
HAL Id: hal-01338067
https://hal.science/hal-01338067v1

Submitted on 29 Jun 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A formal taxonomy of privacy in voting protocols
Jannik Dreier, Pascal Lafourcade, Yassine Lakhnech

To cite this version:
Jannik Dreier, Pascal Lafourcade, Yassine Lakhnech. A formal taxonomy of privacy in voting pro-
tocols. [Technical Report] VERIMAG UMR 5104, Université Grenoble Alpes, France. 2011. �hal-
01338067�

https://hal.science/hal-01338067v1
https://hal.archives-ouvertes.fr

A Formal Taxonomy of Privacy in
Voting Protocols

Jannik Dreier, Pascal Lafourcade, Yassine Lakhnech

Verimag Research Report no TR-2011-10

October 2011

Reports are downloadable at the following address
http://www-verimag.imag.fr

Unité Mixte de Recherche 5104 CNRS - INPG - UJF
Centre Equation
2, avenue de VIGNATE
F-38610 GIERES
tel : +33 456 52 03 40
fax : +33 456 52 03 50
http://www-verimag.imag.fr

http://www-verimag.imag.fr

A Formal Taxonomy of Privacy in Voting Protocols

Jannik Dreier, Pascal Lafourcade, Yassine Lakhnech

October 2011

Abstract

Privacy is one of the main issues in electronic voting. We propose a modular family of sym-
bolic privacy notions that allows to assess the level of privacy ensured by a voting protocol.
Our definitions are applicable to protocols featuring multiple votes per voter and special at-
tack scenarios such as vote-copying or forced abstention. Finally we employ our definitions
on several existing voting protocols to show that our model allows to compare different types
of protocols based on different techniques, and is suitable for automated verification using
existing tools.

Keywords: Security, Electronic Voting, Privacy, Anonymity, Formal Verification, Applied Pi Calculus.

How to cite this report:

@techreport {TR-2011-10,
title = {A Formal Taxonomy of Privacy in Voting Protocols },
author = {Jannik Dreier, Pascal Lafourcade, Yassine Lakhnech},
institution = {{Verimag} Research Report},
number = {TR-2011-10},
year = {2011}

}

A Taxonomy of Privacy in Voting Protocols Jannik Dreier, Pascal Lafourcade, Yassine Lakhnech

1 Introduction
Electronic voting systems have been designed and employed in practice for several years. However their
use in general elections is controversial due to their security issues [10, 26, 9, 32]. Researchers have
identified numerous security properties that are required for secure voting systems and protocols. These
properties can be classified into three categories: i) Correctness and robustness properties, ii) verifiability
and iii) privacy properties. Typical correctness and robustness properties include:

• Eligibility: Only the registered voters can vote, and nobody can submit more votes than allowed
(typically only one).

• Fairness: No preliminary results that could influence other voters’ decisions are made available.

• Robustness: The protocol can tolerate a certain number of misbehaving voters.

Verifiability is usually split into two properties:

• Individual Verifiability: Each voter can check whether his vote was counted correctly.

• Universal Verifiability: Anybody can verify that the announced result corresponds to the sum of all
votes.

Last different levels of privacy can be achieved:

• Vote-Privacy: The votes are kept private. This can also be modeled as an unlinkability between the
voter and his vote.

• Receipt-Freeness: A voter cannot construct a receipt which allows him to prove to a third party that
he voted for a certain candidate. This is to prevent vote-buying.

• Coercion-Resistance: Even when a voter interacts with a coercer during the entire voting process, the
coercer cannot be sure whether he followed his instructions or actually voted for another candidate.

However the design of complex protocols to fulfill all these partly antipodal requirements [7] is noto-
riously difficult and error-prone. To avoid bugs and analyze protocols, formal verification methods are an
ideal tool and have been used in security and safety critical system for several years. In the area of voting
protocols, many different formal models and definitions of the above mentioned properties have been pro-
posed and used successfully to discover bugs (e.g. in Helios [29]). However, since the structure, setting
and basic design of voting protocols can be quite different depending on the primitives used, many of these
definitions are tailored to fit a specific (sub-)group of protocols. Sometimes a protocol can be proved secure
in one model, but not in another. This hinders the objective comparisons of protocols.

In particular in the area of privacy properties - which we discuss in this paper - there is a great variety
of models. Moreover, recent research shows that some existing definitions might be insufficient: Smyth
and Cortier [29] pointed out that the ability to copy another voter’s vote can enable attacks on privacy.

Our Contributions. We provide the three following contributions:

1. We propose a new family of privacy notions which allows to assess of the level of privacy provided
by a voting protocol. These notions are based on formal definitions of the classical notions (Vote-
Privacy, Receipt-Freeness and Coercion-Resistance) in the applied pi calculus [1], with a refined
protocol model and including new attacks. The resulting family gives a deep understanding of the
different levels and requirements for privacy. Additionally – by including a generalization of the
notion of “Vote-Independence” [15] – our notions deal with attacks based on vote-copying that were
not captured in the model by Delaune et al.

2. A deep understanding of privacy properties, and in particular the relationship between the different
notions, is a prerequisite for the correct design of voting protocols. We provide a thorough compari-
son of existing and new notions.

Verimag Research Report no TR-2011-10 1/27

Jannik Dreier, Pascal Lafourcade, Yassine Lakhnech A Taxonomy of Privacy in Voting Protocols

3. Using several case studies [17, 27, 19, 4] we show that our model allows the analysis of different
types of protocols. To automatically analyze protocols we use ProSwapper [20] and ProVerif [3].
Using these tools we can automate some proofs of Vote-Independence which were done by hand
previously [16], and check a protocol supporting multiple votes (a variant of [27]).

Related Work. Previous research on formal verification of voting protocols concerned privacy properties
(privacy, receipt-freeness and coercion-resistance) [11, 12, 25, 2, 15, 16], election verifiability [30, 21], or
both [19, 18].

Although the informal specifications of the properties are very general, most of the formal models
and definitions in the literature are tailored to a specific type of protocols. Many protocols where in fact
developed together with their own definitions (e.g. [25, 19, 18]) and analyzed by hand in the original paper.

Juels et al. [19] (which became the bases for Civitas [8]) were the first to give a formal, but compu-
tational definition of coercion-resistance. It was later translated to the applied pi calculus and automated
using ProVerif [2]. However – as their protocol is based on voting “credentials” – credentials also appear in
the definition. Their model is thus unsuitable for protocols that do not use credentials (e.g. Bingo Voting [4]
or the protocol by Lee et al. [24]).

More general definitions were developed by Delaune, Kremer and Ryan [11, 12]. They express different
levels of privacy as observational equivalence in the applied pi calculus [1]. An attacker should not be able
to distinguish one case in which the voter complies with the coercer’s instructions and another in which he
only pretends to do so and votes as he wishes. Unfortunately their definitions are too strong for the protocol
proposed by Juels et al.: since in one case the targeted voter complies and posts only one correct ballot,
and in the other he secretly posts his actual ballot and a fake one to cheat the coercer, both cases can be
distinguished by counting the ballots.

Smyth and Cortier [28, 29] showed that being able to copy votes can compromise privacy if the number
of participants is small or a noticeable fraction of voters can be corrupted. For example in the case of three
voters, the third voter can try to copy the first voter’s vote and submit it as his vote. This will result in
(at least) two votes for the candidate chosen by the first voter and his choice can thus be inferred from the
result. They also formally analyzed ballot secrecy in Helios using an adaption of the model by Delaune,
Kremer and Ryan. However it was shown that, in general, the DKR model is not sufficient to capture
vote-independence. For example the protocol by Lee et al. [24] was shown to be coercion-resistant in this
model, despite its vulnerability to vote-copy attacks [15, 16].

Küsters and Truderung [22] proposed a first model independent definition of coercion-resistance for
voting protocols. Their definition has to be instantiated using a concrete formal model. The exact security
level can be defined with respect to certain chosen goals, and excluding explicit special cases. In contrast
to our family of notions, their definition is based on traces and not bisimulations, and they only define
coercion-resistance (in particular no simple vote-privacy).

Langer et al. [23] developed verifiability definitions and privacy notions based on (un-)linkability be-
tween a voter and his vote. Similarly to Küsters and Truderung, their definitions have to be instantiated
with a concrete formal process and attacker model.

Computational definitions of receipt-freeness [6] and coercion-resistance [31] that can be applied to
other applications than voting have also been proposed. Completely application-independent anonymity
notions were proposed by Bohli and Pashalidis [5]. Although their definitions are very general, the appli-
cation on voting protocols results in – for this context – rather unusual privacy notions (Pseudonymity etc.),
compared to the classic properties such as receipt-freeness or coercion-resistance.

Outline of the Paper. In the next section, we give a brief introduction of the applied pi calculus and
develop our model of a voting process. Section 3 starts by explaining informally our privacy notions and
subsequently gives the formal definitions. In Section 4, we discuss the relationship between the different
notions and explain the hierarchy implied by the definitions. We analyze several case studies to illustrate
our definitions in Section 5. In the last section, we conclude and discuss future work.

2/27 Verimag Research Report no TR-2011-10

A Taxonomy of Privacy in Voting Protocols Jannik Dreier, Pascal Lafourcade, Yassine Lakhnech

2 Preliminaries

In the first part of this section, we introduce the applied pi calculus. We use it to model voting protocols
and express privacy properties. In the second part, we define our model of a voting protocol in the applied
pi calculus.

2.1 The Applied Pi Calculus

The applied pi calculus [1] is a formal language to describe concurrent processes. The calculus consists of
names (which typically correspond to data or channels), variables, and a signature Σ of function symbols
which can be used to build terms. Functions typically include encryption and decryption (for example
enc(message, key), dec(message, key)), hashing, signing etc. Terms are correct (i.e. respecting arity
and sorts) combinations of names and functions. To model equalities we use an equational theory E which
defines a relation =E . A classical example which describes the correctness of symmetric encryption is
dec(enc(message, key), key) =E message.

There are two types of processes in the applied pi calculus: plain processes and extended processes.
Plain processes are constructed using the following grammar:

P , Q, R := plain processes
0 null process
P |Q parallel composition
!P replication
νn.P name restriction (“new”)
ifM = N then P else Q conditional
in(u, x) message input
out(u, x) message output

Extended processes are plain processes or active substitutions:

A, B, C := active processes
P plain process
A|B parallel composition
νn.A name restriction
νx.A variable restriction
{M/x} active substitution

The substitution {M/x} replaces the variable x with term M . We denote by fv(A), bv(A), fn(A),
bn(A) the free variables, bound variables, free names or bound names respectively. A process is closed if
all variables are bound or defined by an active substitution.

