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, which is essentially based on copying other voter's votes. To capture this and similar attacks, we extend the classical threat model and introduce a new security notion for voting protocols: Vote-Independence. We give a formal definition and analyze its relationship to established privacy properties such as Vote-Privacy, Receipt-Freeness and Coercion-Resistance. In particular we show that even Coercion-Resistant protocols do not necessarily ensure Vote-Independence.

Introduction

Electronic voting schemes are systems that allow casting and tallying votes using machines. This promises to improve efficiency by providing results faster, using less personnel or adding comfort (e.g. the possibility to vote from home). However the recent use of commercial electronic voting systems for presidential or general elections in many countries has spread controversy on security issues [START_REF]Key issues and conclusions: May 2007 electoral pilot schemes[END_REF][START_REF]'s Federal Constitutional Court). Use of voting computers in 2005 bundestag election unconstitutional[END_REF][START_REF]Participants of the Dagstuhl Conference on Frontiers of E-Voting. Dagstuhl accord[END_REF][START_REF] Van Binnenlandse Zaken En Koninkrijksrelaties | Netherland's Ministry of the Interior and Kingdom Relations)[END_REF]. Primary concerns are verifiability (the possibility to verify the elections's outcome, i.e. to check if all votes have been counted correctly) and privacy (i.e. anonymity of the voter, secrecy of the vote). To address this issues, many different protocols have been developed to fulfill security requirements such as

• Eligibility: Only the registered voters can vote, and nobody can vote more than once.

• Fairness: No preliminary results are available which could influence other voters' decisions.

• Individual Verifiability: Each voter can check whether his vote was counted correctly.

• Universal Verifiability: Anybody can verify that the announced result corresponds to the sum of all votes.

• Vote-Privacy: The votes are kept private.

• Receipt-Freeness: A voter cannot construct a receipt which allows him to prove to a third party that he voted for a certain candidate. This is to prevent vote-buying.

• Coercion-Resistance: Even when a voter interacts with a coercer during the entire voting process, the coercer cannot be sure whether the voter followed his instructions or actually voted for another candidate.

• Robustness: The protocol should be able to tolerate a certain number of misbehaving voters.

A common aim is to verify these properties using formal models and definitions. This concerns privacy properties (privacy, receipt-freeness and coercion-resistance) [7, [START_REF] Delaune | Verifying privacy-type properties of electronic voting protocols: A taster[END_REF][START_REF] Moran | Receipt-free universally-verifiable voting with everlasting privacy[END_REF], election verifiability [START_REF] Kremer | Election verifiability in electronic voting protocols[END_REF][START_REF] Smyth | Towards automatic analysis of election verifiability properties[END_REF], or both [START_REF] Juels | Coercion-resistant electronic elections[END_REF][START_REF] Juels | Coercion-resistant electronic elections[END_REF][START_REF] Kremer | Analysis of an electronic voting protocol in the applied pi calculus[END_REF]. We concentrate on privacy-type properties of voting protocols (i.e. Vote-Privacy, Receipt-Freeness and Coercion-Resistance). While analyzing privacy in Helios [START_REF] Adida | Electing a university president using open-audit voting: analysis of real-world use of helios[END_REF], a web based voting system, B. Smyth and V. Cortier [START_REF] Smyth | Attacking and fixing helios: An analysis of ballot secrecy[END_REF][START_REF] Smyth | Attacking and fixing helios: An analysis of ballot secrecy[END_REF] recently discovered an attack based on the possibility for an attacker to copy another voter's vote and to submit it as his own. If the number of participating voters is small or if a noticeable fraction of voters can be corrupted, this can break privacy as the contents of the vote can be inferred from the published election outcome. For example in the case of three voters (two honest ones and one under the control of the attacker), the attacker can try to copy the vote of the first honest voter. The candidate chosen by the targeted voter will then have at least two votes, and can thus be recognized in the official outcome. This reveals the content of the targeted vote.

Our Contributions Based on this attack, we extend the established threat model and give a formal definition for the notion of "Vote-Independence (VI)" in the applied pi calculus. We show that our definition of "Vote-Independence" implies Vote-Privacy as defined in the literature [7] and that the concept can be generalized to improve Receipt-Freeness and Coercion Resistance as well. We define "Vote-Independence with passive Collaboration (VI-PC)" (which corresponds to Vote-Independence in same setting as Receipt-Freeness, i.e. with passive collaboration of the voter) and "Vote-Independence with active Collaboration (VI-AC)" (which corresponds to Coercion Resistance). We prove the hierarchy of the definitions and illustrate each level with a real world example: the protocol by Fujioka et al. [START_REF] Fujioka | A practical secret voting scheme for large scale elections[END_REF] provides Vote-Independence (VI), the protocol due to Okamoto [START_REF] Okamoto | An electronic voting scheme[END_REF] ensures VI-PC, and the protocol by Bohli et al. [START_REF] Bohli | Bingo voting: Secure and coercion-free voting using a trusted random number generator[END_REF] guarantees VI-AC. We also show that even Coercion-Resistant protocols may not ensure Vote-Independence (i.e. that our definitions are strictly stronger than the usual privacy notions) by analyzing the protocol by Lee at al. [START_REF] Lee | Providing receipt-freeness in mixnet-based voting protocols[END_REF].

Outline of the Paper The remainder of the paper is structured as follows. In Section 2, we recall the applied pi calculus and the standard privacy definitions. In Section 3 we elaborate our definitions of Vote-Independence. Then we analyze the hierarchy of our definitions, the relation to standard privacy properties and discuss several examples in Section 4. Finally, we conclude and discuss future work.

A short version of this report has been presented at FPS 2011 [START_REF] Dreier | Vote-independence: A powerful privacy notion for voting protocols[END_REF].

Preliminaries

In this section we introduce the applied pi calculus, define our model of voting processes and recall existing privacy definitions.

The Applied Pi Calculus

We use the applied pi calculus [START_REF] Abadi | Mobile values, new names, and secure communication[END_REF] to model our security properties and the protocols to analyze. The calculus is an abstract language to describe concurrent processes and interactions, and is supported by the tool "ProVerif" [START_REF] Blanchet | Automated verification of selected equivalences for security protocols[END_REF].

The calculus consists of names (which typically correspond to data or channels), variables, and a signature Σ of function symbols which can be used to build terms. Functions typically include encryption and decryption (for example enc(message, key), dec(message, key)), hashing, signing etc. Terms are correct (i.e. respecting arity and sorts) combinations of names and functions. We distinguish the type "channel" from other base types. To model equalities we use an equational theory E which defines a relation = E . A classical example for symmetric encryption is dec(enc(message, key), key) = E message.

Processes are constructed using the following grammar: The substitution { M /x} replaces the variable x with term M . We denote f v(A), bv(A), f n(A), bn(A) the free variables, bound variables, free names or bound names respectively. A process is closed if all variables are bound or defined by an active substitution.

P , Q, R
The frame Φ(A) of an extended process A is obtained when replacing all plain processes in A by 0. This frame can be seen as a representation of what is statically know to the exterior about a process. The domain dom(Φ) of a frame Φ is the set of variables for which Φ defines a substitution. An evaluation context C[_] denotes an extended process with a hole for an extended process.

The semantics are described in Appendix A. We concentrate here on the equivalences needed to define our properties: Definition 1 (Equivalence in a Frame). Two terms M and N are equal in the frame φ, written (M = N )φ, if and only if φ ≡ ν ñ.σ, M σ = N σ, and {ñ} ∩ (f n(M ) ∪ f n(N )) = ∅ for some names ñ and some substitution σ.

Definition 2 (Static Equivalence (≈ s )). Two closed frames φ and ψ are statically equivalent, written φ ≈ s ψ, when dom(φ) =dom(ψ) and when for all terms M and N (M = N )φ if and only if (M = N )ψ.

Two extended processes A and B are statically equivalent (A ≈ s B) if their frames are statically equivalent.

The intuition behind this definition is simple: Two processes are statically equivalent if the messages exchanged with the environment cannot be distinguished by an attacker (i.e. all operations on both sides give the same results). This idea can be extended to labelled bisimilarity. Definition 3 (Labelled Bisimilarity (≈ l )). Labelled bisimilarity is the largest symmetric relation R on closed extended processes, such that A R B implies

1. A ≈ s B, 2. if A → A , then B → B and A R B for some B , 3. if A α -→ A and f v(α) ⊆ dom(A) and bn(α) ∩ f n(B) = ∅, then B → * α -→→ * B and A R B for some B .
In this case each interaction on one side can be simulated by the other side, and the processes are statically equivalent at each step during the execution, thus an attacker cannot distinguish both sides. Labelled bisimilarity implies "classic" bisimilarity [START_REF] Abadi | Mobile values, new names, and secure communication[END_REF], but is often easier to prove and can be used to express many classical security properties, in particular anonymity properties.

