Intuitively this gives the attacker
more power and thus V I (or V I − PC or V I −AC) should be the stronger property. Indeed:

Proposition 2. We have:

• If a protocol respects Vote-Independence, it also respects Vote-Privacy.

• If a protocol respects Vote-Independence with Passive Collaboration, it also respects Receipt - Free-
ness.

• If a protocol respects Vote-Independence with Active Collaboration, it also respects Coercion - Re-
sistance.

Informally we can argue that any attack on vote-privacy can be used to break vote independence. In
this case the voter under control of the attacker simply behaves as a normal voter and the attacker can
employ the same attack. The formal proof is given in Appendix C. CR ⇒ RF ⇒ P has been shown in
the literature [7].

4.3 The Global Picture
Taking these properties together, we obtain the following hierarchy of notions. A ⇒ B means that any
protocol ensuring property A also ensures property B.

CR [15] ⇐
6⇒ VI-AC [4]

⇓6⇑ ⇓6⇑

RF ⇐
6⇒ VI-PC [19]

⇓6⇑ ⇓6⇑

P ⇐
6⇒ VI [10]

The cited protocols [4, 10, 15, 19] illustrate the hierarchy and show that the inverse implications are not
true, as discussed below.

4.4 Example: FOO
The protocol by Fujioka et al. [10] is based on commitments and blind signatures. It was proven to respect
Vote-Privacy (P) [7], but is not Receipt-Free (RF) as the randomness of the commitment can be used as a
receipt. We show that it ensures Vote-Independence (V I).

4.4.1 Informal Description

The protocol is split in three phases. In the first phase, the voter obtains the administrator’s signature on a
commitment to his vote:

• Voter Vi chooses his vote vi and computes a commitment xi = ξ(vi, ki) for a random key ki.

• He blinds the commitment using a blinding function χ, a random value ri and obtains ei = χ(xi, ri).

• He signs ei and sends the signature si = σVi(ei) together with ei and his identity to the administrator.

• The administrator checks if Vi has the right to vote, has not yet voted, and if the signature si is
correct. If all tests succeed, he signs di = σA(ei) and sends it back to Vi.

Verimag Research Report no TR-2011-8 7/35

Jannik Dreier, Pascal Lafourcade, Yassine Lakhnech Vote-Independence

• Vi unblinds the signature and obtains yi = δ(di, ri). He checks the signature.

In the second phase, the actual voting takes place:

• Voter Vi sends (xi, yi) to the collector C through an anonymous channel.

• The collector checks the administrator’s signature and enters (xi, yi) into a list.

When all ballots are cast or when the deadline is over, the counting phase begins:

• The collector publishes the list of correct ballots.

• Vi verifies that his commitment appears on the list and sends ri together with the commitment’s
index l on the list to C using an anonymous channel.

• The collector C opens the l-th ballot using ri and publishes the vote.

4.4.2 Model in Applied Pi Calculus

Our model is based on the one developed in [7], but we add a third voter. We use the following equational
theory:

open(commit(m, r), r) = m

checksign(sign(m, sk), pk(sk)) = m

unblind(blind(m, r), r) = m

unblind(sign(blind(m, r), sk), r) = sign(m, sk)

The complete model can be found in Appendix D.

4.4.3 Analysis

Proposition 3. FOO respects Vote-Independence (V I).

Proof. Similarly to the proof of Vote-Privacy by [7], we do not need to trust any authority except for the key
distribution process (processK). Thus the voter V c1,c2C under control of the attacker only interacts with the
attacker (as untrusted authorities are left to the context, i.e. the attacker), except during the key distribution
process at the beginning. In this process he obtains his key (which we do not require to be secret) and the
administrator’s public key, which is available to the attacker anyway. Thus the attacker is essentially in the
same situation as in the proof of Vote-Privacy. The full proof can be found in Appendix D.

Note that this protocol cannot respect Vote-Independence with Passive or Active Collaboration (V I −
PC or V I − AC), as this would imply Receipt-Freeness (see the hierarchy). This shows that V I 6⇒
V I − PC.

4.5 Example: Okamoto
The protocol by Okamoto [19] uses trap-door commitments to achieve receipt-freeness [7]. However it is
not Coercion-Resistant (CR) [7].

4.5.1 Informal Description

The protocol is very similar to the one by Fujioka et al. [10] discussed above. The only difference is the
use of a trap-door commitment and a timeliness member to open the commitments. The first phase - during
which the voter obtains a signature on his commitment - follows the same protocol, except for the fact that
this time ξ is a trapdoor-commitment. In the second phase the actual voting takes place:

• Voter Vi sends the signed trap-door commitment to the collector C through an anonymous channel.

• The collector checks the administrator’s signature and enters (xi, yi) into a list.

8/35 Verimag Research Report no TR-2011-8

Vote-Independence Jannik Dreier, Pascal Lafourcade, Yassine Lakhnech

• The voter sends (vi, ri, xi) to the timeliness member through an untappable anonymous channel

When all ballots are cast or when the deadline is over, the counting phase begins:

• The collector publishes the list of correct ballots.

• Vi verifies that his commitment appears on the list.

• The timeliness member publishes a randomly shuffled list of votes vi and a zero-knowledge proof
that he knows a permutation π for which xπ(i) = ξ(vi, ri).

4.5.2 Model in Applied Pi Calculus

Our model is based on the model used in [7], but we add a third voter. It is based on the following equational
theory:

open(tdcommit(m, r, td), r) = m

tdcommit(m1, r, td) = tdcommit(m2, f(m1, r, td,m2), td)

checksign(sign(m, sk), pk(sk)) = m

unblind(blind(m, r), r) = m

unblind(sign(blind(m, r), sk), r) = sign(m, sk)

The first equation models the creation of a trap-door commitment to m using a random value r and a
trap-door td, whereas the second equation allows the construction of another random value to open a
commitment differently. This requires knowledge of the trap-door td and the initial random value r.

4.5.3 Analysis

Proposition 4. The protocol by Okamoto respects V I − PC.

Proof. To prove this, we need to find a process V ′ that successfully fakes all secrets to a coercer. In addition
to normal receipt-freeness, we also have to ensure that the attacker cannot use the secrets to e.g. copy the
vote of the targeted voter.

In this protocol the trap-door commitment allows the voter to return a faked random number to the
attacker which opens the commitment to any value the voter wants. This means that - although the attacker
has access to the commitment and the necessary values to open it - he will always open it in a way that yields
a vote for c due to the fake randomness, even if the voter actually committed to a. The same reasoning
applies for copying votes: Although it is technically possible to copy the vote of the targeted voter, the
voter will provide a faked random value, which will make the timeliness member open the vote as a vote
for c. This makes it impossible for the attacker to know if the voter complied with his instructions or only
pretended to do so, even if he tries to relate his vote to the targeted voter’s vote.

The detailed model and complete proof can be found in Appendix E.

Thus the protocol also respects simple Vote-Independence (V I). Note that this protocol cannot respect
Vote-Independence with Active Collaboration (V I −AC), as this would imply Coercion-Resistance. This
shows that V I − PC 6⇒ V I −AC.

4.6 Example: Bingo Voting

Bingo Voting was developed by Bohli et al. [4] to achieve coercion-resistance as well as individual and
universal verifiability by using a trusted random number generator (RNG). We use Bingo Voting to illustrate
the existence of protocols that respect Vote-Independence with active Collaboration (V I −AC).

Verimag Research Report no TR-2011-8 9/35

Jannik Dreier, Pascal Lafourcade, Yassine Lakhnech Vote-Independence

4.6.1 Informal Description

We consider an election with k voters and l candidates. The protocol is split into three phases: The pre-
voting phase, the voting phase and the post-voting phase. In the pre-voting phase, the voting machine
generates k random values ni,j for every candidate pj (the dummy votes). It commits to the k · l pairs
(ni,j , pj) and publishes the shuffled commitments.

In the voting phase, the voter enters the voting booth and selects the candidate he wants to vote for on
the voting machine. The RNG generates a random number r, which is transmitted to the voting machine
and displayed to the voter. The voting machine chooses for each candidate a dummy vote, except for the
voter’s choice. For this candidate, the random value from the RNG is used and the receipt (a list of all
candidates and the corresponding random numbers) is created. Finally, the voter checks that the number
displayed on the RNG corresponds to the entry of his candidate on the receipt.

In the post-voting phase, the voting machine announces the result, publishes all receipts and opens the
commitments of all unused dummy votes. The machine also generates non-interactive zero-knowledge
proofs that each unopened commitment was actually used as a dummy vote in one of the receipts.

4.6.2 Model in Applied Pi Calculus

As we are only interested in privacy, we ignore the zero-knowledge proofs which are necessary to achieve
verifiability. This yields a very simple equational theory:

open(commit(m, r), r) = m

We assume the voting machine to be honest, otherwise no privacy can be guaranteed as the vote is submitted
in clear by the voter. The detailed model can be found in Appendix F.

4.6.3 Analysis

Proposition 5. Bingo Voting respects V I −AC.

Proof. The receipts contain only random values which makes it impossible for the attacker to know if a
certain number corresponds to the random value by the RNG or a dummy vote. Thus the voter V ′ does not
even have to fake a receipt, he can simply forward his receipt and claim he voted for the coercer’s choice.
Constructing a related vote based on the receipt is not possible either since - while voting - the attacker has
to transmit his choice in clear to the voting machine. Being able to e.g. copy VA’s vote would imply the
break of simple privacy on the voter’s vote using the receipt.

The complete proof can be found in Appendix F

This implies that Bingo Voting is coercion resistant and provides Vote-Independence.

4.7 Example: Lee et al.
The protocol by Lee et al. [15] was proven to be Coercion-Resistant (CR) in [7], but does not respect
Vote-Independence (V I) – and thus neither V I − PC nor V I − AC – as we show. It is based on trusted
devices that re-encrypt ballots and use designated verifier proofs (DVPs) to prove their correct behavior to
the voter.

4.7.1 Informal Description

We simplified the protocol to focus on the important parts with respect to privacy and vote-independence.
For example, we do not consider distributed authorities.

• The administrator sets up the election, distributes keys and registers legitimate voters. Each voter is
equipped with his personal trusted device. At the end, he publishes a list of legitimate voters and
corresponding trusted devices.

10/35 Verimag Research Report no TR-2011-8

Vote-Independence Jannik Dreier, Pascal Lafourcade, Yassine Lakhnech

• The voter encrypts his vote with the tallier’s public key (using the El Gamal scheme), signs it and
sends it to his trusted device over a private channel. The trusted device verifies the signature, re-
encrypts and signs the vote, and returns it, together with a DVP that the re-encryption is correct, to
the voter. The voter verifies the signature and the proof, double signs the ballot and publishes it on
the bulletin board.