The frame Φ(A) of an extended process A is obtained when replacing all plain processes in A by 0.
This frame can be seen as a representation of what is statically known to the exterior about a process. The
domain dom(Φ) of a frame Φ is the set of variables for which Φ defines a substitution. An evaluation
context C[_] denotes an extended process with a hole for an extended process.

The semantics of the calculus are given by Structural equivalence (≡), which is defined as the small-
est equivalence relation on extended processes that is closed under application of evaluation contexts,
α-conversion on names and variables such that:

Verimag Research Report no TR-2011-10 3/27

Jannik Dreier, Pascal Lafourcade, Yassine Lakhnech A Taxonomy of Privacy in Voting Protocols

PAR-0 A|0 ≡ A
PAR-A A|(B|C) ≡ (A|B)|C
PAR-C A|B ≡ B|A
NEW-0 νn.0 ≡ 0
NEW-C νu.νv.A ≡ νv.νu.A
NEW-PAR A|νu.B ≡ νu.(A|B) if u /∈ fn(A) ∪ fn(b)
REPL !P ≡ P |!P
REWRITE {M/x} ≡ {N/x} if M =E N
ALIAS νx. {M/x} ≡ 0
SUBST {M/x} |A ≡ {M/x} |A {M/x}

and extended by Internal reduction (→), the smallest relation on extended processes closed by structural
equivalence and application of evaluation contexts such that:

COMM out(a, x).P | in(a, x).Q → P | Q
THEN ifM = M then P else Q → P
ELSE ifM = N then P else Q → Q

for any ground terms such that M 6=E N

To describe the interaction of processes with the exterior, we use labeled operational semantics (α−→)
where α can be an input or an output of a channel name or a variable of base type.

IN in(a, x).P
in(a,M)−−−−−→ P {M/x}

OUT-ATOM out(a, u).P
out(a,u)−−−−−→ P

OPEN-ATOM
A

out(a,u)−−−−−→ A′ u 6= a

νu.A
νu.out(a,u)−−−−−−−→ A′

SCOPE
A

α−→ A′ u does not occur in α

νu.A
α−→ νu.A′

PAR
A

α−→ A′ bv(α) ∩ fv(B) = bn(α) ∩ fn(B) = ∅
A | B α−→ A′ | B

STRUCT
A ≡ B B

α−→ B′ B′ ≡ A′

A
α−→ A′

Labeled transitions are not closed under the evaluation contexts. Note that a term M cannot be output
directly. Instead, we have to assign M to a variable, which can then be output. This is to model that e.g.
the output of enc(m, k) does not give the context access to m. In our definitions we will use the following
equivalence and bisimilarity properties:

Definition 1 (Equivalence in a Frame). Two terms M and N are equal in the frame φ, written (M = N)φ,
if and only if φ ≡ νñ.σ, Mσ = Nσ, and {ñ} ∩ (fn(M) ∪ fn(N)) = ∅ for some names ñ and some
substitution σ.

Definition 2 (Static Equivalence (≈s)). Two closed frames φ and ψ are statically equivalent, written φ ≈s
ψ, when dom(φ) = dom(ψ) and when for all terms M and N (M = N)φ if and only if (M = N)ψ. Two
extended processes A and B are statically equivalent (A ≈s B) if their frames are statically equivalent.

The intuition behind this definition is that two processes are statically equivalent if the messages ex-
changed with the environment cannot be distinguished by an attacker (i.e. all operations on both sides give
the same results). This idea can be extended to labeled bisimilarity.

Definition 3 (Labeled Bisimilarity (≈l)).
Labeled bisimilarity is the largest symmetric relation R on closed extended processes, such that A R B
implies

4/27 Verimag Research Report no TR-2011-10

A Taxonomy of Privacy in Voting Protocols Jannik Dreier, Pascal Lafourcade, Yassine Lakhnech

1. A ≈s B,

2. if A→ A′, then B → B′ and A′ R B′ for some B′,

3. if A α−→ A′ and fv(α) ⊆ dom(A) and bn(α) ∩ fn(B) = ∅, then B →∗ α−→→∗ B′ and A′ R B′ for
some B′.

In this case each interaction on one side can be simulated by the other side, and the processes are
statically equivalent at each step during the execution, thus an attacker cannot distinguish both sides.

To formally describe the interaction between a voter and the attacker, we use the following two defini-
tions. The first one turns a process P into another process P ch that reveals all its inputs and secret data on
the channel ch. This can be seen as trying to construct a receipt.

Definition 4 (Process P ch [11]). Let P be a plain process and ch be a channel name. We define P ch as
follows:

• 0ch =̂ 0,

• (P |Q)ch =̂ P ch|Qch,

• (νn.P)ch =̂ νn.out(ch, n).P ch when n is a name of base type,

• (νn.P)ch =̂ νn.P ch otherwise,

• (in(u, x).P)ch =̂ in(u, x).out(ch, x).P ch when x is a variable of base type,

• (in(u, x).P)ch =̂ in(u, x).P ch otherwise,

• (out(u,M).P)ch =̂ out(u,M).P ch,

• (!P)ch =̂ !P ch,

• (ifM = N then P else Q)ch =̂ ifM = N then P ch else Qch.

In the remainder we assume that ch /∈ fn(P)∪ bn(P) before applying the transformation. The second
definition does not only reveal the secret data, but also takes orders from an outsider before sending a
message or branching, i.e. the process is under complete remote control.

Definition 5 (Process P c1,c2 [11]). Let P be a plain process and c1, c2 be channel names. We define P c1,c2
as follows:

• 0c1,c2 =̂ 0,

• (P |Q)c1,c2 =̂ P c1,c2 |Qc1,c2 ,

• (νn.P)c1,c2 =̂ νn.out(c1, n).P c1,c2 when n is a name of base type,

• (νn.P)c1,c2 =̂ νn.P c1,c2 otherwise,

• (in(u, x).P)c1,c2 =̂ in(u, x).out(c1, x).P c1,c2 when x is a variable of base type and x is a fresh
variable,

• (in(u, x).P)c1,c2 =̂ in(u, x).P c1,c2 otherwise,

• (out(u,M).P)c1,c2 =̂ in(c2, x).out(u, x).P c1,c2 ,

• (!P)c1,c2 =̂ !P c1,c2 ,

• (ifM = N then P else Q)c1,c2 =̂ in(c2, x).if x = true then P c1,c2 else Qc1,c2 where and x
is a fresh variable and true is a constant.

To hide the output of a process, we use the following definition.

Definition 6 (Process A\out(ch,·) [11]). Let A be an extended process. We define the process A\out(ch,·) as
νch.(A|!in(ch, x)).

Verimag Research Report no TR-2011-10 5/27

Jannik Dreier, Pascal Lafourcade, Yassine Lakhnech A Taxonomy of Privacy in Voting Protocols

2.2 Voting Protocol and Process
First of all, we define the notion of a voting protocol. Informally, a voting protocol specifies the processes
executed by voters and authorities.

Definition 7 (Voting Protocol). A voting protocol is a tuple (V,A1, . . . , Am, ñ) where V is the process
that is executed by the voter, the Aj’s are the processes executed by the election authorities, and ñ is a set
of private channels.

Note that the protocol only defines one process V which will be instantiated for each voter. Yet here
may be several authorities, for example a registrar, a bulletin board, a mixer, a tallier, . . .

In our definitions we reason about privacy using concrete instances of a voting protocol. An instance is
called a Voting Process.

Definition 8 (Voting Process). A voting process of a voting protocol (V,A1, . . . , Am, ñ) is a closed plain
process

νm̃.(V σid1σf1σv1 | . . . |V σidnσfnσvn |A1| . . . |Al)
where l ≤ m, m̃ includes the secret channel names, V σidiσviσfi are the processes executed by the voters
where:

• σidi is a substitution assigning the identity to a process (this determines for example the secret keys),

• σvi specifies the vote(s) and if the voter abstains,

• and σfi defines the other behavior, in particular if fake votes are issued,

and Ajs are the election authorities which are required to be honest.

We notice that if an authority is not supposed to be honest, it is not modeled and left to the context, i.e.
the attacker (thus l ≤ m).

Note also that each voter runs the same process V , which is instantiated with a different σidi (his
identity), σvi (his vote(s)) and σfi (the fakes). If a protocol does not allow fakes, σfi is empty.

This model allows us to reason about more than one correct behavior, which is necessary if for example
a voter can decide to abstain from voting or if – in case of multiple votes1 – he can vote between 0 and n
times in the same election. In this case V defines all the possible executions, and σvi and σfi will determine
which of them is executed. Another application are protocols where voters can submit fake ballots and/or
several real ballots, even if only one of them is actually counted (like in the one by Juels et al. [19]). In that
case σvi determines those who are actually counted, and σfi the others.

Example 1. As a running example, we consider the following simple voting protocol.
Informal description: To construct his ballot, each voter encrypts his vote with the administrator’s

public key and signs it using his secret key. The resulting ballot is posted on the bulletin board. After
the voting deadline is over, the administrator checks if each ballot is signed by an eligible voter. He then
decrypts the correct ballots and publishes the result.

Formal description in our model: The protocol is a tuple (V,A, ∅) where

A = in(ch, (sig, vote)).
if checksign(sig, pkv) = vote
then sync 1.
out(chR, dec(vote, ska))

V = νr.
let evote = enc(v, pka, r) in
out(ch, (sign(evote, skv), evote))

where – by abuse of notation, this can rewritten in the “pure” calculus – sync 1 is a synchronization
point as defined by ProSwapper [20]. A substitution determining the identity of a voter would in this case
assign the secret key, e.g. σidk = {skk/skv}. The substitution specifying the vote as for example a vote for
candidate a would be σvk = {a/v}. As the protocol does not specify the possibility to create fakes, σvk is
the empty substitution.

1By multiple votes we mean a protocol where each voter can vote several times in the same election, and each vote is transmitted
in a separate ballot.

6/27 Verimag Research Report no TR-2011-10

A Taxonomy of Privacy in Voting Protocols Jannik Dreier, Pascal Lafourcade, Yassine Lakhnech

To facilitate notation we denote by S and S′ two contexts which are like voting processes but with
holes for two and three voters respectively.

Definition 9 (S and S′). We define evaluation contexts S and S′ such that

• S is like a voting process, but has a hole instead of three processes among (V σidiσviσfi)1≤i≤n

• S′ which is like as voting process, but has a hole instead of two processes among (V σidiσviσfi)1≤i≤n.

Finally, we formally define what it means for a voting process to abstain. An abstaining voter does not
send any message on any channel, in particular no ballot. In the real world, this would correspond to a voter
that does not even go to polling station. This is stronger than just voting for a particular “null” candidate
⊥, which will still result in sending a ballot (a blank vote).

Definition 10 (Abstention). A substitution σvi makes a voter abstain if V σidiσvi ≈l 0.