Voting Process

We use the definition by Delaune et al. [7] to model voting protocols in the applied pi calculus. The basic idea is simple: A voting process is the parallel composition of all voters and the trusted authorities, whereas untrusted authorities are left to the context (i.e. the attacker). Messages are exchanged over public or private channels. We limit ourselves to protocols where each voter votes only once.

Definition 4 (Voting Process [7]

). A voting process is a closed plain process

V P ≡ ν ñ.(V σ 1 | . . . |V σ n |A 1 | . . . |A m ).
The V σ i are the voter processes, the A j s the honest election authorities, and the ñ are channel names. We also suppose that v ∈ dom(σ i ) is a variable which refers to the value of the vote. We define an evaluation context S which is like V P , but has a hole instead of three V σ i , and an evaluation context S which is like V P , but has a hole instead of two V σ i .

Note that S and S contain -by construction -only honest voters, i.e. voters that follow the protocol and do not collude with the attacker.

Privacy

Before discussing Vote-Independence, we recall the definition of the three basic privacy properties as given by Delaune et al. [7].

Vote-Privacy

The intuition for Vote-Privacy is the following: An attacker cannot distinguish two runs of the voting protocols where two voters swap their votes. This does not change the outcome and if the votes are private, the attacker should not know which vote belongs to which voter: Definition 5 (Vote-Privacy [7]). A voting process respects Vote-Privacy (P) if for all votes a and b

S [V A { a /v} |V B { b /v}] ≈ l S [V A { b /v} |V B { a /v}]

Receipt-Freeness

To define Receipt-Freeness, we use the transformation P ch which can be applied to a process P . The transformed process outputs all its inputs and its private data (in particular new names, for example random values) on a special channel ch to the attacker. In the case of a voting process V , this corresponds to trying to create a receipt of the vote. If a protocol is receipt-free, a voter should be able to fake all these outputs to the coercer, i.e. to output fake values without the attacker noticing. This means that there should exist some process V so that the attacker is not able to distinguish between a successfully coerced voter V ch that votes c and outputs the correct values, and a voter V that fakes the values and votes a instead. To ensure that the coercer cannot tell both cases apart from the result, Delaune et al. introduce another voter that counterbalances the vote, and require that V actually votes for a using Definition 7.

Definition 6 (Process P ch [7]). Let P be a plain process and ch be a channel name. We define P ch as follows:

• 0 ch = 0,

• (P |Q) ch = P ch |Q ch ,
• (νn.P ) ch = νn.out(ch, n).P ch when n is a name of base type,

• (νn.P ) ch = νn.P ch otherwise,

• (in(u, x).P ) ch = in(u, x).out(ch, x).P ch when x is a variable of base type,

• (in(u, x).P ) ch = in(u, x).P ch otherwise,

• (out(u, M ).P ) ch = out(u, M ).P ch ,

• (!P ) ch = !P ch ,

• (if M = N then P else Q) ch = if M = N then P ch else Q ch .
In the remainder we assume ch / ∈ f n(P ) ∪ bn(P ) before applying the transformation.

Definition 7 (Process A \out(ch,•) [7]). Let A be an extended process. We define the process A \out(ch,•) as νch.(A|!in(ch, x)).

Definition 8 (Receipt-Freeness [7]

). A voting process respects Receipt-Freeness (RF) if there exists a closed plain process V such that for all votes a and c we have

V \out(chc,•) ≈ l V A { a /v} and S V A { c /v} chc |V B { a /v} ≈ l S [V |V B { c /v}]

Coercion-Resistance

Similarly to Receipt-Freeness, Delaune et al. define a process that outputs all its inputs and secret values to the attacker. To express interactive coercion, it additionally waits for input from the context that tells it what to do before outputting values or branching (Definition 9).

Definition 9 (Process P c1,c2 [7]). Let P be a plain process and c 1 , c 2 be channel names. We define P c1,c2 as follows:

• 0 c1,c2 = 0,

• (P |Q) c1,c2 = P c1,c2 |Q c1,c2 ,
• (νn.P ) c1,c2 = νn.out(c 1 , n).P c1,c2 when n is a name of base type,

• (νn.P ) c1,c2 = νn.P c1,c2 otherwise,

• (in(u, x).P ) c1,c2 = in(u, x).out(c 1 , x).P c1,c2 when x is a variable of base type and x is a fresh variable,

• (in(u, x).P ) c1,c2 = in(u, x).P c1,c2 otherwise,

• (out(u, M ).P ) c1,c2 = in(c 2 , x).out(u, x).P c1,c2 ,

• (!P ) c1,c2 = !P c1,c2 ,

• (if M = N then P else Q) c1,c2 = in(c 2 , x).if x = true then P c1,c2 else Q c1,c2
where and x is a fresh variable and true is a constant.

The definition then follows the same basic idea as for Receipt-Freeness: there exists a process V that can interact with the attacker and fake all necessary messages without the attacker noticing. Yet one has to add some condition to ensure that the attacker cannot distinguish both sides of the bisimilarity simply based on the result by forcing the coerced voter to vote d, which would change the outcome. Tho enforce this, Delaune et al. use a context C that models the part of the attacker which interacts with V A . The conditions on C ensure that the attacker actually forces the voter to vote c, and not d and thus make sure the vote is counterbalanced by V B .

Definition 10 (Coercion-Resistance [7]

). A voting process respects Coercion-Resistance (CR) if there exists a closed plain process V such that for any

C = νc 1 .νc 2 .(_|P ) satisfying ñ ∩ f n(C) = ∅ and S [C [V A { ? /v} c1,c2 ] |V B { a /v}] ≈ l S V A { c /v} chc |V B { a /v}
we have for all votes a and c

C [V ] \out(chc,•) ≈ l V A { a /v} and S [C [V A { ? /v} c1,c2 ] |V B { a /v}] ≈ l S [C [V ] |V B { c /v}]
Note that we write { ? /v} to represent the fact that the coerced voters vote does not depend on the substitution, but on the interaction with the context C.

Vote-Independence

In the previous privacy definitions the attacker has the role of an outside observer that tries to infer something about someone's vote. In the case of Coercion-Resistance or Receipt-Freeness he might communicate with the targeted voter, but he cannot necessarily vote himself or collude with other voters -unlike what would generally happen in real-world elections.

To address this shortcoming and obtain a more realistic model of the attacker's abilities, we introduce the notion of Vote-Independence for different levels of collaboration. The idea is to extend the existing definitions to the case where the attacker can vote himself and might try to relate his vote to the vote of a targeted voter to compromise privacy (for example copy it as in the attack by B. Smyth and V. Cortier [START_REF] Smyth | Attacking and fixing helios: An analysis of ballot secrecy[END_REF]).

Vote-Independence (without Collaboration)

Definition 11 (Vote-Independence). A voting process respects Vote-Independence (VI) if for all votes a and b S

[V A { a /v} |V B { b /v} |V c1,c2 C ] ≈ l S [V A { b /v} |V B { a /v} |V c1,c2 C ]
The intuition behind our definition is the following: We start from the definition of privacy, but add a voter under the control of the attacker in both cases. If an attacker can relate his vote to the vote of one of the voters (for example copy V A 's vote, i.e. vote for the same candidate), he will be able to distinguish both sides as the result of the vote will be different. This is the most basic definition, as the attacker has only access to publicly available data. Subsequently we add the possibility of collaborating voters.

Smyth and Cortier [START_REF] Smyth | Attacking and fixing helios: An analysis of ballot secrecy[END_REF] used a similar idea in a recent extension to their original paper. Contrary to our definition, they implicitly include corrupted voters in the context S (or S resp.). We chose to make the corrupted voter explicit to be able to easily compare both notions.

Vote-Independence with Passive Collaboration

Definition 12 (Vote-Independence with Passive Collaboration). A voting process respects Vote -Independence with Passive Collaboration (VI-PC) if there exists a closed plain process V such that for all votes a and c

V \out(chc,•) ≈ l V A { a /v} and S V A { c /v} chc |V B { a /v} |V c1,c2 C ≈ l S [V |V B { c /v} |V c1,c2 C ]
Vote-Independence with Passive Collaboration can be seen analogously to Receipt-Freeness. The attacker should not be able to link his vote to another voter's vote, even if this voter collaborates with him and gives him access to his secret values after voting (secret keys, random values, nonces, etc.). This is ensured in the definition as the attacker cannot decide if he is in a case where the attacked voter actually collaborates with him, or if the voter only pretends to collaborate and in reality votes differently. If he could use the information provided by the attacked voter to e.g. copy his vote, he would be able to distinguish these cases.