• The administrator verifies for all ballots if the voter has the right to vote and if the vote is correctly
signed. He publishes the list of correct ballots, which is then shuffled by the mixer.

• The tallier decrypts the mixed votes and publishes the result.

4.7.2 Model in Applied Pi Calculus

Our model is based on the one developed in [7], but we add a third (corrupted) voter and an explicit
mixing stage. This stage was left out in their model, but is essential to highlight the difference between
Vote-Privacy and Vote-Independence. We use the following equational theory:

decrypt(penc(m, pk(sk), r), sk) = m

checksign(sign(m, sk), pk(sk)) = m

rencrypt(penc(m, pk(sk), r1), r2) = penc(m, pk(sk), f(r1, r2))

checkdvp(dvp(x, rencrypt(x, r), r, pk(sk)), x, rencrypt(x, r), pk(sk)) = ok

checkdvp(dvp(x, y, z, skv), x, y, pk(skv)) = ok

4.7.3 Analysis

In the extended model, the protocol by Lee et al. still ensures (CR), but it is not (V I).

Proposition 6. The protocol by Lee et al. does not respect Vote-Independence (V I).

Proof. As acknowledged by the authors in their original paper [15], it is possible to copy votes. More
precisely, an attacker can access the ballots on the bulletin board before the mixing takes place. He can
easily verify which ballot belongs to which voter as they are signed by the voters themselves. He can
remove the signature and use the ciphertext as an input to his trusted device. The trusted device will re-
encrypt and sign it. This allows the attacker to construct a correct ballot which contains the same vote as
the targeted honest voter. This obviously contradicts vote-independence.

Appendix G shows how this can be seen in our model.

This example shows that vote-independence properties are strictly stronger than the corresponding
privacy properties (CR 6⇒ V I − AC, RF 6⇒ V I − PC, P 6⇒ V I), as even a coercion-resistant protocol
fails to respect simple vote-independence.

5 Conclusion
Inspired by an attack based on copying votes, we extended the classical threat model and developed the
notion of “Vote-Independence”. We gave a formal definition and showed that it is stronger than standard
vote-privacy. We generalized the definition to passive and active collaboration, and obtained refined prop-
erties on the same attack level as receipt-freeness and coercion-resistance.

Subsequently we analyzed practical examples which illustrate that our property is strictly stronger, i.e.
that even coercion resistant protocols can fail with respect to Vote-Independence, and thus of practical
interest.

Future Work. We plan to translate our symbolic definition to the computational model and extend our
analysis e.g. to accommodate protocols permitting multiple votes. Additionally, it would be desirable to
develop tools that at least partly automate and/or verify the necessary proofs.

Verimag Research Report no TR-2011-8 11/35

Jannik Dreier, Pascal Lafourcade, Yassine Lakhnech Vote-Independence

References
[1] Martín Abadi and Cédric Fournet. Mobile values, new names, and secure communication. In Pro-

ceedings of the 28th ACM SIGPLAN-SIGACT symposium on Principles of programming languages,
POPL ’01, pages 104–115, New York, 2001. ACM. 2.1, 2.1

[2] Ben Adida, Olivier De Marneffe, Olivier Pereira, and Jean-Jacques Quisquater. Electing a univer-
sity president using open-audit voting: analysis of real-world use of helios. In Proceedings of the
2009 conference on Electronic voting technology/workshop on trustworthy elections, EVT/WOTE’09,
pages 10–10, Berkeley, CA, USA, 2009. USENIX Association. 1

[3] Bruno Blanchet, Martín Abadi, and Cédric Fournet. Automated verification of selected equivalences
for security protocols. Journal of Logic and Algebraic Programming, 75(1):3–51, February–March
2008. 2.1

[4] Jens-Matthias Bohli, Jörn Müller-Quade, and Stefan Röhrich. Bingo voting: Secure and coercion-free
voting using a trusted random number generator. In Ammar Alkassar and Melanie Volkamer, editors,
E-Voting and Identity, volume 4896 of Lecture Notes in Computer Science, pages 111–124. Springer
Berlin / Heidelberg, 2007. 1, 4.3, 4.6

[5] UK Electoral Commission. Key issues and conclusions: May 2007 electoral pilot schemes. http:
//www.electoralcommission.org.uk/elections/pilots/May2007. 1

[6] Bundesverfassungsgericht (Germany’s Federal Constitutional Court). Use of voting computers in
2005 bundestag election unconstitutional, March 2009. Press release 19/2009 http://www.
bundesverfassungsgericht.de/en/press/bvg09-019en.html. 1

[7] Stéphanie Delaune, Steve Kremer, and Mark Ryan. Verifying privacy-type properties of electronic
voting protocols. Journal of Computer Security, 17:435–487, December 2009. 1, 1, 2.2, 4, 2.3, 5, 6,
7, 8, 9, 10, 4.2, 4.4, 4.4.2, 4.4.3, 4.5, 4.5.2, 4.7, 4.7.2, A, B.1, B.2, 2, B.2, D

[8] Stéphanie Delaune, Steve Kremer, and Mark D. Ryan. Verifying privacy-type properties of electronic
voting protocols: A taster. In David Chaum, Markus Jakobsson, Ronald L. Rivest, Peter Y. A. Ryan,
Josh Benaloh, Mirosław Kutyłowski, and Ben Adida, editors, Towards Trustworthy Elections – New
Directions in Electronic Voting, volume 6000 of Lecture Notes in Computer Science, pages 289–309.
Springer, May 2010. 1

[9] Jannik Dreier, Pascal Lafourcade, and Yassine Lakhnech. Vote-independence: A powerful privacy no-
tion for voting protocols. In Proceedings of the 4th Workshop on Foundations & Practice of Security
(FPS), Lecture Notes in Computer Science. Springer, 2011. 1

[10] Atsushi Fujioka, Tatsuaki Okamoto, and Kazuo Ohta. A practical secret voting scheme for large scale
elections. In Jennifer Seberry and Yuliang Zheng, editors, Advances in Cryptology – AUSCRYPT
’92, volume 718 of Lecture Notes in Computer Science, pages 244–251. Springer Berlin / Heidelberg,
1992. 1, 4.3, 4.4, 4.5.1

[11] Ari Juels, Dario Catalano, and Markus Jakobsson. Coercion-resistant electronic elections, 2002.
Cryptology ePrint Archive, Report 2002/165, http://eprint.iacr.org/. 1

[12] Ari Juels, Dario Catalano, and Markus Jakobsson. Coercion-resistant electronic elections. In Pro-
ceedings of the 2005 ACM workshop on Privacy in the electronic society, WPES ’05, pages 61–70,
New York, NY, USA, 2005. ACM. 1

[13] Steve Kremer and Mark Ryan. Analysis of an electronic voting protocol in the applied pi calculus. In
Proceedings of the 14th European Symposium On Programming (ESOP’05), volume 3444 of Lecture
Notes in Computer Science, pages 186–200. Springer, 2005. 1

12/35 Verimag Research Report no TR-2011-8

http://www.electoralcommission.org.uk/elections/pilots/May2007
http://www.electoralcommission.org.uk/elections/pilots/May2007
http://www.bundesverfassungsgericht.de/en/press/bvg09-019en.html
http://www.bundesverfassungsgericht.de/en/press/bvg09-019en.html
http://eprint.iacr.org/

Vote-Independence Jannik Dreier, Pascal Lafourcade, Yassine Lakhnech

[14] Steve Kremer, Mark Ryan, and Ben Smyth. Election verifiability in electronic voting protocols. In
Dimitris Gritzalis, Bart Preneel, and Marianthi Theoharidou, editors, Proceedings of the 15th Euro-
pean Symposium on Research in Computer Security, ESORICS 2010, volume 6345 of Lecture Notes
in Computer Science, pages 389–404. Springer, 2010. 1

[15] Byoungcheon Lee, Colin Boyd, Ed Dawson, Kwangjo Kim, Jeongmo Yang, and Seungjae Yoo. Pro-
viding receipt-freeness in mixnet-based voting protocols. In Jong In Lim and Dong Hoon Lee, editors,
Information Security and Cryptology - ICISC 2003, volume 2971 of Lecture Notes in Computer Sci-
ence, pages 245–258. Springer Berlin / Heidelberg, 2004. 1, 4.3, 4.7, 4.7.3

[16] Tal Moran and Moni Naor. Receipt-free universally-verifiable voting with everlasting privacy. In
Cynthia Dwork, editor, CRYPTO 2006, volume 4117 of Lecture Notes in Computer Science, pages
373–392. Springer, 2006. 1

[17] Aybek Mukhamedov and Mark D. Ryan. Identity escrow protocol and anonymity analysis in the
applied pi-calculus. ACM Transactions on Information System Security, 13(41):1–29, December
2010. F

[18] Participants of the Dagstuhl Conference on Frontiers of E-Voting. Dagstuhl accord, 2007. http:
//www.dagstuhlaccord.org/. 1

[19] Tatsuaki Okamoto. An electronic voting scheme. In Proceedings of the IFIP World Conference on IT
Tools, pages 21–30, 1996. 1, 4.3, 4.5

[20] Ben Smyth and Veronique Cortier. Attacking and fixing helios: An analysis of ballot secrecy. Ac-
cepted at CSF’11. 1

[21] Ben Smyth and Veronique Cortier. Attacking and fixing helios: An analysis of ballot secrecy. Cryp-
tology ePrint Archive, Report 2010/625, 2010. http://eprint.iacr.org/. (document), 1, 3,
3.1

[22] Ben Smyth, Mark D. Ryan, Steve Kremer, and Mounira Kourjieh. Towards automatic analysis of
election verifiability properties. In Alessandro Armando and Gavin Lowe, editors, Proceedings of
the Joint Workshop on Automated Reasoning for Security Protocol Analysis and Issues in the Theory
of Security (ARSPA-WITS’10), volume 6186 of Lecture Notes in Computer Science, pages 146–163,
Paphos, Cyprus, October 2010. Springer. 1

[23] Ministerie van Binnenlandse Zaken en Koninkrijksrelaties (Netherland’s Ministry of the Interior and
Kingdom Relations). Stemmen met potlood en papier (voting with pencil andpaper), May 2008.
Press release http://www.minbzk.nl/onderwerpen/grondwet-en/verkiezingen/
nieuws--en/112441/stemmen-met-potlood. 1

A Applied Pi Calculus
The semantics of the calculus are given by Structural equivalence (≡), which is defined as the small-
est equivalence relation on extended processes that is closed under application of evaluation contexts,
α-conversion on names and variables such that:

PAR-0 A|0 ≡ A REPL !P ≡ P |!P
PAR-A A|(B|C) ≡ (A|B)|C REWRITE {M/x} ≡ {N/x}
PAR-C A|B ≡ B|A if M =E N

NEW-0 νn.0 ≡ 0 ALIAS νx. {M/x} ≡ 0

NEW-C νu.νv.A ≡ νv.νu.A SUBST {M/x} |A ≡ {M/x} |A {M/x}
NEW-PAR A|νu.B ≡ νu.(A|B) if u /∈ fn(A) ∪ fn(b)

and extended by Internal reduction (→), the smallest relation on extended processes closed by structural
equivalence and application of evaluation contexts such that:

Verimag Research Report no TR-2011-8 13/35

http://www.dagstuhlaccord.org/
http://www.dagstuhlaccord.org/
http://eprint.iacr.org/
http://www.minbzk.nl/onderwerpen/grondwet-en/verkiezingen/nieuws--en/112441/stemmen-met-potlood
http://www.minbzk.nl/onderwerpen/grondwet-en/verkiezingen/nieuws--en/112441/stemmen-met-potlood

Jannik Dreier, Pascal Lafourcade, Yassine Lakhnech Vote-Independence

COMM out(a, x).P | in(a, x).Q → P | Q
THEN ifM = M then P else Q → P

ELSE ifM = N then P else Q → Q

for any ground terms such that M 6=E N

To describe the interaction of processes with the exterior, we use labeled operational semantics (α−→) where
α can be an input or the output of a channel name or a variable of base type:

IN in(a, x).P
in(a,M)−−−−−→ P {M/x}

OUT-ATOM out(a, u).P
out(a,u)−−−−−→ P

OPEN-ATOM
A

out(a,u)−−−−−→ A′ u 6= a

νu.A
νu.out(a,u)−−−−−−−→ A′

SCOPE
A

α−→ A′ u does not occur in α

νu.A
α−→ νu.A′

PAR
A

α−→ A′ bv(α) ∩ fv(B) = bn(α) ∩ fn(B) = ∅
A | B α−→ A′ | B

STRUCT
A ≡ B B

α−→ B′ B′ ≡ A′

A
α−→ A′

Labeled transitions are not closed under the evaluation contexts. Note that a term M cannot be output
directly, but only a variable as “reference” to it. This is to model that e.g. the output of enc(m, k) does not
give the context access to m.

In our proofs we will make use of the following Lemma 1 by [7]:

Lemma 1. Let C1 = νũ1.(_|B1) and C2 = νũ2.(_|B2) be two evaluation contexts such that ũ1 ∩
(fv(B2) ∪ fn(B2)) = ∅ and ũ2 ∩ (fv(B1) ∪ fn(B1)) = ∅. Then we have C1[C2[A]] ≡ C2[C1[A]]
for any extended process A.

B Proof of Propostion 1

B.1 “V I − AC ⇒ V I − PC”
The proof is very similar to the proof of CR⇒ RF in [7].

Proof. LetC be an evaluation context such thatC = νc1.νc2.(_|P) for some plain process P which fulfills

S [C [VA {?/v}c1,c2] |VB {a/v} |V c3,c4C] ≈l S
[
VA {c/v}chc |VB {a/v} |V c3,c4C

]
Note that such a C can be constructed directly from the vote process V . By hypothesis we know that there
is a closed plain process V ′ so that

C [V ′]
\out(chc,·) ≈l VA {a/v}

and
S [C [VA {?/v}c1,c2] |VB {a/v} |V c3,c4C] ≈l S [C [V ′] |VB {c/v} |V c3,c4C]

We have to find another process V ′′ so that

V ′′\out(chc,·) ≈l VA {a/v}

and
S
[
VA {c/v}chc |VB {a/v} |V c3,c4C

]
≈l S [V ′′|VB {c/v} |V c3,c4C]

Let V ′′ = C[V ′]. This directly fulfills the first requirement. We now use the hypotheses

S [C [VA {?/v}c1,c2] |VB {a/v} |V c3,c4C] ≈l S
[
VA {c/v}chc |VB {a/v} |V c3,c4C

]

14/35 Verimag Research Report no TR-2011-8

Vote-Independence Jannik Dreier, Pascal Lafourcade, Yassine Lakhnech

and
S [C [VA {?/v}c1,c2] |VB {a/v} |V c3,c4C] ≈l S [C [V ′] |VB {c/v} |V c3,c4C]

As labelled bisimilarity is transitive, we can conclude

S
[
VA {c/v}chc |VB {a/v} |V c3,c4C

]
≈l S [C [V ′] |VB {c/v} |V c3,c4C]

which gives us the desired result for V ′′ = C[V ′].

B.2 “V I − PC ⇒ V I”
For this proof, we need the following Lemma by [7].

Lemma 2 ([7]). Let P be a closed plain process and ch a channel name such that ch /∈ fn(P) ∪ bn(P).
We have (P ch)\out(ch,·) ≈l P .

The proof itself is similar to the proof of RF ⇒ P in [7]:

Proof. By hypothesis there is a closed plain process so that

V ′\out(chc,·) ≈l VA {a/v}

and
S
[
VA {c/v}chc |VB {a/v} |V c1,c2C

]
≈l S [V ′|VB {c/v} |V c1,c2C]

We apply the context νchc(_|!in(chc, x)) on both sides, which gives

S
[
VA {c/v}chc |VB {a/v} |V c1,c2C

]\out(chc,·)
≈l S [V ′|VB {c/v} |V c1,c2C]

\out(chc,·)

By using Lemma 1 we obtain

S [V ′|VB {c/v} |V c1,c2C]
\out(chc,·) ≡ S

[
V ′\out(chc,·)|VB {c/v} |V c1,c2C

]
and

S
[
VA {c/v}chc |VB {a/v} |V c1,c2C

]\out(chc,·)
≡

S

[(
VA {c/v}chc

)\out(chc,·)
|VB {a/v} |V c1,c2C

]
We can now apply Lemma 2 and use the fact that labelled bisimilarity is closed under structural equivalence
and obtain

S
[
V ′\out(chc,·)|VB {c/v} |V c1,c2C

]
≈l S [VA {c/v} |VB {a/v} |V c1,c2C]

where we can use V ′\out(chc,·) ≈l VA {a/v} to conclude.

C Proof of Proposition 2 (“V I ⇒ P”)
Proof. We will use a proof by contradiction. Suppose

S′ [VA {a/v} |VB {b/v}] 6≈l S′ [VA {b/v} |VB {a/v}]

which we can rewrite as

S [VA {a/v} |VB {b/v} |Viσi] 6≈l S [VA {b/v} |VB {a/v} |Viσi]

for some honest voter Viσi1. This yields the contradiction for a context (an attacker) enforcing V c1,c2C ≈l
Viσi.

The proofs V I − PC ⇒ RF and V I −AC ⇒ CR are similar.
1Technically here we assume the existence of at least one other honest voter. This is unavoidable as we need at least three legitimate

voters to be able to apply the definition of Vote-Independence.

Verimag Research Report no TR-2011-8 15/35

Jannik Dreier, Pascal Lafourcade, Yassine Lakhnech Vote-Independence

(∗ p r i v a t e c h a n n e l s ∗)
ν pr ivCh . ν pkaCh1 . ν pkaCh2 . ν skaCh .
ν skvaCh . ν skvbCh . ν skvcCh .
(∗ a d m i n i s t r a t o r s ∗)
(p rocessK | p rocessA | p rocessA | p rocessA |
p r o c e s s C | p r o c e s s C | p r o c e s s C |
(∗ v o t e r s ∗)
(l e t skvCh = skvaCh i n l e t v = a i n processV) |
(l e t skvCh = skvbCh i n l e t v = b i n processV) |
(l e t skvCh = skvcCh i n l e t v = c i n processV))

Process 1: The main process

p rocessK =
(∗ p r i v a t e keys ∗)
ν ska . ν skva . ν skvb . ν skvc .
(∗ p u b l i c keys ∗)
l e t (pka , pkva , pkvb , pkvc)
= (pk (ska) , pk (skva) , pk (skvb) , pk (skvc)) i n
(∗ p u b l i c key d i s c l o s u r e ∗)
o u t (ch , pka) .
o u t (ch , pkva) . o u t (ch , pkvb) . o u t (ch , pkvc) .
(∗ r e g i s t e r l e g i t i m a t e v o t e r s ∗)
(o u t (pr ivCh , pkva) | o u t (pr ivCh , pkvb) |

o u t (pr ivCh , pkvc) | o u t (pkaCh1 , pka) |
o u t (pkaCh1 , pka) | o u t (pkaCh1 , pka) |
o u t (pkaCh2 , pka) | o u t (pkaCh2 , pka) |
o u t (pkaCh2 , pka) | o u t (skaCh , ska) |
o u t (skvaCh , skva) | o u t (skvbCh , skvb) |
o u t (skvcCh , skvc))

Process 2: The key distribution process

D Proof of Proposition 3 (“FOO ∈ V I”)

We use the following model:

The main process The main process (Process 1) sets up the private channels and executes the partici-
pation processes (three voters, three administrators, three collectors - one for each voter - and the keying
process) in parallel.

The keying process The keying process (Process 2) creates the private keys, distributes them over private
channels and publishes the corresponding public keys. He also sends the administrators a list containing
the public keys of all legitimate voters.

The voting process The voter’s process (Process 5) receives his private and the administrator’s public
key; then he votes following the protocol described informally in Section 4.4.

A voter under control of the attacker A voter controlled by the attacker is modelled by Process 6. This
process is obtained when calculating processVc1,c2 as defined in Definition 9.

