
HAL Id: hal-01338064
https://hal.science/hal-01338064v1

Submitted on 27 Jun 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Formal Taxonomy of Privacy in Voting Protocols
Jannik Dreier, Pascal Lafourcade, Yassine Lakhnech

To cite this version:
Jannik Dreier, Pascal Lafourcade, Yassine Lakhnech. A Formal Taxonomy of Privacy in Voting
Protocols. First IEEE International Workshop on Security and Forensics in Communication Systems
(ICC’12 WS - SFCS), Jun 2012, Ottawa, Canada. �10.1109/ICC.2012.6364938�. �hal-01338064�

https://hal.science/hal-01338064v1
https://hal.archives-ouvertes.fr

A Formal Taxonomy of Privacy in Voting Protocols
Jannik Dreier

Université Grenoble 1, CNRS, Verimag
jannik.dreier@imag.fr

Pascal Lafourcade
Université Grenoble 1, CNRS, Verimag

pascal.lafourcade@imag.fr

Yassine Lakhnech
Université Grenoble 1, CNRS, Verimag

yassine.lakhnech@imag.fr

Abstract—Privacy is one of the main issues in electronic voting.
We propose a family of symbolic privacy notions that allows to
assess the level of privacy ensured by a voting protocol. Our
definitions are applicable to protocols featuring multiple votes per
voter and special attack scenarios such as vote-copying or forced
abstention. Finally we employ our definitions on several existing
voting protocols to show that our model allows to compare
different types of protocols based on different techniques, and is
suitable for automated verification using existing tools.

I. INTRODUCTION

Electronic voting systems have been designed and employed
in practice for several years. However their use in general
elections is controversial due to their security issues [1], [2],
[3]. Researchers have identified numerous security properties
that are required for secure voting systems and protocols. In
this paper we will concentrate on privacy, which is often split
into three properties:

• Vote-Privacy: The votes are kept private. This can also
be modeled as an unlinkability between the voter and his
vote.

• Receipt-Freeness: A voter cannot construct a receipt
which allows him to prove to a third party that he voted
for a certain candidate. This is to prevent vote-buying.

• Coercion-Resistance: Even when a voter interacts with
a coercer during the entire voting process, the coercer
cannot be sure whether he followed his instructions or
actually voted for another candidate.

However the design of protocols to fulfill the high require-
ments in electronic voting is notoriously difficult and error-
prone. To avoid bugs and analyze protocols, formal verification
methods are an ideal tool and have been used in security and
safety critical system for several years. In the area of voting
protocols, many different formal models and definitions of
the above mentioned properties have been proposed and used
successfully to discover bugs (e.g. in Helios [4]). However,
since the structure, setting and basic design of voting protocols
can be quite different depending on the primitives used, many
of these definitions are tailored to fit a specific (sub-)group
of protocols. Sometimes a protocol can be proved secure in

This work was supported by ANR SeSur AVOTE.
2012 IEEE. Personal use of this material is permitted. Permission from

IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.

DOI http://dx.doi.org/10.1109/ICC.2012.6364938

one model, but not in another. This hinders the objective
comparisons of protocols.

In particular in the area of privacy properties there is a
great variety of models. Moreover, recent research shows that
some existing definitions might be insufficient: Smyth and
Cortier [4] pointed out that the ability to copy another voter’s
vote can enable attacks on privacy.

Our Contributions.
1) We propose a new family of privacy notions which

allows to assess the level of privacy provided by a voting
protocol. These notions are based on formal definitions
of the classical notions (Vote-Privacy, Receipt-Freeness
and Coercion-Resistance) in the applied pi calculus [5],
with a refined protocol model and including new attacks.
The resulting family gives a deep understanding of the
different levels and requirements for privacy. Addition-
ally – by including a generalization of the notion of
“Vote-Independence” [6] – our notions deal with attacks
based on vote-copying that were not captured in the
model by Delaune et al. [7].

2) A deep understanding of privacy properties, and in par-
ticular the relationship between the different notions, is
a prerequisite for the correct design of voting protocols.
We provide a thorough comparison of existing and new
notions.

3) Using several case studies [8], [9], [10], [11] we show
that our model allows the analysis of different types
of protocols. To automatically analyze protocols we use
ProSwapper [12] and ProVerif [13]. Using these tools we
can automate some proofs of Vote-Independence which
were done by hand previously [6], and check a protocol
supporting multiple votes (a variant of [9]).