Vote-Independence with Active Collaboration

Definition 13 (Vote-Independence with Active Collaboration). A voting process respects Vote -Independence with Active Collaboration (VI-AC) if there exists a closed plain process V such that for any

C = νc 1 .νc 2 .(_|P ) satisfying ñ ∩ f n(C) = ∅ and S [C [V A { ? /v} c1,c2 ] |V B { a /v} |V c3,c4 C ] ≈ l S V A { c /v} chc |V B { a /v} |V c3,c4
C and for all votes a and c we have

C [V ] \out(chc,•) ≈ l V A { a /v} and S [C [V A { ? /v} c1,c2 ] |V B { a /v} |V c3,c4 C ] ≈ l S [C [V ] |V B { c /v} |V c3,c4 C ]
In this definition, the attacker is even more powerful. Similarly to Coercion-Resistance, he can interact with the attacked voter during the entire voting process.

Hierarchy and Relation to Privacy 4.1 Hierarchy

Intuitively, V I -AC is a stronger property than V I -P C, which is a stronger property than V I. The following proposition confirms this intuition: Proposition 1. We have:

• If a protocol respects Vote-Independence with Active Collaboration, it also respects Vote -Independence with Passive Collaboration.

• If a protocol respects Vote-Independence with Passive Collaboration, it also respects Vote -Independence (without collaboration).

The detailed proofs can be found in Appendix B.1 and B.2.

Relation to Privacy

The only difference between P and V I (or V I -P C and RF , or V I -AC and CR) is the process V c1,c2 C , i.e. the existence of a legitimate voter that is under control of the attacker. Intuitively this gives the attacker more power and thus V I (or V I -P C or V I -AC) should be the stronger property. Indeed: Proposition 2. We have:

• If a protocol respects Vote-Independence, it also respects Vote-Privacy.

• If a protocol respects Vote-Independence with Passive Collaboration, it also respects Receipt -Freeness.

• If a protocol respects Vote-Independence with Active Collaboration, it also respects Coercion -Resistance.

Informally we can argue that any attack on vote-privacy can be used to break vote independence. In this case the voter under control of the attacker simply behaves as a normal voter and the attacker can employ the same attack. The formal proof is given in Appendix C. CR ⇒ RF ⇒ P has been shown in the literature [7].

The Global Picture

Taking these properties together, we obtain the following hierarchy of notions. A ⇒ B means that any protocol ensuring property A also ensures property B.

CR [15]

⇐ ⇒

VI-AC [4]

⇓ ⇑ ⇓ ⇑ RF ⇐ ⇒ VI-PC [19] ⇓ ⇑ ⇓ ⇑ P ⇐ ⇒
VI [START_REF] Fujioka | A practical secret voting scheme for large scale elections[END_REF] The cited protocols [START_REF] Bohli | Bingo voting: Secure and coercion-free voting using a trusted random number generator[END_REF][START_REF] Fujioka | A practical secret voting scheme for large scale elections[END_REF][START_REF] Lee | Providing receipt-freeness in mixnet-based voting protocols[END_REF][START_REF] Okamoto | An electronic voting scheme[END_REF] illustrate the hierarchy and show that the inverse implications are not true, as discussed below.

Example: FOO

The protocol by Fujioka et al. [START_REF] Fujioka | A practical secret voting scheme for large scale elections[END_REF] is based on commitments and blind signatures. It was proven to respect Vote-Privacy (P ) [7], but is not Receipt-Free (RF ) as the randomness of the commitment can be used as a receipt. We show that it ensures Vote-Independence (V I).

Informal Description

The protocol is split in three phases. In the first phase, the voter obtains the administrator's signature on a commitment to his vote:

• Voter V i chooses his vote v i and computes a commitment x i = ξ(v i , k i ) for a random key k i .

• He blinds the commitment using a blinding function χ, a random value r i and obtains e i = χ(x i , r i ).

• He signs e i and sends the signature s i = σ Vi (e i ) together with e i and his identity to the administrator.

• The administrator checks if V i has the right to vote, has not yet voted, and if the signature s i is correct. If all tests succeed, he signs d i = σ A (e i ) and sends it back to V i .

• V i unblinds the signature and obtains y i = δ(d i , r i ). He checks the signature.

In the second phase, the actual voting takes place:

• Voter V i sends (x i , y i ) to the collector C through an anonymous channel.

• The collector checks the administrator's signature and enters (x i , y i ) into a list.

When all ballots are cast or when the deadline is over, the counting phase begins:

• The collector publishes the list of correct ballots.

• V i verifies that his commitment appears on the list and sends r i together with the commitment's index l on the list to C using an anonymous channel.

• The collector C opens the l-th ballot using r i and publishes the vote.

Model in Applied Pi Calculus

Our model is based on the one developed in [7], but we add a third voter. We use the following equational theory:

open(commit(m, r), r) = m checksign(sign(m, sk), pk(sk)) = m unblind(blind(m, r), r) = m unblind(sign(blind(m, r), sk), r) = sign(m, sk)
The complete model can be found in Appendix D.

Analysis

Proposition 3. FOO respects Vote-Independence (V I).

Proof. Similarly to the proof of Vote-Privacy by [7], we do not need to trust any authority except for the key distribution process (processK). Thus the voter V c1,c2 C under control of the attacker only interacts with the attacker (as untrusted authorities are left to the context, i.e. the attacker), except during the key distribution process at the beginning. In this process he obtains his key (which we do not require to be secret) and the administrator's public key, which is available to the attacker anyway. Thus the attacker is essentially in the same situation as in the proof of Vote-Privacy. The full proof can be found in Appendix D.

Note that this protocol cannot respect Vote-Independence with Passive or Active Collaboration (V I -P C or V I -AC), as this would imply Receipt-Freeness (see the hierarchy). This shows that V I ⇒ V I -P C.

Example: Okamoto

The protocol by Okamoto [START_REF] Okamoto | An electronic voting scheme[END_REF] uses trap-door commitments to achieve receipt-freeness [7]. However it is not Coercion-Resistant (CR) [7].

Informal Description

The protocol is very similar to the one by Fujioka et al. [START_REF] Fujioka | A practical secret voting scheme for large scale elections[END_REF] discussed above. The only difference is the use of a trap-door commitment and a timeliness member to open the commitments. The first phase -during which the voter obtains a signature on his commitment -follows the same protocol, except for the fact that this time ξ is a trapdoor-commitment. In the second phase the actual voting takes place:

• Voter V i sends the signed trap-door commitment to the collector C through an anonymous channel.

• The collector checks the administrator's signature and enters (x i , y i ) into a list.

• The voter sends (v i , r i , x i ) to the timeliness member through an untappable anonymous channel When all ballots are cast or when the deadline is over, the counting phase begins:

• The collector publishes the list of correct ballots.

• V i verifies that his commitment appears on the list.

• The timeliness member publishes a randomly shuffled list of votes v i and a zero-knowledge proof that he knows a permutation π for which x π(i) = ξ(v i , r i ).

Model in Applied Pi Calculus

Our model is based on the model used in [7], but we add a third voter. It is based on the following equational theory:

open(tdcommit(m, r, td), r) = m tdcommit(m 1 , r, td) = tdcommit(m 2 , f (m 1 , r, td, m 2 ), td) checksign(sign(m, sk), pk(sk)) = m unblind(blind(m, r), r) = m unblind(sign(blind(m, r), sk), r) = sign(m, sk)
The first equation models the creation of a trap-door commitment to m using a random value r and a trap-door td, whereas the second equation allows the construction of another random value to open a commitment differently. This requires knowledge of the trap-door td and the initial random value r. Proof. To prove this, we need to find a process V that successfully fakes all secrets to a coercer. In addition to normal receipt-freeness, we also have to ensure that the attacker cannot use the secrets to e.g. copy the vote of the targeted voter.

In this protocol the trap-door commitment allows the voter to return a faked random number to the attacker which opens the commitment to any value the voter wants. This means that -although the attacker has access to the commitment and the necessary values to open it -he will always open it in a way that yields a vote for c due to the fake randomness, even if the voter actually committed to a. The same reasoning applies for copying votes: Although it is technically possible to copy the vote of the targeted voter, the voter will provide a faked random value, which will make the timeliness member open the vote as a vote for c. This makes it impossible for the attacker to know if the voter complied with his instructions or only pretended to do so, even if he tries to relate his vote to the targeted voter's vote.

The detailed model and complete proof can be found in Appendix E.

Thus the protocol also respects simple Vote-Independence (V I). Note that this protocol cannot respect Vote-Independence with Active Collaboration (V I -AC), as this would imply Coercion-Resistance. This shows that V I -P C ⇒ V I -AC.

Example: Bingo Voting

Bingo Voting was developed by Bohli et al. [START_REF] Bohli | Bingo voting: Secure and coercion-free voting using a trusted random number generator[END_REF] to achieve coercion-resistance as well as individual and universal verifiability by using a trusted random number generator (RNG). We use Bingo Voting to illustrate the existence of protocols that respect Vote-Independence with active Collaboration (V I -AC).