Note that abstention is determined by σvi only, so the voter abstains for any σfi .

3 Defining Privacy: A Modular Approach
In our setting, the attacker targets one voter (the targeted voter) and tries to extract information about
the targeted voter’s vote(s). If the attacker knows the votes of all other voters, he can infer the targeted
voter’s vote from the result. Thus we suppose that he is unsure about the vote(s) of one other voter (the
counterbalancing voter).

We express privacy as an observational equivalence. Intuitively, an attacker should not be able to
distinguish between an execution in which the targeted voter behaves and votes as the attacker wishes, and
another execution where he only pretends to do so and votes differently. To ensure that the attacker cannot
tell the difference by just comparing the result, the counterbalancing voter will compensate the different
vote.

Starting from the definitions of Coercion-Resistance, Receipt-Freeness and Vote-Privacy in the liter-
ature [11, 2, 19] we propose extensions in the four following dimensions: Communication between the
attacker and the targeted voter, Vote-Independence, security against forced-abstention-attacks and knowl-
edge about the behavior of the counterbalancing voter.

1. Communication between the attacker and the targeted voter: We define three different levels:

(a) In the simplest case, the attacker only observes publicly available data and communication. We
call this case Vote-Privacy, denoted V P .

(b) In the second case, the targeted voter tries to convince the attacker that he voted for a certain
candidate by revealing his secret data. Yet the attacker should not be able to determine if he
actually sent his real data, or a fake receipt. We call this case Receipt-Freeness, denoted RF .

(c) In the strongest case, the voter pretends to be completely under the control of the attacker, i.e.
he reveals his secret data and follows the intruder’s instructions. Yet the attacker should be
unable to determine if he complied with his instructions or if he only pretended to do so. We
call this case Coercion-Resistance, denoted CR.

It is easy to see that Coercion-Resistance is stronger than Receipt-Freeness, which is stronger than
Vote-Privacy (CR > RF > V P).

2. Vote-Independence/Corrupted Voter: The attacker may control another legitimate voter (neither the
targeted nor the counterbalancing voter). In that case he could be able to compromise privacy by
trying to relate the corrupted voter’s vote to the targeted voter’s vote (e.g. by copying it) or using the
corrupted voter’s secret data, such as his credentials or keys. In our definitions, we distinguish two
case for Eve (the attacker):

(a) Eve is an Outsider (denoted O): The attacker is an external observer.

Verimag Research Report no TR-2011-10 7/27

Jannik Dreier, Pascal Lafourcade, Yassine Lakhnech A Taxonomy of Privacy in Voting Protocols

(b) Eve is an Insider (denoted I): The attacker has a legitimate voter under his control.

Intuitively, Insider is the stronger setting (I > O).

3. Security against forced-abstention-attacks: A protocol can ensure that a voter can still vote as in-
tended, although a coercer wants him to abstain. Note that in contrast to the literature [19, 2], we
define this property independently from of Coercion-Resistance, as we also want to apply it in the
case of Vote-Privacy. Our model expresses this by requiring the observational equivalence to hold:

(a) in any case, i.e. even if the voter is forced to abstain. We call this case security against Forced-
Abstention-Attacks, denoted FA.

(b) if the targeted voter does not abstain from voting (i.e. always participates). We call this case
Participation Only, denoted PO.

In this dimension security against Forced-Abstention-Attacks is a stronger property than Participa-
tion Only (FA > PO).

4. Knowledge about the behavior of the counterbalancing voter: To model different knowledge about
the behavior of the counterbalancing voter, we consider two cases:

(a) The observational equivalence holds for any behavior of this voter, i.e. any σfi . This models
an attacker that knows if the counterbalancing voter is going to post fake ballots, or a situation
where there is no “noise” (=fake ballots) on the bulletin board. We call this case Any Behavior,
denoted AB.

(b) The observational equivalence holds for at least one behavior of this voter, which may addi-
tionally change, i.e. one σfi and one σf ′

i
. In this case, the attacker is unsure about the number

of fake ballots, i.e. there is enough noise. We call this case Exists Behavior, denoted EB.

Any Behavior is stronger than EB (AB > EB).

The strongest possible property is thus CRI,FA,AB , the weakest V PO,PO,EB . If we leave out the param-
eter, we take the weakest setting as a default, i.e. V P denotes V PO,PO,EB .

3.1 Definitions in the applied pi calculus
Our definition is parametrized using the following parameters (as explained above):

• Privacy = {CR,RF, V P} (“Coercion-Resistance”, “Receipt-Freeness” or “Vote-Privacy”).

• Eve = {I,O} (“Insider” or “Outsider”).

• Abs = {FA,PO} (“Security against Forced-Abstention-Attacks”or “Participation Only”).

• Behavior = {AB,EB} (“Any Behavior”or “Exists Behavior”).

Definition 11 (PrivacyEve,Abs,Behavior). A protocol fulfills PrivacyEve,Abs,Behavior if for any voting
process S there exists a process V ′ and for any substitution σfA and σfC , and any context A such that
A = νc̃h.(_|A′chout)) where c̃h are all unbound channels and names in A′ and in the “hole”,

• if Behavior is EB: there exist substitutions σfB , σf ′
B

and σf ′
A

,

• if Behavior is AB: for any substitutions σfB = σf ′
B

there exists a substitution σf ′
A

,

such that for all votes σvA and σvB where V σvB does not make a voter abstain2, one of the following holds
depending on the privacy setting:

2This condition is needed to ensure that in the case PO no voter can abstain.

8/27 Verimag Research Report no TR-2011-10

A Taxonomy of Privacy in Voting Protocols Jannik Dreier, Pascal Lafourcade, Yassine Lakhnech

• if Privacy is Vote-Privacy (V P):

A [S [V σidAσfAσvA |V σidBσfBσvB |VC]] ≈l A
[
S
[
V σidAσf ′

A
σvB |V σidBσf ′

B
σvA |VC

]]
• if Privacy is Receipt-Freeness (RF):

– V ′\out(chc,·) ≈l V σidAσf ′
A
σvB

– A
[
S
[
V σidAσfAσ

chc
vA |V σidBσfBσvB |VC

]]
≈l A

[
S
[
V ′|V σidBσf ′

B
σvA |VC

]]
• if Privacy is Coercion-Resistance (CR):

For any context C = νc1.νc2.(_|P ′) with ñ ∩ fn(C) = ∅ and
S
[
C
[
V σc1,c2idA

]
|V σidBσfBσvB |VC

]
≈l S

[
V σidAσfAσ

chc
vA |V σidBσfBσvB |VC

]
we have

– C [V ′]
\out(chc,·) ≈l V σidAσf ′

A
σvB

– A
[
S
[
C
[
V σc1,c2idA

]
|V σidBσfBσvB |VC

]]
≈l A

[
S
[
C [V ′] |V σidBσf ′

B
σvA |VC

]]
where

• If Eve is:

– Insider(I): S := S and VC := V σc1,c2idC

– Outsider (O): S := S′ and VC := 0

• If Abs is:

– Participation Only (PO): V σidA does not abstain, i.e. V σidAσfAσvA 6≈l 0.

– Security against Forced-Abstention-Attacks (FA), he may abstain.

The context A represents the attacker. We chose to make the attacker’s behavior explicit as some protocols
(such as the one by Juels et al. [19]) require σfB and σf ′

B
to be chosen as a function of the attacker (see

our technical report [14] for details, note however that V ′ is chosen only as a function of the protocol). To
ensure that A does not only forward the channels (which would leave the attacker to the outside again and
thus contradict our intention of choosing the processes as a function of A), we require A to bind all free
names and channels inside. He will only forward the knowledge he is able to obtain during the execution
of the protocol.

The following examples illustrate how the parameters change the definition and give intuitions.

Example 2 (V PO,PO,AB). A protocol fulfills V PO,PO,AB if for any voting process S′ and any substitu-
tions σfA , σfB and σfC , and for any context A such that A = νc̃h.(_|A′chout)) where c̃h are all unbound
channels and names in A′ and in the “hole”, there exist a substitution σf ′

A
such that for all votes σvA and

σvB where σvB and σvA does not make a voter abstain we have:

A [S′ [V σidAσfAσvA |V σidBσfBσvB |0]] ≈l A
[
S′
[
V σidAσf ′

A
σvB |V σidBσfBσvA |0

]]
Note that it is sufficient to prove

S′ [V σidAσfAσvA |V σidBσfBσvB] ≈l S′
[
V σidAσf ′

A
σvB |V σidBσfBσvA

]
as labeled bisimilarity is closed under the application of contexts. If there is only one correct behavior of
V (i.e. no fakes), we can rewrite this as

S′ [V σidAσvA |V σidBσvB] ≈l S′ [V σidAσvB |V σidBσvA] (1)

This coincides with the definition of Vote-Privacy given by Delaune et al. [11]: Two situations where two
voters swap votes are bisimilar.

We also note that Receipt-Freeness in the DKR-model corresponds to RFO,PO,AB in our model, and
Coercion-Resistance in the DKR-model corresponds to CRO,PO,AB in our model.

Verimag Research Report no TR-2011-10 9/27

Jannik Dreier, Pascal Lafourcade, Yassine Lakhnech A Taxonomy of Privacy in Voting Protocols

Example 3 (Application). Consider our running example of a simple voting protocol. We show that it
ensures V PO,PO,AB as defined above. We suppose the secret keys to be secret and the administrator to be
honest. In that case, Proverif is able to prove (1), which gives Lemma 1.

Lemma 1. The simple voting protocol ensures V PO,PO,AB .

The code used is available on our website [13].
It is easy to see that this protocol does not guarantee Vote-Privacy for an inside attacker (V P I,PO,AB),

as he can simply access the votes on the bulletin board and copy them. He can identify which vote was
posted by which voter using the signatures.

The protocol is not receipt-free (RFEve,Abs,Behavior) either as the randomness used for encrypting the
vote can be used as a receipt. Since the bulletin board reveals which voters participated, it is not resistant
against forced-abstention attacks.

Example 4 (V PO,FA,AB). A protocol fulfills V PO,FA,AB if for any voting process S′ and any substitu-
tions σfA , σfB and σfC , and for any context A such that A = νc̃h.(_|A′chout)) where c̃h are all unbound
channels and names in A′ and in the “hole”, there exists a substitution σf ′

A
such that for all votes σvA and

σvB where σvB does not make a voter abstain we have:

A [S′ [V σidAσfAσvA |V σidBσfBσvB |0]] ≈l A
[
S′
[
V σidAσf ′

A
σvB |V σidBσfBσvA |0

]]
In this case, σvA can make a voter abstain. As σvB may not specify abstention, we have an observational
equivalence between a situation where the targeted voter abstains, and a situation where he votes and the
counterbalancing voter abstains. This captures the security against forced-abstention-attacks.