16/35 Verimag Research Report no TR-2011-8

Vote-Independence Jannik Dreier, Pascal Lafourcade, Yassine Lakhnech

processA =
(∗ p r i v a t e key ∗)
i n (skaCh , ska) .
(∗ r e g i s t e r l e g i t i m a t e v o t e r s ∗)
i n (pr ivCh , pubkv) .
i n (ch1 , m1) .
l e t (pubkeyv , s i g) = m1 i n
i f pubkeyv = pubkv t h e n
o u t (ch2 , s i g n (c h e c k s i g n (s i g , pubkv) , ska))

Process 3: The administrator process

p r o c e s s C =
(∗ a d m i n i s t r a t o r ’ s p u b l i c key ∗)
i n (pkaCh2 , pka) .
synch 1 .
i n (ch3 , (m3 , m4)) .
i f c h e c k s i g n (m4 , pka) = m3 t h e n
ν l .
o u t (ch4 , (l , m3 , m4)) .
i n (ch5 , (= l , r and)) .
l e t voteV = open (m3 , r and) i n
o u t (ch , voteV)

Process 4: The collector process

p rocessV =
(∗ p r i v a t e key ∗)
i n (skvCh , skv) .
(∗ p u b l i c key o f a d m i n i s t r a t o r ∗)
i n (pkaCh1 , pka) .
ν b l i n d e r . ν r .
l e t commitedvote = commit (v , r) i n
l e t b l i n d e d v o t e = b l i n d (commitedvote , b l i n d e r) i n
o u t (ch1 , (pk (skv) , s i g n (b l i n d e d v o t e , skv))) .
i n (ch2 , m2) .
l e t r e s u l t = c h e c k s i g n (m2 , pubka) i n
i f r e s u l t = b l i n d e d v o t e t h e n
l e t s i g n e d v o t e = u n b l i n d (m2 , b l i n d e r) i n
synch 1 .
o u t (ch3 , (commitedvote , s i g n e d v o t e)) .
i n (ch4 , (l , =commitedvote , = s i g n e d v o t e)) .
synch 2 .
o u t (ch5 , (l , r))

Process 5: The voting process

Verimag Research Report no TR-2011-8 17/35

Jannik Dreier, Pascal Lafourcade, Yassine Lakhnech Vote-Independence

p roces sVc1c2 =
(∗ p r i v a t e key ∗)
i n (skvCh , skv) . o u t (c1 , skv) .
(∗ p u b l i c key o f a d m i n i s t r a t o r ∗)
i n (pkaCh1 , pka) . o u t (c1 , pka) .
ν b l i n d e r . o u t (c1 , b l i n d e r) . ν r . o u t (c1 , r) .
l e t commitedvote = commit (v , r) i n
l e t b l i n d e d v o t e = b l i n d (commitedvote , b l i n d e r) i n
i n (c2 , y1) . o u t (ch1 , y1) .
i n (ch2 , m2) . o u t (c1 , m2) .
l e t r e s u l t = c h e c k s i g n (m2 , pubka) i n
i n (c2 , y2) .
i f y2 = t r u e t h e n
l e t s i g n e d v o t e = u n b l i n d (m2 , b l i n d e r) i n
synch 1 .
i n (c2 , y3) . o u t (ch3 , y3) .
i n (ch4 , m3) . o u t (c1 , m3) .
l e t (l , commi tedvo te r , s i g n e d v o t e r) = m3 i n
i n (c2 , y4) . i f y4 = t r u e t h e n
i n (c2 , y5) . i f y4 = t r u e t h e n
synch 2 .
i n (c2 , y6) . o u t (ch5 , y6)

Process 6: The voting process under control of the attacker

The administrator The administrator (Process 3) receives his private key and the public key of a legit-
imate voter. When receives the blinded commitment, he checks the signature, signs, and sends the result
back.

The collector The collector (Process 4) receives the administrator’s public key, which he then uses to
verify the signature on incoming commitments. If the signature is correct, he creates a new bounded name
l (the number in the list) and sends it together with the signed commitment back to the voter. The voter
then reveals his randomness, which the collector uses to open the commitment.

Proof. Similar to [7], we will show that

νpkaCh1.(VA {a/v} |VB {b/v} |V c1,c2C |processK)

≈l
νpkaCh1.(VA {b/v} |VB {a/v} |V c1,c2C |processK)

(1)

where VA = processV {skvaCh/skvCh}, VB = processV {skvbCh/skvCh} and V c1,c2C =
processVc1c2 {skvcCh/skvCh}. Note that this proof is technically only valid for two honest voters and
one voter under control of the attacker. Nevertheless a similar proof can be made for other numbers of
honest voters.

We will call the left hand side process P and the right hand side process Q. Both sides start by
distributing the keys. The public key of the administrator is passed over a private channel which yields an
internal reduction. We will not detail this part for better readability. V c1,c2C will output the keys he receives,
forward the attacker’s input to the administrator and resend the answer to the administrator2. The honest

2As we do not trust the administrator, he is part of the context and thus of the attacker. This means that the attacker actually
exchanges messages with himself.

18/35 Verimag Research Report no TR-2011-8

Vote-Independence Jannik Dreier, Pascal Lafourcade, Yassine Lakhnech

voters construct the blinded and committed votes and send them to the administrator.

P
in(skvaCh,skva)−−−−−−−−−−−→ P1

in(skvbCh,skvb)−−−−−−−−−−→ P2
in(skvcCh,skvc)−−−−−−−−−−→ P3 →∗

out(c1,x1)−−−−−−→ P4| {skvc/x1}
out(c1,x2)−−−−−−→ P5| {skvc/x1} | {pka/x2}

in(c2,y1)−−−−−−→ P6| {skvc/x1} | {pka/x2}
out(ch2,x3)−−−−−−−→ P7| {skvc/x1} | {pka/x2} | {y1/x3}
in(ch2,m2)−−−−−−−→ P8| {skvc/x1} | {pka/x2} | {y1/x3}
out(c1,x4)−−−−−−→ P9| {skvc/x1} | {pka/x2} | {y1/x3} | {m2/x4}
out(ch1,x5)−−−−−−−→ νbA.νrA.(P10| {skvc/x1} | {pka/x2} | {y1/x3} | {m2/x4} |

{(pk(skva),sign(blind(commit(a,rA),bA),skva))/x5})
out(ch1,x6)−−−−−−−→ νbB .νbA.νrA.νrB .(P11| {skvc/x1} | {pka/x2} | {y1/x3} |

{m2/x4} | {(pk(skva),sign(blind(commit(a,rA),bA),skva))/x5} |
{(pk(skvb),sign(blind(commit(b,rB),bB),skvb))/x6})

(2)

Similarly

Q
in(skvaCh,skva)−−−−−−−−−−−→ Q1

in(skvbCh,skvb)−−−−−−−−−−→ Q2
in(skvcCh,skvc)−−−−−−−−−−→ Q3 →∗

out(c1,x1)−−−−−−→ Q4| {skvc/x1}
out(c1,x2)−−−−−−→ Q5| {skvc/x1} | {pka/x2}

in(c2,y1)−−−−−−→ Q6| {skvc/x1} | {pka/x2}
out(ch2,x3)−−−−−−−→ Q7| {skvc/x1} | {pka/x2} | {y1/x3}
in(ch2,m2)−−−−−−−→ Q8| {skvc/x1} | {pka/x2} | {y1/x3}
out(c1,x4)−−−−−−→ Q9| {skvc/x1} | {pka/x2} | {y1/x3} | {m2/x4}
out(ch1,x5)−−−−−−−→ νbA.νrA.(Q10| {skvc/x1} | {pka/x2} | {y1/x3} | {m2/x4} |

{(pk(skva),sign(blind(commit(b,rA),bA),skva))/x5})
out(ch1,x6)−−−−−−−→ νbB .νbA.νrA.νrB .(Q11| {skvc/x1} | {pka/x2} | {y1/x3} |

{m2/x4} | {(pk(skva),sign(blind(commit(b,rA),bA),skva))/x5} |
{(pk(skvb),sign(blind(commit(a,rB),bB),skvb))/x6})

(3)

Up to this point, each thread on the left hand side is simulated by the same process on the right hand side.
The order of the transitions can change according to the partial order of the processes, but the resulting
frames remain statically equivalent. The next step depends on the context. If the attacker returns correctly
signed votes to the two honest voters and tells V c1,c2C to go on (i.e. sends a message containing true), the
processes can synchronize and go on. Otherwise at least one of them will block and they will be unable to
synchronize.

If they are able to synchronize, they will output their unblinded vote to the collector (V c1,c2C will send
any message the attacker gives him). From this point on, the honest voters swap their roles, i.e. VB {a/v}
simulates the behavior of VA {a/v}. We obtain the following frames

φl = νbB .νbA.νrA.νrB .({skvc/x1} | {pka/x2} | {y1/x3} | {m2/x4} |
{(pk(skva),sign(blind(commit(a,rA),bA),skva))/x5} |
{(pk(skvb),sign(blind(commit(b,rB),bB),skvb))/x6} |
{(commit(a,rA),sign(commit(a,rA),ska))/x7} |
{(commit(b,rB),sign(commit(b,rB),ska))/x8} |

{y3/x9})| {m3/x10})

(4)

Verimag Research Report no TR-2011-8 19/35

Jannik Dreier, Pascal Lafourcade, Yassine Lakhnech Vote-Independence

(∗ p r i v a t e c h a n n e l s ∗)
ν pr ivCh . ν pkaCh1 . ν pkaCh2 . ν skaCh .
ν skvaCh . ν skvbCh . ν skvcCh . ν chT .
(∗ a d m i n i s t r a t o r s ∗)
(p rocessK | p rocessA | p rocessA | p rocessA |
p r o c e s s C | p r o c e s s C | p r o c e s s C |
p r o c e s s T | p r o c e s s T | p r o c e s s T |
(∗ v o t e r s ∗)
(l e t skvCh = skvaCh i n l e t v = a i n processV) |
(l e t skvCh = skvbCh i n l e t v = b i n processV) |
(l e t skvCh = skvcCh i n l e t v = c i n processV))

Process 7: The main process

φr = νbB .νbA.νrA.νrB .({skvc/x1} | {pka/x2} | {y1/x3} | {m2/x4} |
{(pk(skva),sign(blind(commit(b,rA),bA),skva))/x5} |
{(pk(skvb),sign(blind(commit(a,rB),bB),skvb))/x6} |

{(commit(b,rA),sign(commit(b,rA),ska))/x7} |
{(commit(a,rB),sign(commit(a,rB),ska))/x8} |

{y3/x9})| {m3/x10})

(5)

Then it depends again on the input of the attacker. If either of the honest voters gets a wrong input or
the attacker decides to block V c1,c2C , the voters cannot synchronize. If both honest voters receive a correct
input and if they can synchronize with V c1,c2C , they will reveal their random values with the corresponding
l. This yields the following frames:

φ′l = νbB .νbA.νrA.νrB .νlA.νlB .({skvc/x1} | {pka/x2} | {y1/x3} | {m2/x4} |
{(pk(skva),sign(blind(commit(a,rA),bA),skva))/x5} |
{(pk(skvb),sign(blind(commit(b,rB),bB),skvb))/x6} |
{(commit(a,rA),sign(commit(a,rA),ska))/x7} |
{(commit(b,rB),sign(commit(b,rB),ska))/x8} |

{y3/x9} | {m3/x10} | {(lA,rA)/x11} | {(lB ,rB)/x12} | {y6/x13})

(6)

φ′r = νbB .νbA.νrA.νrB .νlA.νlB .({skvc/x1} | {pka/x2} | {y1/x3} | {m2/x4} |
{(pk(skva),sign(blind(commit(b,rA),bA),skva))/x5} |
{(pk(skvb),sign(blind(commit(a,rB),bB),skvb))/x6} |

{(commit(b,rA),sign(commit(b,rA),ska))/x7} |
{(commit(a,rB),sign(commit(a,rB),ska))/x8} |

{y3/x9} | {m3/x10} | {(lA,rA)/x11} | {(lB ,rB)/x12} | {y6/x13})

(7)

These frames are statically equivalent, which gives us the desired result.