Informal Description

We consider an election with k voters and l candidates. The protocol is split into three phases: The prevoting phase, the voting phase and the post-voting phase. In the pre-voting phase, the voting machine generates k random values n i,j for every candidate p j (the dummy votes). It commits to the k • l pairs (n i,j , p j ) and publishes the shuffled commitments.

In the voting phase, the voter enters the voting booth and selects the candidate he wants to vote for on the voting machine. The RNG generates a random number r, which is transmitted to the voting machine and displayed to the voter. The voting machine chooses for each candidate a dummy vote, except for the voter's choice. For this candidate, the random value from the RNG is used and the receipt (a list of all candidates and the corresponding random numbers) is created. Finally, the voter checks that the number displayed on the RNG corresponds to the entry of his candidate on the receipt.

In the post-voting phase, the voting machine announces the result, publishes all receipts and opens the commitments of all unused dummy votes. The machine also generates non-interactive zero-knowledge proofs that each unopened commitment was actually used as a dummy vote in one of the receipts.

Model in Applied Pi Calculus

As we are only interested in privacy, we ignore the zero-knowledge proofs which are necessary to achieve verifiability. This yields a very simple equational theory:

open(commit(m, r), r) = m
We assume the voting machine to be honest, otherwise no privacy can be guaranteed as the vote is submitted in clear by the voter. The detailed model can be found in Appendix F.

Analysis

Proposition 5. Bingo Voting respects V I -AC.

Proof. The receipts contain only random values which makes it impossible for the attacker to know if a certain number corresponds to the random value by the RNG or a dummy vote. Thus the voter V does not even have to fake a receipt, he can simply forward his receipt and claim he voted for the coercer's choice. Constructing a related vote based on the receipt is not possible either since -while voting -the attacker has to transmit his choice in clear to the voting machine. Being able to e.g. copy V A 's vote would imply the break of simple privacy on the voter's vote using the receipt.

The complete proof can be found in Appendix F This implies that Bingo Voting is coercion resistant and provides Vote-Independence.

Example: Lee et al.

The protocol by Lee et al. [START_REF] Lee | Providing receipt-freeness in mixnet-based voting protocols[END_REF] was proven to be Coercion-Resistant (CR) in [7], but does not respect Vote-Independence (V I) -and thus neither V I -P C nor V I -AC -as we show. It is based on trusted devices that re-encrypt ballots and use designated verifier proofs (DVPs) to prove their correct behavior to the voter.

Informal Description

We simplified the protocol to focus on the important parts with respect to privacy and vote-independence.

For example, we do not consider distributed authorities.

• The administrator sets up the election, distributes keys and registers legitimate voters. Each voter is equipped with his personal trusted device. At the end, he publishes a list of legitimate voters and corresponding trusted devices.

• The voter encrypts his vote with the tallier's public key (using the El Gamal scheme), signs it and sends it to his trusted device over a private channel. The trusted device verifies the signature, reencrypts and signs the vote, and returns it, together with a DVP that the re-encryption is correct, to the voter. The voter verifies the signature and the proof, double signs the ballot and publishes it on the bulletin board.

• The administrator verifies for all ballots if the voter has the right to vote and if the vote is correctly signed. He publishes the list of correct ballots, which is then shuffled by the mixer.

• The tallier decrypts the mixed votes and publishes the result.

Model in Applied Pi Calculus

Our model is based on the one developed in [7], but we add a third (corrupted) voter and an explicit mixing stage. This stage was left out in their model, but is essential to highlight the difference between Vote-Privacy and Vote-Independence. We use the following equational theory:

decrypt(penc(m, pk(sk), r), sk) = m checksign(sign(m, sk), pk(sk)) = m rencrypt(penc(m, pk(sk), r1), r2) = penc(m, pk(sk), f (r1, r2)) checkdvp(dvp(x, rencrypt(x, r), r, pk(sk)), x, rencrypt(x, r), pk(sk)) = ok checkdvp(dvp(x, y, z, skv), x, y, pk(skv)) = ok

Analysis

In the extended model, the protocol by Lee et al. still ensures (CR), but it is not (V I).

Proposition 6. The protocol by Lee et al. does not respect Vote-Independence (V I).

Proof. As acknowledged by the authors in their original paper [START_REF] Lee | Providing receipt-freeness in mixnet-based voting protocols[END_REF], it is possible to copy votes. More precisely, an attacker can access the ballots on the bulletin board before the mixing takes place. He can easily verify which ballot belongs to which voter as they are signed by the voters themselves. He can remove the signature and use the ciphertext as an input to his trusted device. The trusted device will reencrypt and sign it. This allows the attacker to construct a correct ballot which contains the same vote as the targeted honest voter. This obviously contradicts vote-independence.

Appendix G shows how this can be seen in our model.

This example shows that vote-independence properties are strictly stronger than the corresponding privacy properties (CR ⇒ V I -AC, RF ⇒ V I -P C, P ⇒ V I), as even a coercion-resistant protocol fails to respect simple vote-independence.

Conclusion

Inspired by an attack based on copying votes, we extended the classical threat model and developed the notion of "Vote-Independence". We gave a formal definition and showed that it is stronger than standard vote-privacy. We generalized the definition to passive and active collaboration, and obtained refined properties on the same attack level as receipt-freeness and coercion-resistance.

Subsequently we analyzed practical examples which illustrate that our property is strictly stronger, i.e. that even coercion resistant protocols can fail with respect to Vote-Independence, and thus of practical interest.

Future Work. We plan to translate our symbolic definition to the computational model and extend our analysis e.g. to accommodate protocols permitting multiple votes. Additionally, it would be desirable to develop tools that at least partly automate and/or verify the necessary proofs.

A Applied Pi Calculus

The semantics of the calculus are given by Structural equivalence (≡), which is defined as the smallest equivalence relation on extended processes that is closed under application of evaluation contexts, α-conversion on names and variables such that:

PAR-0 A|0 ≡ A REPL !P ≡ P |!P PAR-A A|(B|C) ≡ (A|B)|C REWRITE { M /x} ≡ { N /x} PAR-C A|B ≡ B|A if M = E N NEW-0 νn.0 ≡ 0 ALIAS νx. { M /x} ≡ 0 NEW-C νu.νv.A ≡ νv.νu.A SUBST { M /x} |A ≡ { M /x} |A { M /x} NEW-PAR A|νu.B ≡ νu.(A|B) if u / ∈ f n(A) ∪ f n(b)
and extended by Internal reduction (→), the smallest relation on extended processes closed by structural equivalence and application of evaluation contexts such that:

COMM out(a, x).P | in(a, x).Q → P | Q THEN if M = M then P else Q → P ELSE if M = N then P else Q → Q for any ground terms such that M = E N
To describe the interaction of processes with the exterior, we use labeled operational semantics ( α -→) where α can be an input or the output of a channel name or a variable of base type:

IN in(a, x).P in(a,M ) -----→ P { M /x} OUT-ATOM out(a, u).P out(a,u) -----→ P OPEN-ATOM A out(a,u) -----→ A u = a νu.A νu.out(a,u) -------→ A SCOPE A α -→ A u does not occur in α νu.A α -→ νu.A PAR A α -→ A bv(α) ∩ f v(B) = bn(α) ∩ f n(B) = ∅ A | B α -→ A | B STRUCT A ≡ B B α -→ B B ≡ A A α
-→ A Labeled transitions are not closed under the evaluation contexts. Note that a term M cannot be output directly, but only a variable as "reference" to it. This is to model that e.g. the output of enc(m, k) does not give the context access to m.

In our proofs we will make use of the following Lemma 1 by [7]:

Lemma 1. Let C 1 = ν ũ1 .(_|B 1 ) and C 2 = ν ũ2 .(_|B 2 ) be two evaluation contexts such that ũ1 ∩ (f v(B 2 ) ∪ f n(B 2 )) = ∅ and ũ2 ∩ (f v(B 1 ) ∪ f n(B 1 )) = ∅. Then we have C 1 [C 2 [A]] ≡ C 2 [C 1 [A]]
for any extended process A.

B Proof of Propostion 1 B.1 "V I -AC ⇒ V I -P C"

The proof is very similar to the proof of CR ⇒ RF in [7].