Example 5 (RF I,PO,AB). A protocol fulfillsRF I,PO,AB if for any voting process S there exists a process
V ′, and for any substitutions σfA , σfB and σfC , and for any context A such that A = νc̃h.(_|A′chout))
where c̃h are all unbound channels and names in A′ and in the “hole”, there exists a substitution σf ′

A
such

that for all votes σvA and σvB where σvB and σvA do not make a voter abstain we have

V ′\out(chc,·) ≈l V σidAσf ′
A
σvB

and

A
[
S
[
V σidAσfAσ

chc
vA |V σidBσfBσvB |V σ

c1,c2
idC

]]
≈l A

[
S
[
V ′|V σidBσfBσvA |V σ

c1,c2
idC

]]
.

Note that again it is sufficient to prove

S
[
V σidAσfAσ

chc
vA |V σidBσfBσvB |V σ

c1,c2
idC

]
≈l S

[
V ′|V σidBσfBσvA |V σ

c1,c2
idC

]
as labeled bisimilarity is closed under the application of contexts. If there is only one correct behavior
of V σA, this coincides with the definition of Vote-Independence with Passive Collaboration in the DKR-
model [15]: If a protocol is receipt-free, there exists a counter-strategy (V ′) that allows the targeted voter
to fake the receipt and vote differently. Analogously, Vote-Independence in the DKR-model corresponds to
V P I,PO,AB , and Vote-Independence with passive Collaboration corresponds to CRI,PO,AB in our model.

Example 6 (CRO,FA,AB). A protocol fulfills CRO,FA,AB if for any voting process S there exists a
process V ′ and for any substitution σfA and σfC , and any context A such that A = νc̃h.(_|A′chout))
where c̃h are all unbound channels and names in A′ and in the “hole”, for any substitutions σfB =
σf ′

B
there exists a substitution σf ′

A
, such that for all votes σvA and σvB where V σvB does not make

a voter abstain, the following holds: For any context C = νc1.νc2.(_|P ′) with ñ ∩ fn(C) = ∅ and
S′
[
C
[
V σc1,c2idA

]
|V σidBσfBσvB |0

]
≈l S′

[
V σidAσfAσ

chc
vA |V σidBσfBσvB |0

]
we have

• C [V ′]
\out(chc,·) ≈l V σidAσf ′

A
σvB

• A
[
S′
[
C
[
V σc1,c2idA

]
|V σidBσfBσvB |0

]]
≈l A

[
S′
[
C [V ′] |V σidBσf ′

B
σvA |0

]]
The intuition behind this definition is the following: the context C also belongs to the attacker and tries
to force the targeted voter to vote for a certain candidate or to make him abstain (depending on σidA),
whereas V ′ tries to vote differently and to escape coercion.

10/27 Verimag Research Report no TR-2011-10

A Taxonomy of Privacy in Voting Protocols Jannik Dreier, Pascal Lafourcade, Yassine Lakhnech

CRO,FA,AB

,,XXXXXXXXXXXXXX

��

yyssssssssssss
CRI,FA,ABoo

yyttttttttttt

��

rreeeeeeeeeeeeeeeee

CRO,FA,EB

xxqqqqqqqqq

��

CRI,FA,EBoo

xxrrrrrrrrr

��

CRO,PO,AB

��

--[[[[[[[[[[[[[[[CRI,PO,AB

��

oo

qqccccccccccccccc

CRO,PO,EB

��

CRI,PO,EB

��

oo

RFO,FA,AB

}}{{
{{

{{
{{

{{
{{

{{
{

��

--ZZZZZZZZZZZZZZ RF I,FA,ABoo

}}||
||

||
||

||
||

||
|

��

qqccccccccccccccccc

RFO,FA,EB

��

vvmmmmmmm RF I,FA,EBoo

��

vvmmmmmm

RFO,PO,EB

��

RF I,PO,EB

��

oo

RFO,PO,AB

��

11ccccccccccccccc
RF I,PO,AB

��

oo

mm[[[[[[[[[[[[[[[

V PO,FA,AB

}}{{
{{

{{
{{

{{
{{

{{
{ --ZZZZZZZZZZZZZZ V P I,FA,ABoo

}}||
||

||
||

||
||

||
|qqccccccccccccccccc

V PO,FA,EB

vvmmmmmmm V P I,FA,EBoo

vvmmmmmm

V PO,PO,EB V P I,PO,EBoo

V PO,PO,AB

11ccccccccccccccc
V P I,PO,ABoo

mm[[[[[[[[[[[[[[[

Figure 1: Hierarchy of privacy notions. A → B means that any protocol that respects property A also
respects property B.

4 Hierarchy
As already described in Section 3, we have a hierarchy of notions in each dimension.

Proposition 1. For Privacy ∈ {V P ,RF ,CR} , Abs ∈ {FA,PO} and Behavior ∈ {AB,EB} we
have:

1. Any attack that works for an outsider can also be used for an insider: If a protocol respects
PrivacyI,Abs,Behavior, then it also respects PrivacyO,Abs,Behavior.

2. If a protocol is secure against Forced-Abstention attacks, it is also secure in the “PO” case: If a
protocol respects PrivacyEve,FA,Behavior, it also respects PrivacyEve,PO,Behavior.

3. If the property holds for any behavior, there exists a behavior for which it holds: If a protocol respects
PrivacyEve,Abs,AB , it also respects PrivacyEve,Abs,EB .

4. Coercion-Resistance is stronger than Receipt-Freeness, which is stronger than Vote-Privacy:

• If a protocol respects CREve,Abs,Behavior, it also respects RFEve,Abs,Behavior.
• If a protocol respects RFEve,Abs,Behavior, it also respects V PEve,Abs,Behavior.

This was already shown before in the DKR-model [11], the extension to our model is straightforward.
All the formal proofs are given in in Appendix A.

Taking these properties together, we arrive at the hierarchy shown in Figure 1. For protocols that do
not use fakes, the forth dimensions “Behavior” collapses and we obtain a simple tower (see Figure 2).

5 Case Studies
We applied our family of notions on several case studies, chosen to show that each of our dimensions
corresponds to a different property of real-world protocols. The results are summed up in and Table 1, the
position of the case studies within our hierarchy is shown in Figure 2.

5.1 FOO
The protocol by Fujioka et al. [17] is based on blind signatures and commitments. It was shown to ensure
Vote-Privacy [11] and Vote-Independence [15] in the DKR-model, but is not receipt free as the randomness
of the commitment can be used as a receipt. We will show that it ensures V P I,PO,AB (i.e. Vote-Privacy
against an insider for any behavior of the counterbalancing voter, but just in the Participation Only case)
even if multiple votes are permitted.

Verimag Research Report no TR-2011-10 11/27

Jannik Dreier, Pascal Lafourcade, Yassine Lakhnech A Taxonomy of Privacy in Voting Protocols

CRO,FA

wwoooooo

��

CRI,FA∗oo

wwoooooo

��

CRO,PO[24]

��

CRI,PO[4]

��

oo

RFO,FA

��

wwoooooo
RF I,FA�

��

wwoooooo
oo

RFO,PO

��

RF I,PO[27]

��

oo

V PO,FA

wwppp
ppp

p
V P I,FA†oo

wwppp
ppp

V PO,PO• V P I,PO[17]oo

Figure 2: Collapsed hierarchy of privacy notions with examples: The simple voting protocol, our running
example (•); Bingo Voting [4]; Bingo Voting with the assumption that the attacker does not know if a voter
entered the voting booth (∗); Okamoto [27]; Okamoto with a private channel to the administrator (�); FOO
[17]; FOO with a private channel to the administrator (†); and Lee et al. [24].

5.1.1 Protocol Description

The protocol is split into three phases. In the first phase the administrator signs the voter’s commitment to
his vote:

• Voter Vi chooses his vote vi and computes a commitment xi = ξ(vi, ki) for a random key ki.

• He blinds the commitment using a blinding function χ, a random value ri and obtains ei = χ(xi, ri).

• He signs ei and sends the signature si = σVi
(ei) together with ei and his identity to the administrator.

• The administrator checks if Vi has the right to vote and has not yet voted, and if the signature si is
correct. If all tests succeed, he signs di = σA(ei) and sends it back to Vi.

• Vi unblinds the signature and obtains yi = δ(di, ri). He checks the signature.

In the second phase the voter submits his ballot:

• Voter Vi sends (xi, yi) to the collector C through an anonymous channel.

• The collector checks the administrators signature and enters (xi, yi) as the l-th entry into a list.

When all ballots are cast or when the deadline is over, the counting phase begins:

• The collector publishes the list of correct ballots.

• Vi verifies that his commitment appears on the list and sends (l, ri) toC using an anonymous channel.

• The collector C opens the l-th ballot using ri and publishes the vote.

5.1.2 Analysis

In the standard case of single votes, the protocol was shown to ensure Vote-Independence in the DKR-
model [15]. As explained above, this suffices to prove V P I,PO,AB and we have the following result.

Lemma 2. FOO with single votes respects V P I,PO,AB .

12/27 Verimag Research Report no TR-2011-10

A Taxonomy of Privacy in Voting Protocols Jannik Dreier, Pascal Lafourcade, Yassine Lakhnech

In addition to the original manual proof, we were able to verify this result automatically using ProSwap-
per and ProVerif. The code is available on our website [13].

We also considered a slightly modified version of the protocol which allows multiple votes. In this
version each voter votes up to n times by repeating the the first and second phase for each vote. After the
deadline has passed, he reveals all the random values at the same time. In this case, we still have the same
result.

Lemma 3. FOO with multiple votes respects V P I,PO,AB .

This can be proved using ProSwapper, ProVerif and a script that generates all possible behaviors [13].
However it is not secure against Forced-Abstention-Attacks, as the voters send their identity to the

administrator over a public channel. This could be fixed by using a private channel instead.

5.2 Okamoto
The protocol by Okamoto [27] is similar to the protocol by Fujioka et al. discussed above, but it uses
trap-door commitments to achieve receipt-freeness. It is however not Coercion-Resistant as the coercer
can force the voter to use a specially prepared commitment [11].

5.2.1 Protocol Description

The main differences to FOO are the use of trap-door commitments and the existence of timeliness member
to open the commitments. The first phase - during which the voter obtains a signature on his commitment -
follows exactly the same protocol as FOO, except that this time ξ is a trapdoor-commitment. In the second
phase the vote is submitted:

• Voter Vi sends the signed trap-door commitment to the collector C through an anonymous channel.

• The collector checks the administrators signature and enters (xi, yi) into a list.

• The voter sends (vi, ri, xi) to the timeliness member through an untappable anonymous channel

When all ballots are cast and/or when the deadline is over, the counting phase begins:

• The collector publishes the list of correct ballots.

• Vi verifies that his commitment appears on the list.