Related Work. Although the informal specifications of the
properties are very general, most of the formal models and
definitions in the literature are tailored to a specific type of
protocols. Many protocols were in fact developed together with
their own definitions (e.g. [14], [10]) and analyzed by hand in
the original paper.

Juels et al. [10] (which became the bases for Civitas [15])
were the first to give a formal, but computational definition
of coercion-resistance. It was later translated to the applied
pi calculus and automated using ProVerif [16]. However – as
their protocol is based on voting “credentials” – credentials
also appear in the definition. Their model is thus unsuitable
for protocols that do not use credentials (e.g. Bingo Voting [11]
or the protocol by Lee et al. [17]).

More general definitions were developed by Delaune, Kre-
mer and Ryan [7]. They express different levels of privacy as
observational equivalence in the applied pi calculus [5]. An
attacker should not be able to distinguish one case in which
the voter complies with the coercer’s instructions and another
in which he only pretends to do so and votes as he wishes.
However their definitions are too strong for the protocol by
Juels et al.: since in one case the targeted voter complies and
posts only one correct ballot, and in the other he secretly posts
his actual ballot and a fake one to cheat the coercer, both cases
can be distinguished by counting the ballots.

Smyth and Cortier [4] showed that being able to copy
votes can compromise privacy if the number of participants
is small or a noticeable fraction of voters can be corrupted.
For example in the case of three voters, the third voter can try
to copy the first voter’s vote and submit it as his vote. This will
result in (at least) two votes for the candidate chosen by the
first voter and his choice can thus be inferred from the result.
They also formally analyzed ballot secrecy in Helios using
an adaption of the model by Delaune, Kremer and Ryan [7].
However it was shown that, in general, the DKR model is
not sufficient to capture vote-independence. For example the
protocol by Lee et al. [17] was shown to be coercion-resistant
in this model, despite its vulnerability to vote-copy attacks [6].

Küsters and Truderung [18] proposed a first model inde-
pendent definition of coercion-resistance for voting protocols.
Their definition has to be instantiated using a concrete formal
model. The exact security level can be defined with respect to
certain chosen goals, and excluding explicit special cases. In
contrast to our family of notions, their definition is based on
traces and not bisimulations.

Computational definitions of receipt-freeness [19] and
coercion-resistance [20] that can be applied to other appli-
cations than voting have also been proposed. Completely
application-independent anonymity notions were proposed by
Bohli and Pashalidis [21]. Although their definitions are very
general, the application on voting protocols results in – for this
context – rather unusual privacy notions (Pseudonymity etc.),
compared to the classic properties such as receipt-freeness or
coercion-resistance.

Outline of the Paper. In the next section, we give a brief in-
troduction of the applied pi calculus and develop our model of
a voting process. Section III starts by explaining informally our
privacy notions and subsequently gives the formal definitions.
In Section IV, we discuss the relationship between the different
notions, explain the hierarchy implied by the definitions and
analyze several case studies to illustrate our definitions. In the
last section, we conclude and discuss future work.

II. PRELIMINARIES

A. The Applied Pi Calculus

The applied pi calculus [5] is a formal language to de-
scribe concurrent processes (in particular cryptographic pro-
tocols) with tool support [12], [13]. The calculus consists
of names (which typically correspond to data or channels),
variables, and a signature Σ of function symbols which

can be used to build terms. Functions typically include en-
cryption and decryption (for example enc(message, key),
dec(message, key)), hashing, signing etc. Terms are correct
(i.e. respecting arity and sorts) combinations of names and
functions. Equalities are modeled using an equational the-
ory E which defines a relation =E . A classical example
which describes the correctness of symmetric encryption is
dec(enc(message, key), key) =E message. Plain processes
are constructed using the following grammar:

P , Q, R := processes
0 null process
P |Q parallel composition
!P replication
νn.P name/variable restriction
if M = N then P else Q conditional
in(u, x) message input
out(u, x) message output

Extended processes are plain processes or active substitutions
{M/x}. The substitution {M/x} replaces the variable x with
term M . We denote by fv(A), bv(A), fn(A), bn(A) the
free variables, bound variables, free names or bound names
respectively. A process is closed if all variables are bound or
defined by an active substitution. A context C[] denotes a
process with a hole for a process.