Proof. Let C be an evaluation context such that C = νc 1 .νc 2 .(_|P ) for some plain process P which fulfills

S [C [V A { ? /v} c1,c2 ] |V B { a /v} |V c3,c4 C ] ≈ l S V A { c /v} chc |V B { a /v} |V c3,c4 C
Note that such a C can be constructed directly from the vote process V . By hypothesis we know that there is a closed plain process V so that

C [V ] \out(chc,•) ≈ l V A { a /v} and S [C [V A { ? /v} c1,c2 ] |V B { a /v} |V c3,c4 C ] ≈ l S [C [V ] |V B { c /v} |V c3,c4 C ]
We have to find another process V so that

V \out(chc,•) ≈ l V A { a /v} and S V A { c /v} chc |V B { a /v} |V c3,c4 C ≈ l S [V |V B { c /v} |V c3,c4 C ] Let V = C[V ]
. This directly fulfills the first requirement. We now use the hypotheses

S [C [V A { ? /v} c1,c2 ] |V B { a /v} |V c3,c4 C ] ≈ l S V A { c /v} chc |V B { a /v} |V c3,c4 C and S [C [V A { ? /v} c1,c2 ] |V B { a /v} |V c3,c4 C ] ≈ l S [C [V ] |V B { c /v} |V c3,c4 C ]
As labelled bisimilarity is transitive, we can conclude

S V A { c /v} chc |V B { a /v} |V c3,c4 C ≈ l S [C [V ] |V B { c /v} |V c3,c4 C ]
which gives us the desired result for

V = C[V ]. B.2 "V I -P C ⇒ V I"
For this proof, we need the following Lemma by [7].

Lemma 2 ([7]

). Let P be a closed plain process and ch a channel name such that ch / ∈ f n(P ) ∪ bn(P ). We have (P ch ) \out(ch,•) ≈ l P .

The proof itself is similar to the proof of RF ⇒ P in [7]:

Proof. By hypothesis there is a closed plain process so that

V \out(chc,•) ≈ l V A { a /v} and S V A { c /v} chc |V B { a /v} |V c1,c2 C ≈ l S [V |V B { c /v} |V c1,c2 C ]
We apply the context νchc(_|!in(chc, x)) on both sides, which gives

S V A { c /v} chc |V B { a /v} |V c1,c2 C \out(chc,•) ≈ l S [V |V B { c /v} |V c1,c2 C ] \out(chc,•)
By using Lemma 1 we obtain

S [V |V B { c /v} |V c1,c2 C ] \out(chc,•) ≡ S V \out(chc,•) |V B { c /v} |V c1,c2 C and S V A { c /v} chc |V B { a /v} |V c1,c2 C \out(chc,•) ≡ S V A { c /v} chc \out(chc,•) |V B { a /v} |V c1,c2

C

We can now apply Lemma 2 and use the fact that labelled bisimilarity is closed under structural equivalence and obtain

S V \out(chc,•) |V B { c /v} |V c1,c2 C ≈ l S [V A { c /v} |V B { a /v} |V c1,c2 C ]
where we can use

V \out(chc,•) ≈ l V A { a /v} to conclude.
C Proof of Proposition 2 ("V I ⇒ P ")

Proof. We will use a proof by contradiction. Suppose

S [V A { a /v} |V B { b /v}] ≈ l S [V A { b /v} |V B { a /v}]
which we can rewrite as

S [V A { a /v} |V B { b /v} |V i σ i ] ≈ l S [V A { b /v} |V B { a /v} |V i σ i ]
for some honest voter V i σ i1 . This yields the contradiction for a context (an attacker) enforcing We use the following model:

V c1,c2 C ≈ l V i σ i .
The main process The main process (Process 1) sets up the private channels and executes the participation processes (three voters, three administrators, three collectors -one for each voter -and the keying process) in parallel.

The keying process The keying process (Process 2) creates the private keys, distributes them over private channels and publishes the corresponding public keys. He also sends the administrators a list containing the public keys of all legitimate voters.

The voting process The voter's process (Process 5) receives his private and the administrator's public key; then he votes following the protocol described informally in Section 4.4.

A voter under control of the attacker A voter controlled by the attacker is modelled by Process 6. This process is obtained when calculating processV c1,c2 as defined in Definition 9. The administrator The administrator (Process 3) receives his private key and the public key of a legitimate voter. When receives the blinded commitment, he checks the signature, signs, and sends the result back.

The collector The collector (Process 4) receives the administrator's public key, which he then uses to verify the signature on incoming commitments. If the signature is correct, he creates a new bounded name l (the number in the list) and sends it together with the signed commitment back to the voter. The voter then reveals his randomness, which the collector uses to open the commitment.

Proof. Similar to [7], we will show that

νpkaCh1.(V A { a /v} |V B { b /v} |V c1,c2 C |processK) ≈ l νpkaCh1.(V A { b /v} |V B { a /v} |V c1,c2 C |processK) (1) 
where

V A = processV { skvaCh /skvCh}, V B = processV { skvbCh /skvCh} and V c1,c2 C = processVc1c2 { skvcCh /skvCh}.
Note that this proof is technically only valid for two honest voters and one voter under control of the attacker. Nevertheless a similar proof can be made for other numbers of honest voters.

We will call the left hand side process P and the right hand side process Q. Both sides start by distributing the keys. The public key of the administrator is passed over a private channel which yields an internal reduction. We will not detail this part for better readability. V c1,c2 C will output the keys he receives, forward the attacker's input to the administrator and resend the answer to the administrator 2 . The honest voters construct the blinded and committed votes and send them to the administrator.

P in(skvaCh,skva) -----------→ P 1 in(skvbCh,skvb) ----------→ P 2 in(skvcCh,skvc) ----------→ P 3 → * out(c1,x1) ------→ P 4 | { skvc /x1} out(c1,x2) ------→ P 5 | { skvc /x1} | { pka /x2} in(c2,y1) ------→ P 6 | { skvc /x1} | { pka /x2} out(ch2,x3) -------→ P 7 | { skvc /x1} | { pka /x2} | { y1 /x3} in(ch2,m2) -------→ P 8 | { skvc /x1} | { pka /x2} | { y1 /x3} out(c1,x4) ------→ P 9 | { skvc /x1} | { pka /x2} | { y1 /x3} | { m2 /x4} out(ch1,x5) -------→ νb A .νr A .(P 10 | { skvc /x1} | { pka /x2} | { y1 /x3} | { m2 /x4} | { (pk(skva),sign(blind(commit(a,r A ),b A ),skva)) /x5}) out(ch1,x6) -------→ νb B .νb A .νr A .νr B .(P 11 | { skvc /x1} | { pka /x2} | { y1 /x3} | { m2 /x4} | { (pk(skva),sign(blind(commit(a,r A ),b A ),skva)) /x5} | { (pk(skvb),sign(blind(commit(b,r B ),b B ),skvb)) /x6}) (2) 
Similarly

Q in(skvaCh,skva) -----------→ Q 1 in(skvbCh,skvb) ----------→ Q 2 in(skvcCh,skvc) ----------→ Q 3 → * out(c1,x1) ------→ Q 4 | { skvc /x1} out(c1,x2) ------→ Q 5 | { skvc /x1} | { pka /x2} in(c2,y1) ------→ Q 6 | { skvc /x1} | { pka /x2} out(ch2,x3) -------→ Q 7 | { skvc /x1} | { pka /x2} | { y1 /x3} in(ch2,m2) -------→ Q 8 | { skvc /x1} | { pka /x2} | { y1 /x3} out(c1,x4) ------→ Q 9 | { skvc /x1} | { pka /x2} | { y1 /x3} | { m2 /x4} out(ch1,x5) -------→ νb A .νr A .(Q 10 | { skvc /x1} | { pka /x2} | { y1 /x3} | { m2 /x4} | { (pk(skva),sign(blind(commit(b,r A ),b A ),skva)) /x5}) out(ch1,x6) -------→ νb B .νb A .νr A .νr B .(Q 11 | { skvc /x1} | { pka /x2} | { y1 /x3} | { m2 /x4} | { (pk(skva),sign(blind(commit(b,r A ),b A ),skva)) /x5} | { (pk(skvb),sign(blind(commit(a,r B ),b B ),skvb)) /x6}) (3) 
Up to this point, each thread on the left hand side is simulated by the same process on the right hand side.

The order of the transitions can change according to the partial order of the processes, but the resulting frames remain statically equivalent. The next step depends on the context. If the attacker returns correctly signed votes to the two honest voters and tells V c1,c2 C to go on (i.e. sends a message containing true), the processes can synchronize and go on. Otherwise at least one of them will block and they will be unable to synchronize.

If they are able to synchronize, they will output their unblinded vote to the collector (V c1,c2 C will send any message the attacker gives him). From this point on, the honest voters swap their roles, i.e. V B { a /v} simulates the behavior of V A { a /v}. We obtain the following frames

φ l = νb B .νb A .νr A .νr B .({ skvc /x1} | { pka /x2} | { y1 /x3} | { m2 /x4} |
{ (pk(skva),sign(blind(commit(a,r A ),b A ),skva)) /x5} | { (pk(skvb),sign(blind(commit(b,r B ),b B ),skvb)) /x6} | { (commit(a,r A ),sign(commit(a,r A ),ska)) /x7} | { (commit(b,r B ),sign(commit(b,r B ),ska) The keying process The keying process (Process 8) creates the private keys, distributes them over private channels and publishes the corresponding public keys. He also registers legitimate voters and sends this list to the administrators.