• The timeliness member publishes a randomly shuffled list of votes vi and a zero-knowledge proof
that he knows a permutation π for which xπ(i) = ξ(vi, ri).

5.2.2 Analysis

Similar to FOO, as a consequence of the analysis in [16], we have the following Lemma:

Lemma 4. The protocol by Okamoto respects RF I,PO,AB .

Unfortunately ProVerif cannot prove this automatically as the equational theory is too complex. This is
due to the trapdoor-commitment which yields a non-confluent equational theory.

5.3 Juels et al.
The protocol by Juels et al. [19] was proved to be Coercion-Resistant in a special model [2] that is not
compatible with the DKR-model. We will show that it can be proved CRI,FA,EB in our model, i.e.
Coercion-Resistant with security against forced-abstention attacks against an insider if the behavior of the
counterbalancing voter is unknown.

Verimag Research Report no TR-2011-10 13/27

Jannik Dreier, Pascal Lafourcade, Yassine Lakhnech A Taxonomy of Privacy in Voting Protocols

5.3.1 Protocol Description

Each voter Vi registers with a registrar R and receives his voting credential credi over an untappable
channel. After all voters have been registered, the registrar publishes a list of chiphertexts – where each
cyphertext corresponds to a valid credential encrypted with the authorities public key – on the bulletin
board.

To vote, a voter encrypts his vote and his credential using the authorities’ public key and adds a proof
of correct construction. The resulting ballot is sent over an anonymous channel to the bulletin board.

After the voting is over, the authorities eliminate all ballots containing incorrect proofs and perform
plaintext equivalence tests to remove ballots that use the same credential. If duplicates are found, they
are eliminated using some pre-defined policy (e.g. only the latest ballot is kept). The remaining ballots
are mixed using a mix-net. After the mixing has been done, the authorities check the ballots for valid
credentials using plaintext equivalence tests. If a valid credential was used, the vote is decrypted and
published, otherwise discarded.

5.3.2 Analysis

Proposition 2. The protocol by Juels, Catalano and Jakobsson ensures CRI,FA,EB .

Proof. Sketch: The proof is based on the fact that a coerced voter can always cheat a coercer by providing
a fake credential and vote as instructed using the fake credential. Later on, he can use the real credential
to submit his real vote. This however means that we have one situation where the targeted voter posts two
ballots, and another one where he posts only one. To account for this problem, V σidBσvBσfB has to submit
a fake ballot, whereas V σidBσvAσf ′

B
does not. This is why the protocol is not secure for any behavior of

the counterbalancing voter. Intuitively, this can be seen as the need for noise on the bulletin board. If no
honest voter posts fake ballots, coercion remains possible.

Another option for the attacker would be to try to use the credential he obtained from the voter to vote
for a completely different candidate d. If the credential was correct, this vote might be counted (if it is not
eliminated before the mixing). If it was a fake, it will definitely not be counted. Suppose that the credential
was real, then we would have a vote for a and a vote for d with the same correct credential, and a vote
for b and a fake by V σidB . Such a situation however looks the same as a case where the V σidBσvBσf ′

B

submitted two votes for c and d using the same credential3, and V ′ voted for a and posted a fake to cheat
the coercer.

Copying votes is not possible in this setting, as the attacker cannot know which ballots have been posted
by which voter due to the anonymous channel.

Similarly, forced-abstention attacks are not possible as posting the ballots is anonymous, and the at-
tacker cannot relate a ballot to a voter.

The detailed model and proof can be found in Appendix B.
Interestingly we do not need noise on the bulletin board in the case of Vote-Privacy, i.e. we have

Vote-Privacy for any behavior of the counterbalancing voter (AB).

Proposition 3. The protocol by Juels et al. respects V P I,FA,AB .

In this case, no voter needs to fake a credential or a receipt, and the real credentials are sufficient.

5.4 Bingo Voting

Bingo Voting was developed by Bohli et al. [4] to achieve coercion-resistance as well as individual and
universal verifiability by using a trusted random number generator (RNG). In our hierarchy Bingo Voting
ensures CRI,PO,AB if the voting machine is to be trusted.

3Note that either the vote for a or for d will not be counted and is thus part of σfB , not of σvB .

14/27 Verimag Research Report no TR-2011-10

A Taxonomy of Privacy in Voting Protocols Jannik Dreier, Pascal Lafourcade, Yassine Lakhnech

5.4.1 Protocol Description

The protocol is split into three phases: The pre-voting phase, the voting phase and the post-voting phase.
In the pre-voting phase the voting machine generates for every candidate pj k (k is the number of voters)
random values ni,j . It commits to the k · l (l is the number of candidates) pairs (ni,j , pj) and publishes the
shuffled commitments.

In the voting phase, the voter enters the voting booth and selects the candidate he wants to vote for on
the voting machine. The RNG generates a random number r which is transmitted to the voting machine
and displayed to the voter. The voting machine chooses for each candidate, except for the voter’s choice, a
dummy vote. For the chosen candidate, the random value from the RNG is used and the receipt is created.
Finally the voter checks that the number displayed on the RNG corresponds to the entry of his candidate
on the receipt.

In the post-voting phase the voting machine announces the result, publishes all receipts and opens the
commitments of all unused dummy votes. The machine also generates non-interactive zero-knowledge
proofs that each unopened commitment was actually used as a dummy vote in one of the receipts.

We assume the voting machine to be honest, otherwise no privacy can be guaranteed as the vote is
submitted in clear by the voter. The detailed model we used for the analysis can be found in [16].

5.4.2 Analysis

Lemma 5. Bingo Voting respects CRI,PO,AB , i.e. Coercion-Resistance against an inside attacker in the
Participation Only case.

This is - once again - a result of a proof in the DKR-model [16].
If we assume that the attacker cannot not know if a voter entered the voting both, we have would also

have security against-forced abstention attacks, i.e. CRI,FA,AB .

5.5 Lee et al.

The protocol by Lee et al. [24] was shown to be Coercion-Resistant in the DKR-model [11]. Yet the
protocol is neither secure against an inside attacker nor against forced-abstention attacks, as we will show.
It is based on trusted devices that re-encrypt ballots and prove their correct behavior to the voter using
designated verifier proofs (DVPs).

5.5.1 Protocol Description

We simplified the protocol to focus on the important parts with respect to privacy and vote-independence.
For example, we do not consider distributed authorities but model them as one honest authority.

• The administrator sets up the election, distributes keys and registers legitimate voters. Each voter is
equipped with his personal trusted device. At the end, he publishes a list of legitimate voters and
corresponding trusted devices.

• The voter encrypts his vote with the tallier’s public key (using the El Gamal scheme), signs it and
sends it to his trusted device over a private channel. The trusted device verifies the signature, re-
encrypts and signs the vote, and returns it, together with a DVP that the re-encryption is correct, to
the voter. The voter verifies the signature and the proof, double signs the ballot and publishes it on
the bulletin board.

• The administrator verifies for all ballots if the voter has the right to vote and if the vote is correctly
signed. He publishes the list of correct ballots, which is then shuffled by the mixer.

• The tallier decrypts the mixed votes and publishes the result.

Verimag Research Report no TR-2011-10 15/27

Jannik Dreier, Pascal Lafourcade, Yassine Lakhnech A Taxonomy of Privacy in Voting Protocols

Protocol Privacy Notion Comments
Juels et al. [19] CRI,FA,EB Requires fakes to achieve coercion-resistance
Bingo Voting [4] CRI,PO,AB Trusted voting machine, vulnerable to forced abstention
- variant CRI,FA,AB Secure against forced abstention if the attacker is

unaware of the voter entering the voting booth
Lee et al. [24] CRO,PO,AB Trusted randomizer, vulnerable to vote-copying
Okamoto [27] RF I,PO,AB Based on trap-door commitments
- variant RF I,FA,AB Private channel to the administrator, secure against

forced abstention attacks
Fujioka et al. [17] V P I,PO,AB Based on blind signatures
- variant V P I,PO,AB Permits multiple votes
Simple Voting Protocol V PO,PO,AB The running example, vulnerable to vote-copying

Table 1: Results of the case studies

5.5.2 Analysis

Proposition 4. The protocol by Lee et al. respects CRO,PO,AB (Coercion-Resistance against an outside
attacker with Any Behavior of the counterbalancing voter).

This is a result of the original proof in the DKR-model.
Yet the protocol is not secure against an inside attacker. As acknowledged by the authors in their

original paper [24], it is possible to copy votes. More precisely, an attacker can access the ballots on the
bulletin board before the mixing takes place. He can easily verify which ballot belongs to which voter as
they are signed by the voters themselves. He can remove the signature and use the ciphertext as an input
to his trusted device. The trusted device will re-encrypt and sign it. This allows the attacker to construct
a correct ballot which contains the same vote as the targeted honest voter. By submitting this ballot he
obtains a different election outcome in both cases of the observational equivalence. This attack was also
found in the DKR-model [16].

Additionally, this protocol is not secure against forced-abstention attacks as the ballots on the bulletin
board are signed by the voters. The attacker can thus easily verify if a voter voted, or not.

6 Conclusion

We proposed a modular family of formal privacy notions in the applied pi calculus which allows to assess
the level of privacy provided by a voting protocol. We illustrated the family of notions using examples and
applied it in several case studies, including a case with multiple votes per voter (a variant of FOO [17]) and
forced abstention attacks (see Table 1). In particular we were able to show that the different dimensions
of our definitions correspond to different properties of real-world protocols, and that in many cases the
verification can be done automatically using existing tools.

Limitations and Future Work. In this paper we employ a possibilistic approach: We call a protocol
secure if there is a way for the targeted voter to escape coercion. As we are in a symbolic model, we do
not consider probabilities. Hence the adversary may in reality still have a certain probability of detecting
that the coerced voter tried to resist coercion. This is beyond the scope of this paper, yet a computational
translation of our definitions should be able take this into account.

Additionally, it would also be desirable to verify more properties automatically as manual proofs are
often difficult and tend to be error-prone.