E Proof of Proposition 4 (“Okamoto ∈ V I − PC”)

We us the following model for our proof:

The main process The main process (Process 7) shows how the participation processes (three voters,
three administrators, three collectors, three talliers - one for each voter - and the keying process) are com-
bined in parallel using private channels.

20/35 Verimag Research Report no TR-2011-8

Vote-Independence Jannik Dreier, Pascal Lafourcade, Yassine Lakhnech

processK =
(∗ p r i v a t e keys ∗)
ν ska . ν skva . ν skvb . ν skvc .
(∗ p u b l i c keys ∗)
l e t (pka , pkva , pkvb , pkvc)
= (pk (ska) , pk (skva) , pk (skvb) , pk (skvc)) i n
(∗ p u b l i c key d i s c l o s u r e ∗)
o u t (ch , pka) .
o u t (ch , pkva) . o u t (ch , pkvb) . o u t (ch , pkvc) .
(∗ r e g i s t e r l e g i t i m a t e v o t e r s ∗)
(o u t (pr ivCh , pkva) | o u t (pr ivCh , pkvb) |

o u t (pr ivCh , pkvc) | o u t (pkaCh1 , pka) |
o u t (pkaCh1 , pka) | o u t (pkaCh1 , pka) |
o u t (pkaCh2 , pka) | o u t (pkaCh2 , pka) |
o u t (pkaCh2 , pka) | o u t (skaCh , ska) |
o u t (skvaCh , skva) | o u t (skvbCh , skvb) |
o u t (skvcCh , skvc))

Process 8: The key distribution process

p rocessV =
(∗ p r i v a t e key ∗)
i n (skvCh , skv) .
(∗ p u b l i c key o f a d m i n i s t r a t o r ∗)
i n (pkaCh1 , pka) .
ν b l i n d e r . ν r . ν t d .
l e t commitedvote = tdcommit (v , r , t d) i n
l e t b l i n d e d v o t e = b l i n d (commitedvote , b l i n d e r) i n
o u t (ch1 , (pk (skv) , s i g n (b l i n d e d v o t e , skv))) .
i n (ch2 , m2) .
l e t r e s u l t = c h e c k s i g n (m2 , pka) i n
i f r e s u l t = b l i n d e d v o t e t h e n
l e t s i g n e d v o t e = u n b l i n d (m2 , b l i n d e r) i n
synch 1 .
o u t (ch3 , (commitedvote , s i g n e d v o t e)) .
o u t (chT , (v , r , commitedvote))

Process 9: The voting process

Verimag Research Report no TR-2011-8 21/35

Jannik Dreier, Pascal Lafourcade, Yassine Lakhnech Vote-Independence

p roces sVc1c2 =
(∗ p r i v a t e key ∗)
i n (skvCh , skv) . o u t (c1 , skv) .
(∗ p u b l i c key o f a d m i n i s t r a t o r ∗)
i n (pkaCh1 , pka) . o u t (c1 , pka) .
ν b l i n d e r . o u t (c1 , b l i n d e r) . ν r . o u t (c1 , r) .
ν t d . o u t (c1 , t d) .
l e t commitedvote = tdcommit (v , r , t d) i n
l e t b l i n d e d v o t e = b l i n d (commitedvote , b l i n d e r) i n
i n (c2 , y1) . o u t (ch1 , y1) .
i n (ch2 , m2) . o u t (c1 , m2) .
l e t r e s u l t = c h e c k s i g n (m2 , pka) i n
i n (c2 , y2) .
i f y2 = t r u e t h e n
l e t s i g n e d v o t e = u n b l i n d (m2 , b l i n d e r) i n
synch 1 .
i n (c2 , y3) . o u t (ch3 , y3) .
i n (c2 , y4) . o u t (chT , y4)

Process 10: The voting process under control of the attacker

p rocessV =
(∗ p r i v a t e key ∗)
i n (skvCh , skv) . o u t (chc , skv) .
(∗ p u b l i c key o f a d m i n i s t r a t o r ∗)
i n (pkaCh1 , pka) . o u t (chc , pka) .
ν b l i n d e r . ν r . ν t d .
o u t (chc , b l i n d e r) . o u t (chc , f (a , r , td , c)) .
o u t (chc , t d) .
l e t commitedvote = tdcommit (a , r , t d) i n
l e t b l i n d e d v o t e = b l i n d (commitedvote , b l i n d e r) i n
o u t (ch1 , (pk (skv) , s i g n (b l i n d e d v o t e , skv))) .
o u t (chc , (pk (skv) , s i g n (b l i n d e d v o t e , skv))) .
i n (ch2 , m2) .
l e t r e s u l t = c h e c k s i g n (m2 , pka) i n
i f r e s u l t = b l i n d e d v o t e t h e n
l e t s i g n e d v o t e = u n b l i n d (m2 , b l i n d e r) i n
synch 1 .
o u t (ch3 , (commitedvote , s i g n e d v o t e)) .
o u t (chc , (commitedvote , s i g n e d v o t e)) .
o u t (chT , (a , r , commitedvote)) .
o u t (chT , (c , f (a , r , td , c) , commitedvote))

Process 11: The process V’

22/35 Verimag Research Report no TR-2011-8

Vote-Independence Jannik Dreier, Pascal Lafourcade, Yassine Lakhnech

p r o c e s s C =
(∗ a d m i n i s t r a t o r ’ s p u b l i c key ∗)
i n (pkaCh2 , pka) .
synch 1 .
i n (ch3 , (m3 , m4)) .
i f c h e c k s i g n (m4 , pka) = m3 t h e n
synch 2 .
o u t (ch , (m3 , m4))

Process 12: The collector process

p r o c e s s T =
synch 1 .
(∗ r e c e i v i n g t h e commitment ∗)
i n (chT , (vt , r t , x t)) .
synch 2 .
i f open (xt , r t) = v t t h e n
o u t (ch , v t)

Process 13: The timeliness process

The keying process The keying process (Process 8) creates the private keys, distributes them over private
channels and publishes the corresponding public keys. He also registers legitimate voters and sends this
list to the administrators.

The voter The voter process (Process 9) receives the necessary keys and follows the nearly the same
protocol as in the case of FOO, but he has to reveal the data necessary to open the commitment over a
private channel to the timeliness member T .

A voter under control of the attacker A voter controlled by the attacker is modelled by Process 10.
This process can be obtained by calculating processVc1,c2 as defined in Definition 9.

The administrator The administrator is exactly the same as given in Section 4.4 (Process 3).

The collector The collector (Process 12) receives the administrator’s public key, which he then uses to
verify the signature on incoming commitments. If the signature is correct, he publishes the commitment
on a public channel.

The timeliness member The timeliness process (Process 13) receives the vote, the corresponding com-
mitment and the randomness over a private channel. He verifies the correctness of the data and then
publishes the vote.

Proof. We will show that there exists a closed plain process V ′ such that

V ′\out(chc,·) ≈l VA {a/v}

and
νpkaCh1.νchT.(VA {c/v}chc |VB {a/v} |V c1,c2C |
processK|processT|processT|processT)

≈l
νpkaCh1.νchT.(V ′|VB {c/v} |V c1,c2C |

processK|processT|processT|processT)

Verimag Research Report no TR-2011-8 23/35

Jannik Dreier, Pascal Lafourcade, Yassine Lakhnech Vote-Independence

where VA = processV {skvaCh/skvCh}, VB = processV {skvbCh/skvCh} and V c1,c2C =
processVc1c2 {skvcCh/skvCh}. As in the case of Fujioka et al., our proof will technically only be correct
for three voters, but it can be repeated for more voters.

The first equivalence is easy to see by removing all out(chc, _) from V ′. The resulting process is
apparently equal to the original voting process VA.

The second equivalence is more difficult to prove. The beginning is the same as in the proof of vote-
independence for FOO. We will denote the left hand side process P and the right hand side processQ. Both
sides start by distributing the keys. The public key of the administrator is passed through a private channel
which yields an internal reduction. Again, for better readability, we will not detail this part. V c1,c2C will
output the keys he receives and forward the attacker’s input to the administrator and resend the answer to
the administrator (which is also part of the attacker). The honest voters construct the blinded and committed
vote and send them to the administrator. During this process, VA outputs his secret values and inputs, where
V ′ fakes these values.

P
in(skvaCh,skva)−−−−−−−−−−−→ νx1.out(chc,x1)−−−−−−−−−−→ νx1.(P1| {skva/x1})
in(skvbCh,skvb)−−−−−−−−−−→ in(skvcCh,skvc)−−−−−−−−−−→→∗ νx2.out(c1,x2)−−−−−−−−−→ νx̃.(P2| {skva/x1} | {skvc/x2})
νx3.out(c1,x3)−−−−−−−−−→ νx4.out(chc,x4)−−−−−−−−−−→

νx̃.(P3| {skva/x1} | {skvc/x2} | {pk(ska)/x3} | {pk(ska)/x4})
νx5.out(chc,x5)−−−−−−−−−−→ νx6.out(chc,x6)−−−−−−−−−−→ νx7.out(chc,x7)−−−−−−−−−−→ νx̃.(P4|
{skva/x1} | {skvc/x2} | {pk(ska)/x3} | {pk(ska)/x4} | {bA/x5} | {rA/x6} | {tdA/x7})

νx8.out(ch1,x8)−−−−−−−−−−→ νx9.out(chc,x9)−−−−−−−−−−→ νx̃.(P5|
{skva/x1} | {skvc/x2} | {pk(ska)/x3} | {pk(ska)/x4} | {bA/x5} | {rA/x6} | {tdA/x7} |

{(pk(skva),sign(blind(tdcommit(c,rA,tdA),bA),skva))/x8} | {x8)/x9})
νx10.out(ch1,x10)−−−−−−−−−−−→ νx̃.(P6|
{skva/x1} | {skvc/x2} | {pk(ska)/x3} | {pk(ska)/x4} | {bA/x5} | {rA/x6} | {tdA/x7} |

{(pk(skva),sign(blind(tdcommit(c,rA,tdA),bA),skva))/x8} | {x8/x9} |
{(pk(skva),sign(blind(tdcommit(a,rB ,tdB),bB),skvb))/x10})

in(c2,y1)−−−−−−→ νx11.out(ch1,x11)−−−−−−−−−−−→ νx̃.(P7|
{skva/x1} | {skvc/x2} | {pk(ska)/x3} | {pk(ska)/x4} | {bA/x5} | {rA/x6} | {tdA/x7} |