) /x8} | { y3 /x9})| { m3 /x10}) (4) 
The voter The voter process (Process 9) receives the necessary keys and follows the nearly the same protocol as in the case of FOO, but he has to reveal the data necessary to open the commitment over a private channel to the timeliness member T .

A voter under control of the attacker A voter controlled by the attacker is modelled by Process 10. This process can be obtained by calculating processV c1,c2 as defined in Definition 9.

The administrator The administrator is exactly the same as given in Section 4.4 (Process 3).

The collector The collector (Process 12) receives the administrator's public key, which he then uses to verify the signature on incoming commitments. If the signature is correct, he publishes the commitment on a public channel.

The timeliness member The timeliness process (Process 13) receives the vote, the corresponding commitment and the randomness over a private channel. He verifies the correctness of the data and then publishes the vote.

Proof. We will show that there exists a closed plain process V such that Process 14: The main process These frames are statically equivalent. If the attacker sent a correct input to the third timeliness process, T will put out the corresponding vote. Note that if the attacker copies V A 's vote using the possibly faked credentials, T will always output c. More generally, the attacker cannot use T to obtain frames that are not statically equivalent as this would imply that this difference could also be made on the frames before by opening a commitmentsomething the attacker could do by himself. Intuitively having access to the "Timeliness" oracle does not help the attacker, as the oracle performs only operations the attacker could have done by himself.

V \out(chc,•) ≈ l V A { a /v} and νpkaCh1.νchT.(V A { c /v} chc |V B { a /v} |V c1,c2 C | processK|processT|processT|processT) ≈ l νpkaCh1.νchT.(V |V B { c /v} |V c1,c2 C | processK|processT|processT|processT) ( * p r i v a t e c h a n n e l s * ) ν privChM 1 . ν privChM 2 . ν privChM 3 . ν privChRM 1 . ν privChRM 2 . ν privChRM 3 . ν privChR 1 . ν privChR 2 .

F Proof of Proposition 5 ("Bingo Voting ∈ V I -AC")

To model the voting booth, we use private channels between the voting machine and the voter, the voter and the RNG, and between the RNG and the voting machine. To achieve better readability we use the macros for and parfor (similar to [17]) where e.g. for (i = 1 to 2) out(ch, i) corresponds to out(ch, 1).out(ch, 2) and parfor (i = 1 to 2) out(ch, i) corresponds to (out(ch, 1) | out(ch, 2)). Additionally we use a function choose where choose(p i , p j , x, y) =

x if i = j y else

Our model depends on two parameters: k (the number of voters) and l (the number of candidates).

The main process The main process (Process 14) sets up the private channels and executes the participation processes (the voting machine, three voters, and three RNGs) in parallel.

The RNG process The RNG (Process 15) generates a random number and sends it to the voting machine and the voter over private channels. The voter process The voter (Process 16) sends his vote to the voting machine, receives the random number from the RNG and the receipt.

The V c1,c2 process The V c1,c2 process (Process 17) simulates a coerced voter. He follows the same protocol, but votes for the candidate the coercer tells him and forwards the receipt and the random number.

The voting machine process The voting machine (Process 19) generates the dummy votes and publishes the corresponding commitments. Then k subprocesses interact with the voters, i.e. create the receipts. After all voting has been done, they publish the result, the receipts and the unused dummies in random order.

Proof. To show that Bingo Voting ensures VI-AC, we will show that for any C = νc 

where ν ch = νprivChM 1 .νprivChM 2 .νprivChM 3 . νprivChRM 1 .νprivChRM 2 .νprivChRM 3 . νprivChR 1 .νprivChR 2 .νprivChR 3 V A = processV { privChM1 /privChM, privChR1 /privChRNG} V B = processV { privChM2 /privChM, privChR2 /privChRNG} V C = processV { privChM3 /privChM, privChR3 /privChRNG} R A = processD { privChRM1 /privChM, privChR1 /privChV } R B = processD { privChRM2 /privChM, privChR2 /privChV } R C = processD { privChRM3 /privChM, privChR3 /privChV } This is technically only a valid proof for two honest voters and two candidates, however a similar proof can be done for an arbitrary number of voters and candidates.

It is easy to see that C [V ] \out(chc,•) ≈ l V A { a /v} holds. If we ignore out all inputs of V on c1 and all outputs on c2, we obtain V A . We now have to show that the last equivalence holds. As before, we will denote the left hand side P and the right hand side Q. For better readability we concentrate on the important steps. At the beginning the voting machine publishes all commitments; then the voters enter the voting booth and vote. We consider only two candidates, thus c = p 1 or c = p 2 (similarly for a). Here we will look at the case c = p 2 and a = p 1 , the other cases are similar. Since all communication inside the booth takes place over internal channels which yield internal reductions (we do not detail this part) and first condition on C ensures that the targeted voter is forced to vote c, we obtain the following two frames: φ l = ν x.r.ñ.({ commit((n1,1,p1),r1,1) /x1} | { commit((n2,1,p1),r2,1) /x2} | { commit((n3,1,p1),r3,1) /x3} | { commit((n1,2,p2),r1,2) /x4} | { commit((n2,2,p2),r2,2) /x5} | { commit((n3,2,p2),r3,2) /x6}

| { n1,1 /x7} | { r1 /x8} | { r1 /x9}) (11) 

4 .

 4 The protocol by Okamoto respects V I -P C.

Process 2 :

 2 The proofs V I -P C ⇒ RF and V I -AC ⇒ CR are similar. ( * p r i v a t e c h a n n e l s * ) ν p r i v C h . ν pkaCh1 . ν pkaCh2 . ν skaCh . ν skvaCh . ν skvbCh . ν skvcCh . ( * a d m i n i s t r a t o r s * ) ( p r o c e s s K | p r o c e s s A | p r o c e s s A | p r o c e s s A | p r o c e s s C | p r o c e s s C | p r o c e s s C | ( * v o t e r s * ) ( l e t skvCh = skvaCh i n l e t v = a i n p r o c e s s V ) | ( l e t skvCh = skvbCh i n l e t v = b i n p r o c e s s V ) | ( l e t skvCh = skvcCh i n l e t v = c i n p r o c e s s V ) ) Process 1: The main process p r o c e s s K = ( * p r i v a t e k e y s * ) ν s k a . ν s k v a . ν s k v b . ν s k v c . ( * p u b l i c k e y s * ) l e t ( pka , pkva , pkvb , pkvc ) = ( pk ( s k a ) , pk ( s k v a ) , pk ( s k v b ) , pk ( s k v c ) ) i n ( * p u b l i c key d i s c l o s u r e * ) o u t ( ch , pka ) . o u t ( ch , pkva ) . o u t ( ch , pkvb ) . o u t ( ch , pkvc ) . ( * r e g i s t e r l e g i t i m a t e v o t e r s * ) ( o u t ( p r i v C h , pkva ) | o u t ( p r i v C h , pkvb ) | o u t ( p r i v C h , pkvc ) | o u t ( pkaCh1 , pka ) | o u t ( pkaCh1 , pka ) | o u t ( pkaCh1 , pka ) | o u t ( pkaCh2 , pka ) | o u t ( pkaCh2 , pka ) | o u t ( pkaCh2 , pka ) | o u t ( skaCh , s k a ) | o u t ( skvaCh , s k v a ) | o u t ( skvbCh , s k v b ) | o u t ( skvcCh , s k v c ) ) The key distribution process D Proof of Proposition 3 ("FOO ∈ V I")

p r o cProcess 3 :

 3 e s s A = ( * p r i v a t e key * ) i n ( skaCh , s k a ) . ( * r e g i s t e r l e g i t i m a t e v o t e r s * ) i n ( p r i v C h , pubkv ) . i n ( ch1 , m1 ) . l e t ( pubkeyv , s i g ) = m1 i n i f pubkeyv = pubkv t h e n o u t ( ch2 , s i g n ( c h e c k s i g n ( s i g , pubkv ) , s k a ) ) The administrator process p r o c e s s C = ( * a d m i n i s t r a t o r ' s p u b l i c key * ) i n ( pkaCh2 , pka ) . s y n c h 1 . i n ( ch3 , ( m3 , m4 ) ) . i f c h e c k s i g n ( m4 , pka ) = m3 t h e n ν l . o u t (

Process 4 :