16/27 Verimag Research Report no TR-2011-10

A Taxonomy of Privacy in Voting Protocols Jannik Dreier, Pascal Lafourcade, Yassine Lakhnech

References
[1] Martín Abadi and Cédric Fournet. Mobile values, new names, and secure communication. In

POPL’01, pages 104–115, 2001. 1, 1, 2.1

[2] Michael Backes, Catalin Hritcu, and Matteo Maffei. Automated verification of remote electronic
voting protocols in the applied pi-calculus. CSF, 0:195–209, 2008. 1, 3, 3, 5.3

[3] Bruno Blanchet, Martín Abadi, and Cédric Fournet. Automated verification of selected equivalences
for security protocols. Journal of Logic and Algebraic Programming, 75(1):3–51, 2008. 3

[4] Jens-Matthias Bohli, Jörn Müller-Quade, and Stefan Röhrich. Bingo voting: Secure and coercion-free
voting using a trusted random number generator. In E-Voting and Identity, volume 4896 of LNCS,
pages 111–124. Springer, 2007. 3, 1, 4, 2, 5.4, 5.5.2

[5] Jens-Matthias Bohli and Andreas Pashalidis. Relations Among Privacy Notions, pages 362–380.
Springer, 2009. 1

[6] Ran Canetti and Rosario Gennaro. Incoercible multiparty computation (extended abstract). In FOCS,
pages 504–513, 1996. 1

[7] Benoît Chevallier-Mames, Pierre-Alain Fouque, David Pointcheval, Julien Stern, and Jacques Traoré.
On some incompatible properties of voting schemes. In Proceedings of the IAVoSS Workshop on
Trustworthy Elections, 2006. 1

[8] Michael R. Clarkson, Stephen Chong, and Andrew C. Myers. Civitas: Toward a secure voting system.
IEEE Symposium on Security and Privacy, 0:354–368, 2008. 1

[9] UK Electoral Commission. Key issues and conclusions: May 2007 electoral pilot schemes. 1

[10] Bundesverfassungsgericht (Germany’s Federal Constitutional Court). Use of voting computers in
2005 bundestag election unconstitutional, March 2009. 1

[11] Stéphanie Delaune, Steve Kremer, and Mark Ryan. Verifying privacy-type properties of electronic
voting protocols. Journal of Computer Security, 17:435–487, 2009. 1, 4, 5, 6, 3, 3.1, 4, 5.1, 5.2, 5.5,
A, 6, 7, 4

[12] Stéphanie Delaune, Steve Kremer, and Mark D. Ryan. Verifying privacy-type properties of electronic
voting protocols: A taster. In Towards Trustworthy Elections – New Directions in Electronic Voting,
volume 6000 of LNCS, pages 289–309. Springer, 2010. 1

[13] Jannik Dreier, Pascal Lafourcade, and Yassine Lakhnech. Code and scripts used to automatically
verify the examples. Available at http://www-verimag.imag.fr/~dreier/papers/
sfcs-code.zip, 2011. 3, 5.1.2, 5.1.2

[14] Jannik Dreier, Pascal Lafourcade, and Yassine Lakhnech. A formal taxonomy of privacy in voting
protocols. Technical Report TR-2011-10, Verimag Research Report, May 2011. Available at http:
//www-verimag.imag.fr/TR/TR-2011-10.pdf. 3.1

[15] Jannik Dreier, Pascal Lafourcade, and Yassine Lakhnech. Vote-independence: A powerful privacy no-
tion for voting protocols. In Proceedings of the 4th Workshop on Foundations & Practice of Security
(FPS), volume 6888 of LNCS, page 164ff. Springer, 2011. 1, 1, 3.1, 5.1, 5.1.2

[16] Jannik Dreier, Pascal Lafourcade, and Yassine Lakhnech. Vote-independence: A powerful privacy no-
tion for voting protocols. Technical Report TR-2011-8, Verimag Research Report, April 2011. Avail-
able at http://www-verimag.imag.fr/TR/TR-2011-8.pdf. 3, 1, 5.2.2, 5.4.1, 5.4.2,
5.5.2, 4

Verimag Research Report no TR-2011-10 17/27

http://www-verimag.imag.fr/~dreier/papers/sfcs-code.zip
http://www-verimag.imag.fr/~dreier/papers/sfcs-code.zip
http://www-verimag.imag.fr/TR/TR-2011-10.pdf
http://www-verimag.imag.fr/TR/TR-2011-10.pdf
http://www-verimag.imag.fr/TR/TR-2011-8.pdf

Jannik Dreier, Pascal Lafourcade, Yassine Lakhnech A Taxonomy of Privacy in Voting Protocols

[17] Atsushi Fujioka, Tatsuaki Okamoto, and Kazuo Ohta. A practical secret voting scheme for large
scale elections. In Advances in Cryptology – AUSCRYPT ’92, volume 718 of LNCS, pages 244–251.
Springer, 1992. 3, 5.1, 4, 2, 5.5.2, 6

[18] Ari Juels, Dario Catalano, and Markus Jakobsson. Coercion-resistant electronic elections, 2002. 1

[19] Ari Juels, Dario Catalano, and Markus Jakobsson. Coercion-resistant electronic elections. In
WPES’05, pages 61–70. ACM, 2005. 3, 1, 2.2, 3, 3, 3.1, 5.3, 5.5.2

[20] Petr Klus, Ben Smyth, and Mark D. Ryan. Proswapper: Improved equivalence verifier for proverif.
http://www.bensmyth.com/proswapper.php, 2010. 3, 1

[21] Steve Kremer, Mark Ryan, and Ben Smyth. Election verifiability in electronic voting protocols. In
ESORICS 2010, volume 6345 of LNCS. Springer, 2010. 1

[22] R. Küsters and T. Truderung. An Epistemic Approach to Coercion-Resistance for Electronic Voting
Protocols. In S&P, pages 251–266. IEEE, 2009. 1

[23] Lucie Langer, Hugo Jonker, and Wolter Pieters. Anonymity and verifiability in voting: understanding
(un)linkability. In ICICS. Springer, 2010. 1

[24] Byoungcheon Lee, Colin Boyd, Ed Dawson, Kwangjo Kim, Jeongmo Yang, and Seungjae Yoo. Pro-
viding receipt-freeness in mixnet-based voting protocols. In ICISC, volume 2971 of LNCS. Springer
Berlin / Heidelberg, 2004. 1, 4, 2, 5.5, 5.5.2

[25] Tal Moran and Moni Naor. Receipt-free universally-verifiable voting with everlasting privacy. In
CRYPTO 2006, volume 4117 of LNCS, pages 373–392. Springer, 2006. 1

[26] Participants of the Dagstuhl Conference on Frontiers of E-Voting. Dagstuhl accord, 2007. 1

[27] Tatsuaki Okamoto. An electronic voting scheme. In Proceedings of the IFIP World Conference on IT
Tools, 1996. 3, 4, 2, 5.2, 5.5.2

[28] Ben Smyth and Veronique Cortier. Attacking and fixing helios: An analysis of ballot secrecy. Cryp-
tology ePrint Archive, Report 2010/625, 2010. http://eprint.iacr.org/. 1

[29] Ben Smyth and Veronique Cortier. Attacking and fixing helios: An analysis of ballot secrecy. In
CSF’11. IEEE, 2011. 1, 1

[30] Ben Smyth, Mark D. Ryan, Steve Kremer, and Mounira Kourjieh. Towards automatic analysis of
election verifiability properties. In ARSPA-WITS, volume 6186 of LNCS, pages 146–163. Springer,
2010. 1

[31] Dominique Unruh and Jörn Müller-Quade. Universally composable incoercibility. In Advances in
Cryptology - CRYPTO 2010, volume 6223 of LNCS, pages 411–428. Springer, 2010. 1

[32] Ministerie van Binnenlandse Zaken en Koninkrijksrelaties (Netherland’s Ministry of the Interior and
Kingdom Relations). Stemmen met potlood en papier (voting with pencil andpaper), May 2008. 1

A Proof of Proposition 1
For this proof, we need the following Lemmas by [11].

Lemma 6 ([11]). Let P be a closed plain process and ch a channel name such that ch /∈ fn(P)∪ bn(P).
We have (P ch)\out(ch,·) ≈l P .

Lemma 7 ([11]). Let C1 = νũ1.(_|B1) and C2 = νũ2.(_|B2) be two evaluation contexts such that
ũ1 ∩ (fv(B2) ∪ fn(B2)) = ∅ and ũ2 ∩ (fv(B1) ∪ fn(B1)) = ∅. Then we have C1[C2[A]] ≡ C2[C1[A]]
for any extended process A.

18/27 Verimag Research Report no TR-2011-10

http://www.bensmyth.com/proswapper.php
http://eprint.iacr.org/

A Taxonomy of Privacy in Voting Protocols Jannik Dreier, Pascal Lafourcade, Yassine Lakhnech

We will now prove the different propositions.

1. If a protocol respects PrivacyI,Abs,Behavior then it also respects PrivacyO,Abs,Behavior.

Proof. We detail the case V P I,Abs,Behavior, the other cases are similar. We will use a proof by
contradiction. Suppose that a protocol does not ensure V P I,Abs,Behavior, i.e. we have

A [S′ [V σidAσfAσvA |V σidBσfBσvB]] 6≈l A
[
S′
[
V ′|V σidBσf ′

B
σv′A

]]
which we can rewrite as

A [S [V σidAσfAσvA |V σidBσfBσvB |V σidiσfiσvi]] 6≈l A
[
S
[
V ′|V σidBσf ′

B
σv′A |V σidiσfiσvi

]]
for some honest voter V σidiσfiσvi . This yields the contradiction for a context (an attacker) enforcing
V σc1,c2idC

≈l V σidiσfiσvi .

2. If a protocol respects PrivacyEve,FA,Behavior, it also respects PrivacyEve,PO,Behavior.

Proof. This is trivial, in the case FA we consider all σvA , whereas we exclude some in the case PO.
Thus, if the bisimilarity holds for FA, it also holds for PO.

3. If a protocol respects PrivacyEve,Abs,AB , it also respects PrivacyEve,Abs,EB

Proof. In the case AB we consider all σfB and have σf ′
B

= σfB and σv′A = σvA . This implies that
there exist σfB , σf ′

B
and σv′A (the case EB) such that the bisimilarity holds.

4. Coercion-Resistance is stronger than Receipt-Freeness, which is stronger than Vote-Privacy:

• If a protocol respects CREve,Abs,Behavior, it also respects RFEve,Abs,Behavior.