{(pk(skva),sign(blind(tdcommit(c,rA,tdA),bA),skva))/x8} | {x8/x9} |
{(pk(skva),sign(blind(tdcommit(a,rB ,tdB),bB),skvb))/x10} | {y1/x11})

24/35 Verimag Research Report no TR-2011-8

Vote-Independence Jannik Dreier, Pascal Lafourcade, Yassine Lakhnech

Similarly

Q
in(skvaCh,skva)−−−−−−−−−−−→ νx1.out(chc,x1)−−−−−−−−−−→ νx1.(Q1| {skva/x1})
in(skvbCh,skvb)−−−−−−−−−−→ in(skvcCh,skvc)−−−−−−−−−−→→∗ νx2.out(c1,x2)−−−−−−−−−→ νx̃.(Q2| {skva/x1} | {skvc/x2})
νx3.out(c1,x3)−−−−−−−−−→ νx4.out(chc,x4)−−−−−−−−−−→

νx̃.(Q3| {skva/x1} | {skvc/x2} | {pk(ska)/x3} | {pk(ska)/x4})
νx5.out(chc,x5)−−−−−−−−−−→ νx6.out(chc,x6)−−−−−−−−−−→ νx7.out(chc,x7)−−−−−−−−−−→ νx̃.(Q4| {skva/x1} |
{skvc/x2} | {pk(ska)/x3} | {pk(ska)/x4} | {bA/x5} | {f(a,rA,tdA,c)/x6} | {tdA/x7})

νx8.out(ch1,x8)−−−−−−−−−−→ νx9.out(chc,x9)−−−−−−−−−−→ νx̃.(Q5| {skva/x1} |
{skvc/x2} | {pk(ska)/x3} | {pk(ska)/x4} | {bA/x5} | {f(a,rA,tdA,c)/x6} | {tdA/x7} |

{(pk(skva),sign(blind(tdcommit(a,rA,tdA),bA),skva))/x8} | {x8)/x9})
νx10.out(ch1,x10)−−−−−−−−−−−→ νx̃.(Q6| {skva/x1} |
{skvc/x2} | {pk(ska)/x3} | {pk(ska)/x4} | {bA/x5} | {f(a,rA,tdA,c)/x6} | {tdA/x7} |

{(pk(skva),sign(blind(tdcommit(a,rA,tdA),bA),skva))/x8} | {x8/x9} |
{(pk(skva),sign(blind(tdcommit(c,rB ,tdB),bB),skvb))/x10})

in(c2,y1)−−−−−−→ νx11.out(ch1,x11)−−−−−−−−−−−→ νx̃.(Q7| {skva/x1} |
{skvc/x2} | {pk(ska)/x3} | {pk(ska)/x4} | {bA/x5} | {rA/x6} | {tdA/x7} |
{(pk(skva),sign(blind(tdcommit(a,rA,tdA),bA),skva))/x8} | {x8/x9} |
{(pk(skva),sign(blind(tdcommit(c,rB ,tdB),bB),skvb))/x10} | {y1/x11})

We can argue that at this point the obtained frames are statically equivalent. In particular the attacker
obtains in both cases

open(unblind(checksign(proj2(x8), pk(x1)), x5), x6) = c

when he tries to open the commitment due to the trap-door and the faked randomness.
The next step depends on the context. If the attacker returns correctly signed votes to the two honest

voters and tells V c1,c2C to go on (i.e. sends a message containing true), the processes can synchronize and
go on. Otherwise at least one of them will block and they will be unable to synchronize.

If they are able to synchronize, they will output their votes to the collector (V c1,c2C will send any message
the attacker gives him) and send the secret values to the timeliness member over a private channel. We
obtain the following frames:

φl = νx̃.({skva/x1} | {skvc/x2} | {pk(ska)/x3} | {pk(ska)/x4} | {bA/x5} | {rA/x6} |
{tdA/x7} | {(pk(skva),sign(blind(tdcommit(c,rA,tdA),bA),skva))/x8} | {x8/x9} |

{(pk(skva),sign(blind(tdcommit(a,rB ,tdB),bB),skvb))/x10} | {y1/x11} |
{(tdcommit(c,rA,tdA),sign((tdcommit(c,rA,tdA),ska)/x12} |
{(tdcommit(a,rB ,tdB),sign((tdcommit(a,rB ,tdB),ska)/x13} |

{(c,rA,tdcommit(c,rA,tdA))/x14} |
{a/x15} | {c/x16})

(8)

φr = νx̃.({skva/x1} | {skvc/x2} | {pk(ska)/x3} | {pk(ska)/x4} | {bA/x5} |
{f(a,rA,tdA,c)/x6} | {tdA/x7} |

{(pk(skva),sign(blind(tdcommit(a,rA,tdA),bA),skva))/x8} | {x8/x9} |
{(pk(skva),sign(blind(tdcommit(c,rB ,tdB),bB),skvb))/x10} | {y1/x11} |

{(tdcommit(a,rA,tdA),sign((tdcommit(a,rA,tdA),ska)/x12} |
{(tdcommit(c,rB ,tdB),sign((tdcommit(c,rB ,tdB),ska)/x13} |

{(c,f(a,rA,tdA,c),tdcommit(a,rA,tdA))/x14} |
{a/x15} | {c/x16})

(9)

Verimag Research Report no TR-2011-8 25/35

Jannik Dreier, Pascal Lafourcade, Yassine Lakhnech Vote-Independence

(∗ p r i v a t e c h a n n e l s ∗)
ν privChM1 . ν privChM2 . ν privChM3 .
ν privChRM1 . ν privChRM2 . ν privChRM3 .
ν privChR1 . ν privChR2 . ν privChR3 .
(∗ v o t i n g machine ∗)
(processM |
(∗ RNGs ∗)
(l e t privChM = privChRM1 i n

l e t privChV = privChR1 i n processRNG) |
(l e t privChM = privChRM2 i n

l e t privChV = privChR2 i n processRNG) |
(l e t privChM = privChRM3 i n

l e t privChV = privChR3 i n processRNG) |
(∗ v o t e r s ∗)
(l e t privChM = privChM1 i n

l e t privChRNG = privChR1 i n
l e t v = p1 i n p rocessV) |

(l e t privChM = privChM2 i n
l e t privChRNG = privChR2 i n

l e t v = p2 i n p rocessV) |
(l e t privChM = privChM3 i n

l e t privChRNG = privChR3 i n
l e t v = p3 i n p rocessV))

Process 14: The main process

These frames are statically equivalent. If the attacker sent a correct input to the third timeliness process,
T will put out the corresponding vote. Note that if the attacker copies VA’s vote using the possibly faked
credentials, T will always output c.

More generally, the attacker cannot use T to obtain frames that are not statically equivalent as this
would imply that this difference could also be made on the frames before by opening a commitment -
something the attacker could do by himself. Intuitively having access to the “Timeliness" oracle does not
help the attacker, as the oracle performs only operations the attacker could have done by himself.

F Proof of Proposition 5 (“Bingo Voting ∈ V I − AC”)
To model the voting booth, we use private channels between the voting machine and the voter, the voter
and the RNG, and between the RNG and the voting machine. To achieve better readability we use
the macros for and parfor (similar to [17]) where e.g. for (i = 1 to 2) out(ch, i) corresponds to
out(ch, 1).out(ch, 2) and parfor (i = 1 to 2) out(ch, i) corresponds to (out(ch, 1) | out(ch, 2)).
Additionally we use a function choose where

choose(pi, pj , x, y) =

{
x if i = j

y else

Our model depends on two parameters: k (the number of voters) and l (the number of candidates).

The main process The main process (Process 14) sets up the private channels and executes the partici-
pation processes (the voting machine, three voters, and three RNGs) in parallel.

The RNG process The RNG (Process 15) generates a random number and sends it to the voting machine
and the voter over private channels.

26/35 Verimag Research Report no TR-2011-8

Vote-Independence Jannik Dreier, Pascal Lafourcade, Yassine Lakhnech

processRNG =
(∗ g e n e r a t e random number ∗)
ν r .
(∗ o u t p u t t o v o t i n g machine ∗)
o u t (privChM , r) .
(∗ o u t p u t t o v o t e r ∗)
o u t (privChV , r)

Process 15: The random number generator (RNG)

processV =
(∗ v o t i n g ∗)
o u t (privChM , v) .
(∗ r e c e i p t ∗)
f o r (i = 1 t o l)

i n (privChM , r e c e i p t i)
(∗ random va lue , t o v e r i f y r e c e i p t ∗)
i n (privChRNG , r)

Process 16: The voting process

p roces sVc1c2 =
(∗ v o t i n g ∗)
i n (c1 , x1) .
o u t (privChM , x1) .
(∗ r e c e i p t ∗)
f o r (i = 1 t o l)

i n (privChM , r e c e i p t i) .
o u t (c2 , r e c e i p t i)

(∗ random va lue , t o v e r i f y r e c e i p t ∗)
i n (privChRNG , r) .
o u t (c2 , r)

Process 17: The process V c1,c2

processV =
(∗ v o t i n g ∗)
i n (c1 , x1) .
o u t (privChM , v) .
(∗ random va lue , t o v e r i f y r e c e i p t ∗)
i n (privChRNG , r) .
(∗ r e c e i p t ∗)
f o r (i = 1 t o l)

i n (privChM , r e c e i p t i) .
o u t (c2 , r e c e i p t i)

(∗ o u t p u t c o r r e c t random v a l u e ∗)
f o r (i = 1 t o l)

i f (x1 = pi) t h e n o u t (c2 , r e c e i p t i)

Process 18: The process V ′

Verimag Research Report no TR-2011-8 27/35

Jannik Dreier, Pascal Lafourcade, Yassine Lakhnech Vote-Independence

processM ’ = i n (privChV , v) . i n (privChR , r) .
f o r (j = 1 t o l)

l e t r e c e i p t j = c h o o s e _ l (v , r , ni,j) i n
o u t (privChV , r e c e i p t j) ;

synch1 .
(∗ o u t p u t r e s u l t ∗)
o u t (ch , v)
(∗ o u t p u t r e c e i p t s ∗)
f o r (j = 1 t o l)

o u t (ch , r e c e i p t j)
(∗ o u t p u t unused dummy v o t e s ∗)
p a r f o r (j = 1 t o l)

i f vi 6= pj t h e n o u t (ch , ((ni,j , pj) ,
commit ((ni,j , pj) , r i,j) , r i,j))

processM =
(∗ p r e p a r e dummy v o t e s ∗)
f o r (i = 1 t o k)

f o r (j = 1 t o l)
νni,j . ν r i,j .

p a r f o r (i = 1 t o k)
p a r f o r (j = 1 t o l)

o u t (ch , commit ((ni,j , pj) , r i,j))
(∗ v o t i n g ∗)
l e t privChV = privChMi i n

l e t privChR = privChRMi i n processM ’

Process 19: The voting machine

28/35 Verimag Research Report no TR-2011-8

Vote-Independence Jannik Dreier, Pascal Lafourcade, Yassine Lakhnech

The voter process The voter (Process 16) sends his vote to the voting machine, receives the random
number from the RNG and the receipt.