 4 , r a n d ) ) . l e t voteV = open ( m3 , r a n d ) i n o u t ( ch , voteV ) The collector process p r o c e s s V = ( * p r i v a t e key * ) i n ( skvCh , s k v ) . ( * p u b l i c key o f a d m i n i s t r a t o r * ) i n ( pkaCh1 , pka ) . ν b l i n d e r . ν r . l e t c o m m i t e d v o t e = commit ( v , r ) i n l e t b l i n d e d v o t e = b l i n d ( c o m m i t e d v o t e , b l i n d e r ) i n o u t ( ch1 , ( pk ( s k v ) , s i g n ( b l i n d e d v o t e , s k v ) ) ) . i n ( ch2 , m2 ) . l e t r e s u l t = c h e c k s i g n ( m2 , pubka ) i n i f r e s u l t = b l i n d e d v o t e t h e n l e t s i g n e d v o t e = u n b l i n d ( m2 , b l i n d e r ) i n s y n c h 1 . o u t ( ch3 , ( c o m m i t e d v o t e , s i g n e d v o t e ) ) . i n ( ch4 , ( l , = c o m m i t e d v o t e , = s i g n e d v o t e ) ) . s y n c h 2 . o u t ( ch5 , ( l , r ) ) Process 5: The voting process p r o c e s s V c 1 c 2 = ( * p r i v a t e key * ) i n ( skvCh , s k v ) . o u t ( c1 , s k v ) . ( * p u b l i c key o f a d m i n i s t r a t o r * ) i n ( pkaCh1 , pka ) . o u t ( c1 , pka ) . ν b l i n d e r . o u t ( c1 , b l i n d e r ) . ν r . o u t ( c1 , r ) . l e t c o m m i t e d v o t e = commit ( v , r ) i n l e t b l i n d e d v o t e = b l i n d ( c o m m i t e d v o t e , b l i n d e r ) i n i n ( c2 , y1

p r o c

  e s s K = ( * p r i v a t e k e y s * ) ν s k a . ν s k v a . ν s k v b . ν s k v c . ( * p u b l i c k e y s * ) l e t ( pka , pkva , pkvb , pkvc ) = ( pk ( s k a ) , pk ( s k v a ) , pk ( s k v b ) , pk ( s k v c ) ) i n ( * p u b l i c key d i s c l o s u r e *

Process 8 :Process 9 :

 89 The key distribution process p r o c e s s V = ( * p r i v a t e key * ) i n ( skvCh , s k v ) . ( * p u b l i c key o f a d m i n i s t r a t o r * ) i n ( pkaCh1 , pka ) . ν b l i n d e r . ν r . ν t d . l e t c o m m i t e d v o t e = t d c o m m i t ( v , r , t d ) i n l e t b l i n d e d v o t e = b l i n d ( c o m m i t e d v o t e , b l i n d e r ) i n o u t ( ch1 , ( pk ( s k v ) , s i g n ( b l i n d e d v o t e , s k v ) ) ) . i n ( ch2 , m2 ) . l e t r e s u l t = c h e c k s i g n ( m2 , pka ) i n i f r e s u l t = b l i n d e d v o t e t h e n l e t s i g n e d v o t e = u n b l i n d ( m2 , b l i n d e r ) i n s y n c h 1 . o u t ( ch3 , ( c o m m i t e d v o t e , s i g n e d v o t e ) ) . o u t ( chT , ( v , r , c o m m i t e d v o t e ) ) The voting process p r o c e s s V c 1 c 2 = ( * p r i v a t e key * ) i n ( skvCh , s k v ) . o u t ( c1 , s k v ) . ( * p u b l i c key o f a d m i n i s t r a t o r * ) i n ( pkaCh1 , pka ) . o u t ( c1 , pka ) . ν b l i n d e r . o u t ( c1 , b l i n d e r ) . ν r . o u t ( c1 , r ) . ν t d . o u t ( c1 , t d ) . l e t c o m m i t e d v o t e = t d c o m m i t ( v , r , t d ) i n l e t b l i n d e d v o t e = b l i n d ( c o m m i t e d v o t e , b l i n d e r ) i n i n ( c2 , y1

  ν privChR 3 . ( * v o t i n g m a c h i n e * ) ( p r o c e s s M | ( * RNGs * ) ( l e t privChM = privChRM 1 i n l e t privChV = privChR 1 i n processRNG ) | ( l e t privChM = privChRM 2 i n l e t privChV = privChR 2 i n processRNG ) | ( l e t privChM = privChRM 3 i n l e t privChV = privChR 3 i n processRNG ) | ( * v o t e r s * ) ( l e t privChM = privChM 1 i n l e t privChRNG = privChR 1 i n l e t v = p 1 i n p r o c e s s V ) | ( l e t privChM = privChM 2 i n l e t privChRNG = privChR 2 i n l e t v = p 2 i n p r o c e s s V ) | ( l e t privChM = privChM 3 i n l e t privChRNG = privChR 3 i n l e t v = p 3 i n p r o c e s s V ) )

  processRNG = ( * g e n e r a t e random number * ) ν r . ( * o u t p u t t o v o t i n g m a c h i n e * ) o u t ( privChM , r ) . ( * o u t p u t t o v o t e r * ) o u t ( privChV , r ) Process 15: The random number generator (RNG) p r o c e s s V = ( * v o t i n g * ) o u t ( privChM , v ) . ( * r e c e i p t * ) f o r ( i = 1 t o l ) i n ( privChM , r e c e i p t i ) ( * random v a l u e , t o v e r i f y r e c e i p t * ) i n ( privChRNG , r ) Process 16: The voting process p r o c e s s V c 1 c 2 = ( * v o t i n g * ) i n ( c1 , x1 ) . o u t ( privChM , x1 ) . ( * r e c e i p t * ) f o r ( i = 1 t o l ) i n ( privChM , r e c e i p t i ) . o u t ( c2 , r e c e i p t i ) ( * random v a l u e , t o v e r i f y r e c e i p t * ) i n ( privChRNG , r ) . o u t ( c2 , r ) Process 17: The process V c1,c2 p r o c e s s V = ( * v o t i n g * ) i n ( c1 , x1 ) . o u t ( privChM , v ) . ( * random v a l u e , t o v e r i f y r e c e i p t * ) i n ( privChRNG , r ) . ( * r e c e i p t * ) f o r ( i = 1 t o l ) i n ( privChM , r e c e i p t i ) . o u t ( c2 , r e c e i p t i ) ( * o u t p u t c o r r e c t random v a l u e * ) f o r ( i = 1 t o l ) i f ( x1 = p i ) t h e n o u t ( c2 , r e c e i p t i ) Process 18: The process V processM ' = i n ( privChV , v ) . i n ( privChR , r ) . f o r ( j = 1 t o l ) l e t r e c e i p t j = c h o o s e _ l ( v , r , n i,j ) i n o u t ( privChV , r e c e i p t j ) ; s y n c h 1 . ( * o u t p u t r e s u l t * ) o u t ( ch , v ) ( * o u t p u t r e c e i p t s * ) f o r ( j = 1 t o l ) o u t ( ch , r e c e i p t j ) ( * o u t p u t u n u s e d dummy v o t e s * ) p a r f o r ( j = 1 t o l ) i f v i = p j t h e n o u t ( ch , ( ( n i,j , p j ) , commit ( ( n i,j , p j ) , r i,j ) , r i,j ) ) p r o c e s s M = ( * p r e p a r e dummy v o t e s * ) f o r ( i = 1 t o k ) f o r ( j = 1 t o l ) ν n i,j . ν r i,j . p r f o r ( i = 1 t o k ) p a r f o r ( j = 1 t o l ) o u t ( ch , commit ( ( n i,j , p j ) , r i,j ) ) ( * v o t i n g * ) l e t privChV = privChM i i n l e t privChR = privChRM i i n processM ' Process 19: The voting machine Vote-Independence Jannik Dreier, Pascal Lafourcade, Yassine Lakhnech

  1 .νc 2 .(_|P ) satisfying ñ ∩ f n(C) = ∅ and ν ch.(C [V A { ? /v} c1,c2 ] |V B { a /v} |V c1,c2 C |M k=3,l=2 |R A |R B |R C ) ≈ l ν ch.(V A { c /v} chc |V B { a /v} |V c1,c2 C |M k=3,l=2 |R A |R B |R C ) we have C [V ] \out(chc,•) ≈ l V A { a /v} and ν ch.(C [V A { ? /v} c1,c2 ] |V B { a /v} |V c3,c4 C |M k=3,l=2 |R A |R B |R C ) ≈ l ν ch.(C [V ] |V B { c /v} |V c3,c4 C |M k=3,l=2 |R A |R B |R C )
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Technically here we assume the existence of at least one other honest voter. This is unavoidable as we need at least three legitimate voters to be able to apply the definition of Vote-Independence.Verimag Research Report n o TR-2011-8

As we do not trust the administrator, he is part of the context and thus of the attacker. This means that the attacker actually exchanges messages with himself.