Proof. The proof is similar to the proofs of Coercion-Resistance implies Receipt-Freeness and
Vote-Independence with active collaboration implies Vote-Independence with passive Collab-
oration in the DKR model [11, 16].
Let C be an evaluation context such that C = νc1.νc2.(_|P) for some plain process P which
fulfills

S
[
C
[
V σc1,c2idA

]
|V σidBσfBσvB |VC

]
≈l S

[
V σidAσfAσ

chc
vA |V σidBσfBσvB |VC

]
Note that such a C can be constructed directly from the vote process V . By hypothesis we
know that there is a closed plain process V ′ such that

C [V ′]
\out(chc,·) ≈l V σidAσf ′

A
σvB

and

A
[
S
[
C
[
V σc1,c2idA

]
|V σidBσfBσvB |VC

]]
≈l A

[
S
[
C [V ′] |V σidBσf ′

B
σv′A |VC

]]
We have to find another process V ′′ such that

V ′′\out(chc,·) ≈l V σidAσf ′
A
σvB

and

A
[
S
[
V σidAσfAσ

chc
vA |V σidBσfBσvB |VC

]]
≈l A

[
S
[
V ′|V σidBσf ′

B
σv′A |VC

]]
Let V ′′ = C[V ′]. This directly fulfills the first requirement. We now use the condition on C
and apply the context A

A
[
S
[
C
[
V σc1,c2idA

]
|V σidBσfBσvB |VC

]]
≈l A

[
S
[
V σidAσfAσ

chc
vA |V σidBσfBσvB |VC

]]
Verimag Research Report no TR-2011-10 19/27

Jannik Dreier, Pascal Lafourcade, Yassine Lakhnech A Taxonomy of Privacy in Voting Protocols

The second hypothesis gives

A
[
S
[
C
[
V σc1,c2idA

]
|V σidBσfBσvB |VC

]]
≈l A

[
S
[
C [V ′] |V σidBσf ′

B
σv′A |VC

]]
As labeled bisimilarity is transitive, we can conclude

A
[
S
[
V σidAσfAσ

chc
vA |V σidBσfBσvB |VC

]]
≈l A

[
S
[
C [V ′] |V σidBσf ′

B
σv′A |VC

]]
which gives us the desired result for V ′′ = C[V ′].

• If a protocol respects RFEve,Abs,Behavior, it also respects V PEve,Abs,Behavior.

Proof. The proof is similar to the proof of Receipt-Freeness implies Vote-Privacy and Vote-
Independence with passive Collaboration implies Vote-Independence in the DKR-model [11,
16]:
By hypothesis there is a closed plain process so that

V ′\out(chc,·) ≈l V σidAσf ′
A
σvB

and

A
[
S
[
V σidAσfAσ

chc
vA |V σidBσfBσvB |VC

]]
≈l A

[
S
[
V ′|V σidBσf ′

B
σv′A |VC

]]
We apply the context νchc(_|!in(chc, x)) on both sides, which gives

A
[
S
[
V σidAσfAσ

chc
vA |V σidBσfBσvB |VC

]]\out(chc,·)
≈l

A
[
S
[
V ′|V σidBσf ′

B
σv′A |VC

]]\out(chc,·)
By using Lemma 7 we obtain

A
[
S
[
V ′|V σidBσf ′

B
σvA |VC

]]\out(chc,·) ≡ A [S [V ′\out(chc,·)|V σidBσf ′
B
σv′A |VC

]]
and

A
[
S
[
V σidAσfAσ

chc
vA |V σidBσfBσvB |VC

]]\out(chc,·)
≡

A
[
S
[(
V σidAσfAσ

chc
vA

)\out(chc,·) |V σidBσfBσvB |VC]]
We can now apply Lemma 6 and use the fact that labeled bisimilarity is closed under structural
equivalence and obtain

A [S [V σidAσfAσvA |V σidBσfBσvB |VC]] ≈l A
[
S
[
V ′\out(chc,·)|V σidBσf ′

B
σv′A |VC

]]
where we can chose V ′′ = V ′\out(chc,·) to conclude.

B Proof of Proposition 2
We use the following equational theory:

pdec(penc(m, pk(sk), r), sk) = m
pet(penc(m, pk(sk), r), penc(m, pk(sk), r′), sk) = true

pet(penc(m, pk(sk), r), penc(m′, pk(sk), r′), sk) = false

first(x, y) = x
second(x, y) = y

checksign(sign(m, sk), pk(sk)) = m

The equation models the public key encryption; the following two equations express plaintext equiva-
lence tests. The first and second functions are used to build lists, and the last equation models signatures.

Listings 1-7 give the processes modeled in the applied pi calculus using the ProVerif syntax.

20/27 Verimag Research Report no TR-2011-10

A Taxonomy of Privacy in Voting Protocols Jannik Dreier, Pascal Lafourcade, Yassine Lakhnech

l e t pAdmin =
i n (skaCh , ska) ;
i n (pktCh , p k t) ;
new c r e d 1 ; new c r e d 2 ; new c r e d 3 ;
o u t (credCh1 , c r e d 1) ;
o u t (credCh2 , c r e d 2) ;
o u t (credCh3 , c r e d 3) ;
new r1 ; new r2 ; new r3 ;
l e t c r e d 1 e n c = penc (cred1 , pkt , r1) i n
l e t c r e d 2 e n c = penc (cred2 , pkt , r2) i n
l e t c r e d 3 e n c = penc (cred3 , pkt , r3) i n
l e t v o t e r l i s t = (c red1enc , (c red2enc , (c red3enc , n i l))) i n
o u t (chLC , (s i g n (v o t e r l i s t , ska) , v o t e r l i s t)) .

Listing 1: The administrator process

The administrator The administrator (Process 1) receives his secret key and the tallier’s public key. He
generates a credential for each voter, sends them over private channels to the voters and publishes a signed
and encrypted list of the credentials.

The voter The voter process (Process 2) receives his credential and the tallier’s public key. Depending
of the values of vote, v and realvote (which can be determined using a substitution), he will vote or post
fake ballots several times.

A voter under control of the attacker A voter controlled by the attacker is modeled by Process 3. This
process can be obtained by calculating processVc1,c2 as defined in Definition 5.

The resisting Voter The voter trying to resist coercion (Process 4) looks like the processVc1,c2 (Process
3), but fakes the credential sent to the coercer and posts his real ballot using the real credential.

The mixer The mixer (Process 5) receives the ballots and stores them in a list. If he receives a ballot
that reuses a credential, he will ignore it. After having received all m ballots, he mixes them (modeled as
publishing all of them in parallel).

The tallier The tallier process (Process 6) receives the mixed ballots and the signed list of credentials.
He checks the ballots for valid credentials using plaintext equivalence tests. If the credential is correct, the
ballot is opened, otherwise discarded.

The main process The main process (Process 7) shows how the participation processes (three voters, the
administrator, the mixer and the tallier) are combined in parallel.

The keying process The keying process (Process 7) generates the keys and distributes them.

Proof. To show that the protocol by Juels et al. fulfills CRI,FA,EB , we have to show that for any voting
process S and any substitution σfA and σfC , and for any context A such that A = νc̃h.(_|A′chout) where
c̃h are all unbound channels and names in A′ and in the “hole”, there exist substitutions σfB , σf ′

B
and σf ′

A
,

and a process V ′ such that for all votes σvA and σvB where σvB does not make a voter abstain there exists
a vote σv′A and the following holds: For any context C with C = νc1.νc2.(_|P ′) and ñ ∩ fn(C) = ∅,

S
[
C
[
V σc1,c2idA

]
|V σidBσfBσvB |V σ

c1,c2
idC

]
≈l S

[
V σidAσfAσ

chc
vA |V σidBσfBσvB |V σ

c1,c2
idC

]
we have

Verimag Research Report no TR-2011-10 21/27

Jannik Dreier, Pascal Lafourcade, Yassine Lakhnech A Taxonomy of Privacy in Voting Protocols

l e t pVote r =
i n (credCh , c r e d) ;
i n (pktCh , pkT) ;
i f f i r s t (v o t e) = t r u e t h e n
l e t v o t e = second (v o t e) i n pVoter ’ .

l e t pVoter ’ =
new f a k e ; new r ; new r ’ ;
i f f i r s t (r e a l v o t e) = t r u e t h e n pVoter ’ ’
e l s e pVoter ’ ’ ’ .

l e t pVoter ’ =
o u t (bbCh , (penc (c red , pkT , r) , penc (f i r s t (v) , pkT , r ’))) ;
i f f i r s t (v o t e) = t r u e t h e n
l e t v o t e = second (v o t e) i n
l e t r e a l v o t e = second (r e a l v o t e) i n
l e t v = second (v) i n pVoter ’ .

l e t pVoter ’ ’ =
o u t (bbCh , (penc (fake , pkT , r) , penc (f i r s t (v) , pkT , r ’))) ;
i f f i r s t (v o t e) = t r u e t h e n
l e t v o t e = second (v o t e) i n
l e t r e a l v o t e = second (r e a l v o t e) i n
l e t v = second (v) i n pVoter ’ .

Listing 2: The voter’s process

• C [V ′]
\out(chc,·) ≈l V σidAσf ′

A
σvB

• A
[
S
[
C
[
V σc1,c2idA

]
|V σidBσfBσvB |V σ

c1,c2
idC

]]
≈l A

[
S
[
C [V ′] |V σidBσf ′

B
σv′A |V σ

c1,c2
idC

]]
.

In our model, we will show that

C [pVoterR]
\out(chc,·) ≈l pVoterσidAσf ′

A
σvB

and

A
[
νc̃h.(pKey|pTally|pMixer|pAdmin|C [pVoterC1C2σidA] |pVoterσidBσfBσvB |pVoterC1C2σidC)

]
≈l

A
[
νc̃h.(pKey|pTally|pMixer|pAdmin|C [pVoterR] |pVoterσidBσf ′

B
σv′A |pVoterC1C2σidC)

]
where νc̃h = νpktCh.νsktCh.νpkaCh.νskaCh.νcredCh1.νcredCh2.νcredCh3, σidA = {credCh1/credCh},
σidB = {credCh2/credCh} and σidC = {credCh3/credCh}. Technically this proof is only correct for the case
of three voters, a similar proof can however be made for any number of voters.

Note that, without loss of generality, we will suppose that σvA contains only one vote or abstention,
and that σfA contains no fakes. If fakes are used, they can easily be counterbalanced in σf ′

A
. To show that

the bisimilarity holds, we will discuss different cases.

1. Abstention of V σidA . If V σidA abstains, he will receive his credential and the administrator’s public
key and forward them to the attacker on channel c1, and stop. The attacker has now two options:

(a) He ignores the credential. Then σv′A has to be abstention as well. Thus, in the left hand case

22/27 Verimag Research Report no TR-2011-10

A Taxonomy of Privacy in Voting Protocols Jannik Dreier, Pascal Lafourcade, Yassine Lakhnech

l e t pVoterC1C2 =
i n (credCh , c r e d) ;
o u t (c1 , c r e d) ;
i n (pktCh , pkT) ;
o u t (c1 , pkT) ;
i n (c2 , m) ;
i f m = t r u e t h e n pVoterC1C2 ’ .

l e t pVoterC1C2 ’ =
new f a k e ; o u t (c1 , f a k e) ;
new r ; o u t (c1 , r) ;
new r ’ ; o u t (c1 , r ’) ;
i n (c2 , m1) ;
i f m1 = t r u e t h e n pVoterC1C2 ’ ’
e l s e pVoterC1C2 ’ ’ ’ .

l e t pVoterC1C2 ’ ’ =
i n (c2 , m2) ;
o u t (bbCh , m2) ;
i n (c2 , m3) ;
i f m3 = t r u e t h e n pVoterC1C2 ’ .

l e t pVoterC1C2 ’ ’ ’ =
i n (c2 , m4) ;
o u t (bbCh , m4) ;
i n (c2 , m5) ;
i f m5 = t r u e t h e n pVoterC1C2 ’ .