The V c1,c2 process The V c1,c2 process (Process 17) simulates a coerced voter. He follows the same
protocol, but votes for the candidate the coercer tells him and forwards the receipt and the random number.

The voting machine process The voting machine (Process 19) generates the dummy votes and publishes
the corresponding commitments. Then k subprocesses interact with the voters, i.e. create the receipts. After
all voting has been done, they publish the result, the receipts and the unused dummies in random order.

Proof. To show that Bingo Voting ensures VI-AC, we will show that for any C = νc1.νc2.(_|P) satisfying
ñ ∩ fn(C) = ∅ and

νc̃h.(C [VA {?/v}c1,c2] |VB {a/v} |V c1,c2C |Mk=3,l=2|RA|RB |RC)

≈l
νc̃h.(VA {c/v}chc |VB {a/v} |V c1,c2C |Mk=3,l=2|RA|RB |RC)

we have
C [V ′]

\out(chc,·) ≈l VA {a/v}

and
νc̃h.(C [VA {?/v}c1,c2] |VB {a/v} |V c3,c4C |Mk=3,l=2|RA|RB |RC)

≈l
νc̃h.(C [V ′] |VB {c/v} |V c3,c4C |Mk=3,l=2|RA|RB |RC)

(10)

where
νc̃h = νprivChM1.νprivChM2.νprivChM3.

νprivChRM1.νprivChRM2.νprivChRM3.

νprivChR1.νprivChR2.νprivChR3
VA = processV {privChM1/privChM, privChR1/privChRNG}
VB = processV {privChM2/privChM, privChR2/privChRNG}
VC = processV {privChM3/privChM, privChR3/privChRNG}
RA = processD {privChRM1/privChM, privChR1/privChV }
RB = processD {privChRM2/privChM, privChR2/privChV }
RC = processD {privChRM3/privChM, privChR3/privChV }

This is technically only a valid proof for two honest voters and two candidates, however a similar proof can
be done for an arbitrary number of voters and candidates.

It is easy to see that C [V ′]
\out(chc,·) ≈l VA {a/v} holds. If we ignore out all inputs of V ′ on c1 and all

outputs on c2, we obtain VA.
We now have to show that the last equivalence holds. As before, we will denote the left hand side P and

the right hand side Q. For better readability we concentrate on the important steps. At the beginning the
voting machine publishes all commitments; then the voters enter the voting booth and vote. We consider
only two candidates, thus c = p1 or c = p2 (similarly for a). Here we will look at the case c = p2 and
a = p1, the other cases are similar. Since all communication inside the booth takes place over internal
channels which yield internal reductions (we do not detail this part) and first condition on C ensures that
the targeted voter is forced to vote c, we obtain the following two frames:

φl = νx̃.r̃.ñ.({commit((n1,1,p1),r1,1)/x1} | {commit((n2,1,p1),r2,1)/x2} |
{commit((n3,1,p1),r3,1)/x3} | {commit((n1,2,p2),r1,2)/x4} |
{commit((n2,2,p2),r2,2)/x5} | {commit((n3,2,p2),r3,2)/x6} |

{n1,1/x7} | {r1/x8} | {r1/x9})

(11)

Verimag Research Report no TR-2011-8 29/35

Jannik Dreier, Pascal Lafourcade, Yassine Lakhnech Vote-Independence

φr = νx̃.r̃.ñ.({commit((n1,1,p1),r1,1)/x1} | {commit((n2,1,p1),r2,1)/x2} |
{commit((n3,1,p1),r3,1)/x3} | {commit((n1,2,p2),r1,2)/x4} |
{commit((n2,2,p2),r2,2)/x5} | {commit((n3,2,p2),r3,2)/x6} |

{r1/x7} | {n1,1/x8} | {n1,1/x9})

(12)

Obviously both frames are statically equivalent. Note that at this point no information about VB and his
vote is available. Now the attacker has to vote himself, otherwise the voting machines will be unable to
synchronize and block. However he cannot relate his vote in any way to VA’s vote, as the receipts are
meaningless to him and he has to submit his vote in clear. Suppose that he votes for p1 (the other case is
similar). We obtain the folowing final frames.

φ′l = νx̃.r̃.ñ.({commit((n1,1,p1),r1,1)/x1} | {commit((n2,1,p1),r2,1)/x2} |
{commit((n3,1,p1),r3,1)/x3} | {commit((n1,2,p2),r1,2)/x4} |
{commit((n2,2,p2),r2,2)/x5} | {commit((n3,2,p2),r3,2)/x6} |

{n1,1/x7} | {r1/x8} | {r1/x9} |
{r3/x10} | {n3,2/x11} | {r3/x12} |
{p1/x13} | {p1/x14} | {p2/x15} |

{n1,1/x16} | {r1/x17} | {r2/x18} | {n2,2/x19} | {r3/x20} | {n3,2/x21} |
{((n2,1,p1),commit((n2,1,p1),r2,1),r2,1)/x22} |
{((n3,1,p1),commit((n3,1,p1),r3,1),r3,1)/x23} |
{((n1,2,p2),commit((n1,2,p2),r1,2),r1,2)/x24})

(13)

φ′r = νx̃.r̃.ñ.({commit((n1,1,p1),r1,1)/x1} | {commit((n2,1,p1),r2,1)/x2} |
{commit((n3,1,p1),r3,1)/x3} | {commit((n1,2,p2),r1,2)/x4} |
{commit((n2,2,p2),r2,2)/x5} | {commit((n3,2,p2),r3,2)/x6} |

{r1/x7} | {n1,2/x8} | {n1,2/x9} |
{r3/x10} | {n3,2/x11} | {r3/x12} |
{p1/x13} | {p2/x14} | {p1/x15} |

{r1/x16} | {n1,2/x17} | {n2,1/x18} | {r2/x19} | {r3/x20} | {n3,2/x21} |
{((n1,1,p1),commit((n1,1,p1),r1,1),r1,1)/x22} |
{((n3,1,p1),commit((n3,1,p1),r3,1),r3,1)/x23)} |
{((n2,2,p2),commit((n2,2,p2),r2,2),r2,2)/x24)})

(14)

The election outcome and the data published by the voting machine do not help the attacker in distinguish-
ing both cases. He can verify if the receipt by the coerced voter was correct (which it is), but he still does
not know if the numbers on the receipt are unrevealed commitments or fresh random numbers.

G Proof of Proposition 6 (“Lee et al. /∈ V I”)
We use the following model in applied pi:

The main process The main process (Process 20) sets up the private channels and executes the partici-
pating processes (three voters, three mixers, three talliers - one for each voter - and the keying process).

The keying process The keying process (Process 21) creates the private keys, distributes them over
private channels and publishes the corresponding public keys. Each voter is equipped with his private key,
the tallier’s public key and the public key of his trusted device.

The voter The voter process (Process 22) receives the necessary keys. Then he encrypts his votes, signs
it and sends it over a private channel to his trusted device. When he receives the answer, he checks the
DVP, double signs the ballot and sends it to the mixer (which corresponds to the publication on the bulletin
board).

30/35 Verimag Research Report no TR-2011-8

Vote-Independence Jannik Dreier, Pascal Lafourcade, Yassine Lakhnech

(∗ p r i v a t e c h a n n e l s ∗)
ν sk tCh . ν pktCh . ν votCh .
ν skvaCh . ν skvbCh . ν skvcCh .
ν skdaCh . ν skdbCh . ν skdcCh .
ν pkvaCh . ν pkvbCh . ν pkvcCh .
ν pkdaCh . ν pkdbCh . ν pkdcCh .
(∗ a d m i n i s t r a t o r s ∗)
(p rocessK | processM | processM | processM |
p r o c e s s T | p r o c e s s T | p r o c e s s T |
(∗ v o t e r s ∗)
(l e t skvCh = skvaCh i n l e t pkdCh = pkdaCh i n

l e t v = a i n processV) |
(l e t skvCh = skvbCh i n l e t pkdCh = pkdbCh i n

l e t v = b i n processV) |
(l e t skvCh = skvcCh i n l e t pkdCh = pkdcCh i n

l e t v = c i n processV) |
(∗ t r u s t e d d e v i c e s ∗)
(l e t skdCh = skdaCh i n

l e t pkvCh = pkvaCh i n processD) |
(l e t skdCh = skdbCh i n

l e t pkvCh = pkvbCh i n processD) |
(l e t skdCh = skdcCh i n

l e t pkvCh = pkvcCh i n processD))

Process 20: The main process

The trusted device The trusted device (Process 23) receives his private and the voter’s public key. When
he receives an encrypted ballot from the voter, he checks the signature, re-encrypts the message, signs it
and establishes a DVP to prove the correctness of his re-encryption. The result is send back to the voter.

A voter under control of the attacker Process 24 models a voter controlled by the attacker. This process
is obtained when calculating processVc1,c2 as defined in Definition 9. Note that his trusted device is not
assumed to be corrupted.

The mixer The mixer (Process 26) receives the key pair corresponding to a legitimate voter (the public
keys of the voter and his trusted device). When receives ballot, he checks the signatures and mixes the now
unsigned ballot with the other ballots. This is modeled using a synchronization point, a re-encryption and
an anonymous channel.

The tallier The collector (Process 27) receives his private key, which he then uses to decrypt the incoming
mixed ballots. He publishes the result on a public channel (which emulates the bulletin board).