More details and the semantics are given in the original
paper [5]. To reason about the equivalence or bisimilarity of
processes, we use the following bisimilarity relation.

Definition 1 (Labeled Bisimilarity (≈l) [5]): Labeled
bisimilarity is the largest symmetric relation R on closed
processes, such that A R B implies

1) A ≈s B,
2) if A→ A′, then B → B′ and A′ R B′ for some B′,
3) if A α−→ A′ and fv(α) ⊆ dom(A) and bn(α)∩fn(B) =
∅, then B →∗ α−→→∗ B′ and A′ R B′ for some B′.

Each interaction on one side can be simulated by the other
side, and the processes are statically equivalent (see [5])
at each step during the execution, thus an attacker cannot
distinguish both sides.

To formally describe the interaction between a voter and the
attacker, we use the following two definitions. The first one
turns a process P into another process P ch that reveals all its
inputs and secret data on the channel ch.

Definition 2 (Process P ch [7]): Let P be a plain process
and ch be a channel name. We define P ch as follows:
• 0ch =̂ 0,
• (P |Q)ch =̂ P ch|Qch,
• (νn.P)ch =̂ νn.out(ch, n).P ch when n is a name of

base type,
• (νn.P)ch =̂ νn.P ch otherwise,
• (in(u, x).P)ch =̂ in(u, x).out(ch, x).P ch when x is a

variable of base type,
• (in(u, x).P)ch =̂ in(u, x).P ch otherwise,
• (out(u,M).P)ch =̂ out(u,M).P ch,
• (!P)ch =̂ !P ch,

• (ifM = N then P else Q)ch =̂ ifM = N then P ch

else Qch.
In the remainder we assume that ch /∈ fn(P) ∪ bn(P)
before applying the transformation. The second definition does
not only reveal the secret data, but also takes orders from
an outsider before sending a message or branching, i.e. the
process is under complete remote control.

Definition 3 (Process P c1,c2 [7]): Let P be a plain process
and c1, c2 be channel names. We define P c1,c2 as follows:
• 0c1,c2 =̂ 0,
• (P |Q)c1,c2 =̂ P c1,c2 |Qc1,c2 ,
• (νn.P)c1,c2 =̂ νn.out(c1, n).P c1,c2 when n is a name

of base type,
• (νn.P)c1,c2 =̂ νn.P c1,c2 otherwise,
• (in(u, x).P)c1,c2 =̂ in(u, x).out(c1, x).P c1,c2 when x

is a variable of base type and x is a fresh variable,
• (in(u, x).P)c1,c2 =̂ in(u, x).P c1,c2 otherwise,
• (out(u,M).P)c1,c2 =̂ in(c2, x).out(u, x).P c1,c2 ,
• (!P)c1,c2 =̂ !P c1,c2 ,
• (if M = N then P else Q)c1,c2 =̂ in(c2, x).if x =

true then P c1,c2 else Qc1,c2 where and x is a fresh
variable and true is a constant.

The following definition hides the output of a process.
Definition 4 (Process A\out(ch,·) [7]): Let A be an ex-

tended process. We define the process A\out(ch,·) as
νch.(A|!in(ch, x)).

B. Voting Protocol and Process

First of all, we define the notion of a voting protocol.
Informally, a voting protocol specifies the processes executed
by voters and authorities.

Definition 5 (Voting Protocol): A voting protocol is a tuple
(V,A1, . . . , Am, ñ) where V is the process that is executed by
the voter, the Aj’s are the processes executed by the election
authorities, and ñ is a set of private channels.
Note that the protocol only defines one process V which
will be instantiated for each voter. Yet here may be several
authorities, for example a registrar, a bulletin board, a mixer,
a tallier, In our privacy definitions we reason about privacy
using concrete instances of a voting protocol. An instance is
called aVoting Process.