Process 24: The voting process under control of the attacker Verimag Research Report n o TR-2011-8

Process 27: The tallier process

{ (pk(skva),sign(blind(commit(b,r A ),b A ),skva)) /x5} | { (pk(skvb),sign(blind(commit(a,r B ),b B ),skvb)) /x6} | { (commit(b,r A ),sign(commit(b,r A ),ska)) /x7} | { (commit(a,r B ),sign(commit(a,r B ),ska)

Then it depends again on the input of the attacker. If either of the honest voters gets a wrong input or the attacker decides to block V c1,c2 C , the voters cannot synchronize. If both honest voters receive a correct input and if they can synchronize with V c1,c2 C , they will reveal their random values with the corresponding l. This yields the following frames: { (pk(skva),sign(blind(commit(a,r A ),b A ),skva)) /x5} | { (pk(skvb),sign(blind(commit(b,r B ),b B ),skvb)) /x6} | { (commit(a,r A ),sign(commit(a,r A ),ska)

These frames are statically equivalent, which gives us the desired result.

E Proof of Proposition 4 ("Okamoto ∈ V I -P C")

We us the following model for our proof:

The main process The main process (Process 7) shows how the participation processes (three voters, three administrators, three collectors, three talliers -one for each voter -and the keying process) are combined in parallel using private channels.

where V A = processV { skvaCh /skvCh}, V B = processV { skvbCh /skvCh} and V c1,c2 C = processVc1c2 { skvcCh /skvCh}. As in the case of Fujioka et al., our proof will technically only be correct for three voters, but it can be repeated for more voters.

The first equivalence is easy to see by removing all out(chc, _) from V . The resulting process is apparently equal to the original voting process V A .

The second equivalence is more difficult to prove. The beginning is the same as in the proof of voteindependence for FOO. We will denote the left hand side process P and the right hand side process Q. Both sides start by distributing the keys. The public key of the administrator is passed through a private channel which yields an internal reduction. Again, for better readability, we will not detail this part. V c1,c2 C will output the keys he receives and forward the attacker's input to the administrator and resend the answer to the administrator (which is also part of the attacker). The honest voters construct the blinded and committed vote and send them to the administrator. During this process, V A outputs his secret values and inputs, where V fakes these values.

We can argue that at this point the obtained frames are statically equivalent. In particular the attacker obtains in both cases open(unblind(checksign(proj 2 (x 8 ), pk(x 1 )), x 5 ), x 6 ) = c when he tries to open the commitment due to the trap-door and the faked randomness.

The next step depends on the context. If the attacker returns correctly signed votes to the two honest voters and tells V c1,c2 C to go on (i.e. sends a message containing true), the processes can synchronize and go on. Otherwise at least one of them will block and they will be unable to synchronize.

If they are able to synchronize, they will output their votes to the collector (V c1,c2 C will send any message the attacker gives him) and send the secret values to the timeliness member over a private channel. We obtain the following frames:

Verimag Research Report n o TR-2011-8
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Vote-Independence

Obviously both frames are statically equivalent. Note that at this point no information about V B and his vote is available. Now the attacker has to vote himself, otherwise the voting machines will be unable to synchronize and block. However he cannot relate his vote in any way to V A 's vote, as the receipts are meaningless to him and he has to submit his vote in clear. Suppose that he votes for p 1 (the other case is similar). We obtain the folowing final frames.

),commit((n2,1,p1),r2,1),r2,1) /x22} | { ((n3,1,p1),commit((n3,1,p1),r3,1),r3,1) /x23} | { ((n1,2,p2),commit((n1,2,p2),r1,2),r1,2) /x24})

),commit((n1,1,p1),r1,1),r1,1) /x22} | { ((n3,1,p1),commit((n3,1,p1),r3,1),r3,1) /x23)} | { ((n2,2,p2),commit((n2,2,p2),r2,2),r2,2) /x24)})

The election outcome and the data published by the voting machine do not help the attacker in distinguishing both cases. He can verify if the receipt by the coerced voter was correct (which it is), but he still does not know if the numbers on the receipt are unrevealed commitments or fresh random numbers.

G Proof of Proposition 6 ("Lee et al. / ∈ V I")

We use the following model in applied pi:

The main process The main process (Process 20) sets up the private channels and executes the participating processes (three voters, three mixers, three talliers -one for each voter -and the keying process).

The keying process The keying process (Process 21) creates the private keys, distributes them over private channels and publishes the corresponding public keys. Each voter is equipped with his private key, the tallier's public key and the public key of his trusted device.

The voter The voter process (Process 22) receives the necessary keys. Then he encrypts his votes, signs it and sends it over a private channel to his trusted device. When he receives the answer, he checks the DVP, double signs the ballot and sends it to the mixer (which corresponds to the publication on the bulletin board). The trusted device The trusted device (Process 23) receives his private and the voter's public key. When he receives an encrypted ballot from the voter, he checks the signature, re-encrypts the message, signs it and establishes a DVP to prove the correctness of his re-encryption. The result is send back to the voter.

Vote-Independence

A voter under control of the attacker Process 24 models a voter controlled by the attacker. This process is obtained when calculating processV c1,c2 as defined in Definition 9. Note that his trusted device is not assumed to be corrupted.

The mixer The mixer (Process 26) receives the key pair corresponding to a legitimate voter (the public keys of the voter and his trusted device). When receives ballot, he checks the signatures and mixes the now unsigned ballot with the other ballots. This is modeled using a synchronization point, a re-encryption and an anonymous channel.

The tallier The collector (Process 27) receives his private key, which he then uses to decrypt the incoming mixed ballots. He publishes the result on a public channel (which emulates the bulletin board).

Proof. In our model this can be seen as follows. We will suppose that all authorities are honest and that all key distribution channels are private. We will show that ( * p u b l i c k e y s o f t h e t r u s t e d d e v i c e and t h e t a l l i e r * ) i n ( pkdCh , pubkd ) . i n ( pktCh , p u b k t ) . s y n c h 1 . ν r . l e t e = p e n c ( v , p u b k t , r ) i n o u t ( chD , ( pk ( s k v ) , e , s i g n ( e , s k v ) ) ) . i n ( chD , m2 ) . l e t ( r e , sd , dvpV ) = m2 i n i f c h e c k d v p ( dvpV , e , r e , pk ( s k v ) ) = ok t h e n i f c h e c k s i g n ( sd , pubkd ) = r e t h e n o u t ( ch1 , ( r e , s i g n ( sd , s k v ) ) ) 

As before, we will denote the left hand side P and the right hand side Q. For better readability concentrate on the important steps. After key distribution, the honest voters will execute the protocol with their trusted device and eventually output the following messages on ch1:

-------→ νr 1 .νr 2 .νr 3 .νr 4 .(P 1 | { (penc(a,pk(skt),f (r1,r2)),sign(sign(penc(a,pk(skt),f (r1,r2)),skda),skva)) /x1} | { (penc(b,pk(skt),f (r3,r4)),sign(sign(penc(b,pk(skt),f (r3,r4)),skdb),skvb)) /x2}) Q → * . . . → * out(ch1,x1)

-------→ out(ch1,x2)

-------→ νr 1 .νr 2 .νr 3 .νr 4 .(Q 1 | { (penc(b,pk(skt),f (r1,r2)),sign(sign(penc(b,pk(skt),f (r1,r2)),skda),skva)) /x1} | { (penc(a,pk(skt),f (r3,r4)),sign(sign(penc(a,pk(skt),f (r3,r4)),skdb),skvb)) /x2})

The attacker can now target e.g. voter V A and copy his vote. Note that he can identify which voter cast which ballot as they are signed and the keys publicly available. Through V c1,c2 C he submits penc(a, pk(skt), f (r 1 , r 2 )) in the left hand case or penc(b, pk(skt), f (r 1 , r 2 )) in the right hand case to D C and obtains sign(penc(a, pk(skt), f (f (r 1 , r 2 ), r 5 )), skdc) and penc(a, pk(skt), f (f (r 1 , r 2 ), r 5 ) or sign(penc(b, pk(skt), f (f (r 1 , r 2 ), r 5 )), skdc) and penc(b, pk(skt), f (f (r 1 , r 2 ), r 5 ) respectively, where r 5 is a fresh name (nonce). He can then sign the message and publish it on the bulletin board (i.e. send in on channel ch1):

(penc(a, pk(skt), f (f (r 1 , r 2 ), r 5 )), sign(sign(penc(a, pk(skt), f (f (r 1 , r 2 ), r 5 )), skdc), skvc)) [START_REF] Moran | Receipt-free universally-verifiable voting with everlasting privacy[END_REF] or in the right hand case (penc(b, pk(skt), f (f (r 1 , r 2 ), r 5 )), sign(sign(penc(b, pk(skt), f (f (r 1 , r 2 ), r 5 )), skdc), skvc)) (17) The mixers will then check the signatures -which are apparently correct -and the talliers will publish the decrypted votes. On the left hand side, we will obtain two votes a and one vote b, on the right hand side one vote for a and two votes for b. Thus the frames are not statically equivalent, hence both sides are not bisimilar.