Proof. In our model this can be seen as follows. We will suppose that all authorities are honest and that all
key distribution channels are private. We will show that

νc̃h.(VA {a/v} |VB {b/v} |V c1,c2C |DA|DB |DC |A)

6≈l
νc̃h.(VA {b/v} |VB {a/v} |V c1,c2C |DA|DB |DC |A)

(15)

Verimag Research Report no TR-2011-8 31/35

Jannik Dreier, Pascal Lafourcade, Yassine Lakhnech Vote-Independence

processK =
(∗ p r i v a t e keys ∗)
ν s k t .
ν skva . ν skvb . ν skvc .
ν skda . ν skdb . ν skdc .
(∗ p u b l i c keys ∗)
l e t (pkt , pkva , pkvb , pkvc , pkda , pkdb , pkdc)
= (pk (s k t) , pk (skva) , pk (skvb) , pk (skvc) ,

pk (skda) , pk (skdb) , pk (skdc)) i n
(∗ p u b l i c key d i s c l o s u r e ∗)
o u t (ch , p k t) .
o u t (ch , pkva) . o u t (ch , pkvb) . o u t (ch , pkvc) .
o u t (ch , pkda) . o u t (ch , pkdb) . o u t (ch , pkdc) .
(∗ d i s t r i b u t e keys : ∗)
(∗ v o t e r s ∗)
(o u t (skvaCh , skva) | o u t (skvbCh , skvb) |

o u t (skvcCh , skvc) | o u t (pkdaCh , pkda) |
o u t (pkdbCh , pkdb) | o u t (pkdcCh , pkdc) |
o u t (pktCh , p k t) | o u t (pktCh , p k t) |
o u t (pktCh , p k t) |

(∗ t r u s t e d d e v i c e s ∗)
o u t (skdaCh , skva) | o u t (skdbCh , skvb) |
o u t (skdcCh , skvc) | o u t (pkvaCh , pkva) |
o u t (pkvbCh , pkvb) | o u t (pkvcCh , pkvc) |

(∗ mi xe r s ∗)
o u t (votCh , (pkva , pkda)) |
o u t (votCh , (pkvb , pkdb)) |
o u t (votCh , (pkvc , pkdc)) |

(∗ t a l l i e r s ∗)
o u t (sktCh , s k t) | o u t (sktCh , s k t) |
o u t (sktCh , s k t))

Process 21: The key distribution process

p rocessV =
(∗ p r i v a t e key ∗)
i n (skvCh , skv) .
(∗ p u b l i c keys o f t h e t r u s t e d d e v i c e

and t h e t a l l i e r ∗)
i n (pkdCh , pubkd) . i n (pktCh , pubk t) .
synch 1 . ν r .
l e t e = penc (v , pubkt , r) i n
o u t (chD , (pk (skv) , e , s i g n (e , skv))) .
i n (chD , m2) .
l e t (re , sd , dvpV) = m2 i n
i f checkdvp (dvpV , e , re , pk (skv)) = ok t h e n
i f c h e c k s i g n (sd , pubkd) = r e t h e n
o u t (ch1 , (re , s i g n (sd , skv)))

Process 22: The voting process

32/35 Verimag Research Report no TR-2011-8

Vote-Independence Jannik Dreier, Pascal Lafourcade, Yassine Lakhnech

processD =
(∗ p r i v a t e key ∗)
i n (skdCh , skd) .
(∗ p u b l i c key o f t h e v o t e r ∗)
i n (pkvCh , pubkv) .
synch 1 .
i n (chD , m1) .
l e t (pubv , enc , s i g) = m1 i n
i f pubv = pubkv t h e n
i f c h e c k s i g n (s i g , pubkv) = enc t h e n
ν r1 .
l e t r e e n c = r e n c r y p t (enc , r1) i n
l e t s ignD = s i g n (reenc , skd) i n
l e t dvpD = dvp (enc , r eenc , r1 , pubkv) i n
o u t (chD , (reenc , signD , dvpD))

Process 23: The trusted device process

p roces sVc1c2 =
(∗ p r i v a t e key ∗)
i n (skvCh , skv) . o u t (c1 , skv) .
(∗ p u b l i c keys o f t h e t r u s t e d d e v i c e

and t h e t a l l i e r ∗)
i n (pkdCh , pubkd) . o u t (c1 , pubkd) .
i n (pktCh , pubk t) . o u t (c1 , pubk t) .
synch 1 . ν r . o u t (c1 , r) .
l e t e = penc (v , pubkt , r) i n
i n (c2 , m1) . o u t (chD , m1) .
i n (chD , m2) . o u t (c1 , m2) .
l e t (re , sd , dvpV) = m2 i n
i n (c2 , m3) . i f m3 = t r u e t h e n
i n (c2 , m4) . i f m4 = t r u e t h e n
i n (c2 , m5) . o u t (ch1 , m5)

Process 24: The voting process under control of the attacker

Verimag Research Report no TR-2011-8 33/35

Jannik Dreier, Pascal Lafourcade, Yassine Lakhnech Vote-Independence

processV ’ =
(∗ p r i v a t e key ∗)
i n (skvCh , skv) . o u t (c1 , skv) .
(∗ p u b l i c keys o f t h e t r u s t e d d e v i c e

and t h e t a l l i e r ∗)
i n (pkdCh , pubkd) . o u t (c1 , pubkd) .
i n (pktCh , pubk t) . o u t (c1 , pubk t) .
synch 1 . ν r . o u t (c1 , r) .
l e t e = penc (v , pubkt , r) i n
i n (c2 , m1) . o u t (chD , (pk (skv) , e , s i g n (e , skv))) .
l e t (pka , ea , s a) = m1 i n
i n (chD , m2) .
l e t (re , sd , dvpV) = m2 i n
i f checkdvp (dvpV , e , re , pk (skv)) = ok t h e n
i f c h e c k s i g n (sd , pubkd) t h e n
l e t fk = dvp (ea , re , r ’ , skv) i n
ν r ’ . o u t (c1 , (re , sd , fk)) .
i n (c2 , m3) . i f m3 = t r u e t h e n
i n (c2 , m4) . i f m4 = t r u e t h e n
i n (c2 , m5) . o u t (ch1 , (re , s i g n (sd , skv)))

Process 25: The voting process resisting coercion

processM =
(∗ r e g i s t e r l e g i t i m a t e v o t e r s ∗)
i n (votCh , (pubkv , pubkd)) .
synch 1 .
i n (ch1 , m1) .
l e t (enc , s i g) = m1 i n
i f c h e c k s i g n (c h e c k s i g n (s i g , pubkv) , pubkd) = enc

t h e n synch 2 . ν r2 .
o u t (ch2 , r e n c r y p t (enc , r2))

Process 26: The mixer process

p r o c e s s T =
(∗ t a l l i e r ’ s s e c r e t key ∗)
i n (sktCh , s k t) .
synch 1 .
i n (ch2 , m) .
o u t (ch , d e c r y p t (m, s k t))

Process 27: The tallier process

34/35 Verimag Research Report no TR-2011-8

Vote-Independence Jannik Dreier, Pascal Lafourcade, Yassine Lakhnech

where
νc̃h = νsktCh.νpktCh.νvotCh.

νskvaCh.νskvbCh.νskvcCh.νskdaCh.νskdbCh.νskdcCh.

νpkvaCh.νpkvbCh.νpkvcCh.νpkdaCh.νpkdbCh.νpkdcCh

A = (processK|processT|processT|processT|
processM|processM|processM)

VA = processV {skvaCh/skvCh, pkdaCh/pkdCh}
VB = processV {skvbCh/skvCh, pkdbCh/pkdCh}
VC = processV {skvcCh/skvCh, pkdcCh/pkdCh}
DA = processD {skdaCh/skdCh, pkvaCh/pkvCh}
DB = processD {skdbCh/skdCh, pkvbCh/pkvCh}
DC = processD {skdcCh/skdCh, pkvcCh/pkvCh}

As before, we will denote the left hand side P and the right hand side Q. For better readability concentrate
on the important steps. After key distribution, the honest voters will execute the protocol with their trusted
device and eventually output the following messages on ch1:

P →∗ . . .→∗ out(ch1,x1)−−−−−−−→ out(ch1,x2)−−−−−−−→
νr1.νr2.νr3.νr4.(P1|
{(penc(a,pk(skt),f(r1,r2)),sign(sign(penc(a,pk(skt),f(r1,r2)),skda),skva))/x1} |
{(penc(b,pk(skt),f(r3,r4)),sign(sign(penc(b,pk(skt),f(r3,r4)),skdb),skvb))/x2})

Q →∗ . . .→∗ out(ch1,x1)−−−−−−−→ out(ch1,x2)−−−−−−−→
νr1.νr2.νr3.νr4.(Q1|
{(penc(b,pk(skt),f(r1,r2)),sign(sign(penc(b,pk(skt),f(r1,r2)),skda),skva))/x1} |
{(penc(a,pk(skt),f(r3,r4)),sign(sign(penc(a,pk(skt),f(r3,r4)),skdb),skvb))/x2})

The attacker can now target e.g. voter VA and copy his vote. Note that he can identify which voter cast
which ballot as they are signed and the keys publicly available. Through V c1,c2C he submits penc(a, pk(skt),
f(r1, r2)) in the left hand case or penc(b, pk(skt), f(r1, r2)) in the right hand case to DC and obtains
sign(penc(a, pk(skt), f(f(r1, r2), r5)), skdc) and penc(a, pk(skt), f(f(r1, r2), r5) or sign(penc(b,
pk(skt), f(f(r1, r2), r5)), skdc) and penc(b, pk(skt), f(f(r1, r2), r5) respectively, where r5 is a fresh
name (nonce). He can then sign the message and publish it on the bulletin board (i.e. send in on channel
ch1):

(penc(a, pk(skt), f(f(r1, r2), r5)),

sign(sign(penc(a, pk(skt), f(f(r1, r2), r5)), skdc), skvc)) (16)

or in the right hand case

(penc(b, pk(skt), f(f(r1, r2), r5)),

sign(sign(penc(b, pk(skt), f(f(r1, r2), r5)), skdc), skvc)) (17)

The mixers will then check the signatures - which are apparently correct - and the talliers will publish the
decrypted votes. On the left hand side, we will obtain two votes a and one vote b, on the right hand side
one vote for a and two votes for b. Thus the frames are not statically equivalent, hence both sides are not
bisimilar.

Verimag Research Report no TR-2011-8 35/35

	Introduction
	Preliminaries
	The Applied Pi Calculus
	Voting Process
	Privacy
	Vote-Privacy
	Receipt-Freeness
	Coercion-Resistance

	Vote-Independence
	Vote-Independence (without Collaboration)
	Vote-Independence with Passive Collaboration
	Vote-Independence with Active Collaboration

	Hierarchy and Relation to Privacy
	Hierarchy
	Relation to Privacy
	The Global Picture
	Example: FOO
	Informal Description
	Model in Applied Pi Calculus
	Analysis

	Example: Okamoto
	Informal Description
	Model in Applied Pi Calculus
	Analysis

	Example: Bingo Voting
	Informal Description
	Model in Applied Pi Calculus
	Analysis

	Example: Lee et al.
	Informal Description
	Model in Applied Pi Calculus
	Analysis

	Conclusion
	Applied Pi Calculus
	Proof of Propostion 1
	``VI-AC VI-PC''
	``VI-PC VI''

	Proof of Proposition 2 (``VI P'')
	Proof of Proposition 3 (``FOO VI'')
	Proof of Proposition 4 (``Okamoto VI-PC'')
	Proof of Proposition 5 (``Bingo Voting VI-AC'')
	Proof of Proposition 6 (``Lee et al. -.25ex-.25ex-.25ex-.25exVI'')