Definition 6 (Voting Process): A voting process of a voting
protocol (V,A1, . . . , Am, ñ) is a closed plain process

νm̃.(V σid1σf1σv1 | . . . |V σidnσfnσvn |A1| . . . |Al)
where l ≤ m, m̃ includes the secret channel names,
V σidiσviσfi are the processes executed by the voters where:
• σidi is a substitution assigning the identity to a process

(this determines for example the secret keys),
• σvi specifies the vote(s) and if the voter abstains,
• and σfi defines the other behavior, in particular if fake

votes are issued,
and the Ajs are the honest election authorities.
We notice that if an authority is not supposed to be honest, it
is not modeled and left to the context, i.e. the attacker (thus
l ≤ m). Note also that each voter runs the same process V ,

which is instantiated with a different σidi (his identity), σvi
(his vote(s)) and σfi (the fakes). If a protocol does not allow
fakes, σfi is empty.

This model allows us to reason about more than one correct
behavior, which is necessary if for example a voter can decide
to abstain from voting or if – in case of multiple votes1 – he
can vote between 0 and n times in the same election. In this
case V defines all the possible executions, and σvi and σfi will
determine which of them is executed. Another application are
protocols where voters can submit fake ballots and/or several
real ballots, even if only one of them is actually counted (like
in the one by Juels et al. [10]). In that case σvi determines
those who are actually counted, and σfi the others.

Example 1: As a running example, we consider the follow-
ing simple voting protocol.

Informal description: To construct a ballot, each voter
encrypts his vote with the administrator’s public key and signs
it. The resulting ballot is posted on the bulletin board. After the
voting deadline is over, the administrator checks if each ballot
is signed by an eligible voter. He then decrypts the correct
ballots and publishes the result.

Formal description in our model: The protocol is a tuple
(V,A, ∅) where

A = in(ch, (sig, vote)).
if checksign(sig, pkv) = vote
then sync 1.out(chR, dec(vote, ska))

V = νr.let evote = enc(v, pka, r) in

out(ch, (sign(evote, skv), evote))
where – by abuse of notation – sync 1 is a synchronization
point as implemented by ProSwapper [12]. A substitution
determining the identity of a voter would in this case assign the
secret key, e.g. σidk = {skk/skv}. The substitution specifying
the vote as for example a vote for candidate a would be
σvk = {a/v}. As the protocol does not specify the possibility
to create fakes, σvk is the empty substitution.
To facilitate notation we denote by S and S′ two contexts
which are like voting processes but with holes for two and
three voters respectively.

Definition 7 (S and S′): We define evaluation contexts S
and S′ such that
• S is like a voting process, but has a hole instead of three

processes among (V σidiσviσfi)1≤i≤n
• S′ which is like as voting process, but has a hole instead

of two processes among (V σidiσviσfi)1≤i≤n.
Finally, we formally define what it means for a voting process
to abstain. An abstaining voter does not send any message on
any channel, in particular no ballot, which would correspond
to a voter that does not even go to polling station. This is
stronger than just voting for a particular “null” candidate ⊥,
which will still result in sending a ballot (a blank vote).

Definition 8 (Abstention): A substitution σvi makes a voter
abstain if V σidiσvi ≈l 0.
Note that abstention is determined by σvi only, so the voter
abstains for any σfi .

1By multiple votes we mean a protocol where each voter can vote several
times in the same election, and each vote is transmitted in a separate ballot.

III. DEFINING PRIVACY: A MULTIDIMENSIONAL
APPROACH

In our setting, the attacker targets one voter (the targeted
voter) and tries to extract information about the targeted
voter’s vote(s). If the attacker knows the votes of all other
voters, he can infer the targeted voter’s vote from the result.
Thus we suppose that he is unsure about the vote(s) of one
other voter (the counterbalancing voter).

We express privacy as an observational equivalence. Intu-
itively, an attacker should not be able to distinguish between
an execution in which the targeted voter behaves and votes
as the attacker wishes, and another execution where he only
pretends to do so and votes differently. To ensure that the
attacker cannot tell the difference by just comparing the result,
the counterbalancing voter will compensate the different vote.

Starting from the definitions of Coercion-Resistance,
Receipt-Freeness and Vote-Privacy in the literature [7], [16],
[10] we propose extensions in the four following dimensions:
Communication between attacker and targeted voter, Vote-
Independence, security against forced-abstention-attacks and
knowledge about the behavior of the counterbalancing voter.