Listing 3: The process of a voter under control of the attacker

Verimag Research Report no TR-2011-10 23/27

Jannik Dreier, Pascal Lafourcade, Yassine Lakhnech A Taxonomy of Privacy in Voting Protocols

l e t pVoterR =
i n (credCh , c r e d) ;
new f a k e _ c r e d ;
o u t (c1 , f a k e _ c r e d) ;
i n (pktCh , pkT) ;
o u t (c1 , pkT) ;
o u t (bbCh , (penc (c red , pkT , r ’ ’) , penc (v , pkT , r ’ ’ ’))) ;
i n (c2 , m) ;
i f m = t r u e t h e n pVoterR ’ .

l e t pVoterR ’ =
new f a k e ; o u t (c1 , f a k e) ;
new r ; o u t (c1 , r) ;
new r ’ ; o u t (c1 , r ’) ;
i n (c2 , m1) ;
i f m1 = t r u e t h e n pVoterR ’ ’
e l s e pVoterR ’ ’ ’ .

l e t pVoterR ’ ’ =
i n (c2 , m2) ;
o u t (bbCh , m2) ;
i n (c2 , m3) ;
i f m3 = t r u e t h e n pVoterR ’ .

l e t pVoterR ’ ’ ’ =
i n (c2 , m4) ;
o u t (bbCh , m4) ;
i n (c2 , m5) ;
i f m5 = t r u e t h e n pVoterR ’ .

Listing 4: The process V ′ resisting coercion

24/27 Verimag Research Report no TR-2011-10

A Taxonomy of Privacy in Voting Protocols Jannik Dreier, Pascal Lafourcade, Yassine Lakhnech

l e t pMixer =
i n (sktCh , s k t) ;
l e t c o u n t = z e r o i n
l e t c l i s t = n i l i n pMixer ’ .

l e t pMixer ’ =
i f c o u n t = m t h e n

l e t l i s t = c l i s t i n pMix
e l s e pMixer ’ ’ .

l e t pMixer ’ ’ =
i n (bbCh , b a l l o t) ;
l e t (c red , v o t e) = b a l l o t i n
l e t l i s t = c l i s t i n p I n L i s t .

l e t p I n L i s t =
i f l i s t <> n i l t h e n

i f p e t (f i r s t (f i r s t (l i s t)) , c red , s k t) = f a l s e t h e n
l e t l i s t = second (l i s t) i n p I n L i s t

e l s e
pMixer ’

e l s e
l e t c l i s t = (b a l l o t , c l i s t) i n
l e t c o u n t = suc (c o u n t) i n pMixer ’ .

l e t pMix =
new r1 ; new r2 ;
(o u t (bb2Ch , (r e e n c (f i r s t (f i r s t (l i s t)) , r 1) ,

r e e n c (second (f i r s t (l i s t)) , r 2))) |
(i f second (l i s t) <> n i l t h e n

l e t l i s t = second (l i s t) i n pMix)) .

Listing 5: The mixer and his subprocesses

l e t p T a l l y =
i n (pkaCh , pka) ;
i n (sktCh , s k t) ;
i n (chLC , (s i g n a t u r e , l i s t c r e d)) ;
i f c h e c k s i g n (s i g n a t u r e , pka) = l i s t c r e d t h e n
! pOpen .

l e t pOpen =
i n (bb2Ch , (c red , v o t e)) ;
pOpen ’ .

l e t pOpen ’ =
i f l i s t c r e d <> n i l t h e n

i f p e t (f i r s t (f i r s t (l i s t c r e d)) , c red , s k t) = f a l s e t h e n
l e t l i s t c r e d = second (l i s t c r e d) i n pOpen ’

e l s e
o u t (bb3Ch , pdec (vo te , s k t)) .

Listing 6: The tallier

Verimag Research Report no TR-2011-10 25/27

Jannik Dreier, Pascal Lafourcade, Yassine Lakhnech A Taxonomy of Privacy in Voting Protocols

p r o c e s s
new pktCh ; new sktCh ; new pkaCh ; new skaCh ;
new credCh1 ; new credCh2 ; new credCh3 ;
(pKey | p T a l l y | pMixer | pAdmin |

(l e t credCh = credCh1 i n l e t v = a i n pVote r) |
(l e t credCh = credCh2 i n l e t v = b i n pVote r) |
(l e t credCh = credCh3 i n l e t v = c i n pVoterC1C2))

Listing 7: The main process

l e t pKey =
new s k t ; new ska ;
(o u t (sktCh , s k t) | o u t (sktCh , s k t) |

o u t (skaCh , ska) | o u t (pkaCh , pka) |
o u t (pktCh , pk (s k t)) | o u t (pktCh , pk (s k t)) |
o u t (pktCh , pk (s k t)) | o u t (pktCh , pk (s k t)))

Listing 8: The keying process

we have the following frame4 (modulo the behavior of VidC):

φ1l = νcred1.νcred2.νr.νr
′.({cred1/x1} | {pkT/x2} |

{(penc(cred2,pkT,r),penc(b,pkT,r′))/x3})
(2)

and in the right hand case

φ1r = νcred1.νfake_cred.νr.νr′.({fake_cred/x1} | {pkT/x2} |
{(penc(cred1,pkT,r),penc(b,pkT,r′))/x3})

(3)

These frames are obviously statically equivalent, and remain statically equivalent for any be-
havior of VidC . The mixers will mix the votes, and after tallying on both sides one vote for b
will be counted.

(b) He uses the credential to vote c 6= b. Then σv′A and σf ′
A

have to counterbalance this, which
is possible as we can chose it depending on the adversary’s behavior. We obtain the following
frame (modulo the behavior of VidC):

φ2l = νcred1.νcred2.νfake.νr1.νr2.νr3.νr4.({cred1/x1} | {pkT/x2} |
{(penc(cred2,pkT,r1),penc(b,pkT,r2))/x3} | {(penc(fake,pkT,r3),penc(c,pkT,r4))/x4})

(4)

and a vote (penc(x1, pkT, r), penc(c, pkT, r
′)) by the attacker in the left hand case. In the

right hand case we have

φ2r = νcred1.νfake_cred.νcred2.νr1.νr2.νr3.νr4.({fake_cred/x1} | {pkT/x2} |
{(penc(cred1,pkT,r1),penc(b,pkT,r2))/x3} | {(penc(cred2,pkT,r3),penc(c,pkT,r4))/x4})

(5)

and a vote (penc(x1, pkT, r), penc(c, pkT, r
′)). The frames are statically equivalent and on

both sides we have one fake, and a valid vote for b and c each. Thus the mixing and tallying
will remain equivalent as well.

2. Voting of V σidA . In that case, the condition on C ensures that he forces the targeted voter to vote
σva using the correct credential. We will consider the same two subcases:

4xi is the variable associated with the i-th output in an α-transition.

26/27 Verimag Research Report no TR-2011-10

A Taxonomy of Privacy in Voting Protocols Jannik Dreier, Pascal Lafourcade, Yassine Lakhnech

(a) The attacker ignores the revealed credential. Then σv′A = σvA . Thus, in the left hand case we
have the following frame (modulo the behavior of VidC):

φ3l = νcred1.νcred2.νr1.νr2.νr3.νr4.νr5.νr6.({cred1/x1} | {pkT/x2} |
{(penc(cred1,pkT,r1),penc(a,pkT,r2))/x3})| {(penc(fake,pkT,r3),penc(a,pkT,r4))/x4})|

{(penc(cred2,pkT,r5),penc(b,pkT,r6))/x5})
(6)

and in the right hand case

φ3r = νcred1.νcred2.νfake_cred.νr1.νr2.νr3.νr4.νr5.νr6.({fake_cred/x1} | {pkT/x2} |
{(penc(cred1,pkT,r1),penc(b,pkT,r2))/x3})| {(penc(fake_cred,pkT,r3),penc(a,pkT,r4))/x4})|

{(penc(cred2,pkT,r5),penc(a,pkT,r6))/x5})
(7)

In the left hand case, σfb counterbalances the fact that on the right side, the targeted voter will
post a fake. The resulting frames are obviously statically equivalent. The mixers will mix the
votes, and after tallying on both sides one vote for a and one vote for b will be counted.

(b) He uses the credential to vote c. Then σv′A and σf ′
A

have to counterbalance this, which is
possible as we can chose it depending on the adversary’s behavior. We obtain the following
frame (modulo the behavior of VidC):

φ4l = νcred1.νcred2.νr1.νr2.νr3.νr4.νr5.νr6.({cred1/x1} | {pkT/x2} |
{(penc(cred1,pkT,r1),penc(a,pkT,r2))/x3})| {(penc(fake,pkT,r3),penc(a,pkT,r4))/x4})|

{(penc(cred2,pkT,r5),penc(b,pkT,r6))/x5})
(8)

and a vote (penc(x1, pkT, r), penc(c, pkT, r
′)) by the attacker in the left hand case. In the

right hand case we have

φ4r = νcred1.νcred2.νfake_cred.νr1.νr2.νr3.νr4.νr5.νr6.({fake_cred/x1} | {pkT/x2} |
{(penc(cred1,pkT,r1),penc(b,pkT,r2))/x3})| {(penc(cred2,pkT,r3),penc(c,pkT,r4))/x4})|

{(penc(cred2,pkT,r5),penc(a,pkT,r6))/x5})
(9)

and a vote (penc(x1, pkT, r), penc(c, pkT, r
′)). The frames are statically equivalent and, on

both sides, we have one fake, a valid vote for b, two concurring votes (i.e. using the same
credentials) for a and c each. As the decision which concurring vote will be counted depends
on the network, both sides are bisimilar as both cases are possible on each side.

Note that the “insider” V c1,c2idC
does not help the attacker to distinguish both sides. He cannot copy votes as

the votes are sent over an anonymous channel and cannot be linked to the voter who sent them (as there are
no signatures etc.). Having a correct credential alone is therefore not helping the attacker.

Verimag Research Report no TR-2011-10 27/27

	Introduction
	Preliminaries
	The Applied Pi Calculus
	Voting Protocol and Process

	Defining Privacy: A Modular Approach
	Definitions in the applied pi calculus

	Hierarchy
	Case Studies
	FOO
	Protocol Description
	Analysis

	Okamoto
	Protocol Description
	Analysis

	Juels et al.
	Protocol Description
	Analysis

	Bingo Voting
	Protocol Description
	Analysis

	Lee et al.
	Protocol Description
	Analysis

	Conclusion
	Proof of Proposition 1
	Proof of Proposition 2