1) Communication between the attacker and the targeted
voter: We define three different levels:

a) In the simplest case, the attacker only observes
publicly available data and communication. We call
this case Vote-Privacy, denoted V P .

b) In the second case, the targeted voter tries to
convince the attacker that he voted for a certain
candidate by revealing his secret data. Yet the
attacker should not be able to determine if he
actually sent his real data, or a fake receipt. We
call this case Receipt-Freeness, denoted RF .

c) In the strongest case, the voter pretends to be
completely under the control of the attacker, i.e.
he reveals his secret data and follows the intruder’s
instructions. Yet the attacker should be unable to
determine if he complied with his instructions or
if he only pretended to do so. We call this case
Coercion-Resistance, denoted CR.

It is easy to see that Coercion-Resistance is stronger than
Receipt-Freeness, which is stronger than Vote-Privacy
(CR > RF > V P).

2) Vote-Independence/Corrupted Voter: The attacker may
control another legitimate voter (neither the targeted nor
the counterbalancing voter). In that case he could be able
to compromise privacy by trying to relate the corrupted
voter’s vote to the targeted voter’s vote (e.g. by copying
it) or using the corrupted voter’s secret data, such as his
credentials or keys. In our definitions, we distinguish
two case for Eve (the attacker):

a) Eve is an Outsider (denoted O): The attacker is
an external observer.

b) Eve is an Insider (denoted I): The attacker has a
legitimate voter under his control.

Intuitively, Insider is the stronger setting (I > O).

3) Security against forced-abstention-attacks: A protocol
can ensure that a voter can still vote as intended,
although a coercer wants him to abstain. Note that
in contrast to the literature [10], [16], we define this
property independently from of Coercion-Resistance, as
we also want to apply it in the case of Vote-Privacy.
Our model expresses this by requiring the observational
equivalence to hold:

a) in any case, i.e. even if the voter is forced to
abstain. We call this case security against Forced-
Abstention-Attacks, denoted FA.

b) if the targeted voter does not abstain from voting
(i.e. always participates). We call this case Partic-
ipation Only, denoted PO.

In this dimension security against Forced-Abstention-
Attacks is a stronger property than Participation Only
(FA > PO).

4) Knowledge about the behavior of the counterbalancing
voter: To model different knowledge about the behavior
of the counterbalancing voter, we consider two cases:

a) The observational equivalence holds for any be-
havior of this voter, i.e. any σfi . This models an
attacker that knows if the counterbalancing voter
is going to post fake ballots, or a situation where
there is no “noise” (=fake ballots) on the bulletin
board. We call this case Any Behavior, denoted
AB.

b) The observational equivalence holds for at least
one behavior of this voter, which may additionally
change, i.e. one σfi and one σf ′

i
. In this case, the

attacker is unsure about the number of fake ballots,
i.e. there is enough noise. We call this case Exists
Behavior, denoted EB.

Any Behavior is stronger than EB (AB > EB).
The strongest possible property is thus CRI,FA,AB , the weak-
est V PO,PO,EB . If we leave out the parameter, we take the
weakest setting as a default, i.e. V P denotes V PO,PO,EB .

A. Definitions in the applied pi calculus

Our definition is parametrized using the following parame-
ters (as explained above):
• Privacy = {CR,RF, V P} (“Coercion-Resistance”,

“Receipt-Freeness” or “Vote-Privacy”).
• Eve = {I,O} (“Insider” or “Outsider”).
• Abs = {FA,PO} (“Security against Forced-Abstention-

Attacks”or “Participation Only”).
• Behavior = {AB,EB} (“Any Behavior”or “Exists

Behavior”).
Definition 9 (PrivacyEve,Abs,Behavior): A protocol fulfills

PrivacyEve,Abs,Behavior if for any voting process S there
exists a process V ′ and for any substitution σfA and σfC , and
any context A such that A = νc̃h.(|A′chout)) where c̃h are
all unbound channels and names in A′ and in the “hole”,
• if Behavior is EB: ∃ substitutions σfB , σf ′

B
and σf ′

A
,

• if Behavior is AB: ∀ σfB = σf ′
B
∃ σf ′

A
,

such that for all votes σvA and σvB where V σvB does not
make a voter abstain2, one of the following holds depending
on the privacy setting:
• if Privacy is Vote-Privacy (V P):
A [S [V σidAσfAσvA |V σidBσfBσvB |VC]]

≈l A
[
S
[
V σidAσf ′

A
σvB |V σidBσf ′

B
σvA |VC

]]
• if Privacy is Receipt-Freeness (RF):

– V ′\out(chc,·) ≈l V σidAσf ′
A
σvB

– A
[
S
[
V σidAσfAσ

chc
vA |V σidBσfBσvB |VC

]]
≈l A

[
S
[
V ′|V σidBσf ′

B
σvA |VC

]]
• if Privacy is Coercion-Resistance (CR):

For any context C = νc1.νc2.(|P ′) with ñ∩fn(C) = ∅
and S

[
C
[
V σc1,c2idA

]
|V σidBσfBσvB |VC

]
≈l S

[
V σidAσfAσ

chc
vA |V σidBσfBσvB |VC

]
we have

– C [V ′]
\out(chc,·) ≈l V σidAσf ′

A
σvB

– A
[
S
[
C
[
V σc1,c2idA

]
|V σidBσfBσvB |VC

]]
≈l A

[
S
[
C [V ′] |V σidBσf ′

B
σvA |VC

]]
where
• If Eve is:

– Insider(I): S := S and VC := V σc1,c2idC
– Outsider (O): S := S′ and VC := 0

• If Abs is:
– Participation Only (PO): V σidA does not abstain,

i.e. V σidAσfAσvA 6≈l 0.
– Security against Forced-Abstention-Attacks (FA),

he may abstain.
The context A represents the attacker. We chose to make the
attacker’s behavior explicit as some protocols (such as the one
by Juels et al. [10]) require σfB and σf ′

B
to be chosen as

a function of the attacker (see our technical report [22] for
details, note however that V ′ is chosen only as a function
of the protocol). To ensure that A does not only forward the
channels (which would leave the attacker to the outside again
and thus contradict our intention of choosing the processes as
a function of A), we require A to bind all free names and
channels inside. He will only forward the knowledge he is
able to obtain during the execution of the protocol.

B. Examples and relation to existing notions

The following examples illustrate how the parameters
change the definition and give intuitions.

Example 2 (V PO,PO,AB): A protocol fulfills V PO,PO,AB

if for any voting process S′ and any substitutions σfA , σfB and
σfC , and for any context A such that A = νc̃h.(|A′chout))
where c̃h are all unbound channels and names in A′ and in
the “hole”, there exist a substitution σf ′

A
such that for all

votes σvA and σvB where σvB and σvA does not make a
voter abstain we have A [S′ [V σidAσfAσvA |V σidBσfBσvB |0]]
≈l A

[
S′

[
V σidAσf ′

A
σvB |V σidBσfBσvA |0

]]
.

Note that – as labeled bisimilarity is closed under
the application of contexts – it is sufficient to prove

2This condition ensures that in the case PO no voter can abstain.

S′ [V σidAσfAσvA |V σidBσfBσvB] ≈l S′
[
V σidAσf ′

A
σvB |

V σidBσfBσvA] If there is only one correct behavior of V
(i.e. no fakes), we can rewrite this as

S′ [V σidAσvA |V σidBσvB] ≈l S′ [V σidAσvB |V σidBσvA] (1)

This coincides with the definition of Vote-Privacy given by
Delaune et al. [7]: Two situations where two voters swap
votes are bisimilar. We also note that Receipt-Freeness in
the DKR-model corresponds to RFO,PO,AB in our model,
and Coercion-Resistance in the DKR-model corresponds to
CRO,PO,AB in our model.

Example 3 (Application): Consider our running example of
a simple voting protocol. We show that it ensures V PO,PO,AB

as defined above. We suppose the secret keys to be secret and
the administrator to be honest. In that case, Proverif is able to
prove (1), which shows that the simple voting protocol ensures
V PO,PO,AB .3. It is easy to see that this protocol does not
guarantee Vote-Privacy for an inside attacker (V P I,PO,AB),
as he can simply access the votes on the bulletin board
and copy them. He can identify which vote was posted by
which voter using the signatures. The protocol is not receipt-
free (RFEve,Abs,Behavior) either as the randomness used for
encrypting the vote can be used as a receipt. Since the bulletin
board reveals which voters participated, it is not resistant
against forced-abstention attacks.

Example 4 (V PO,FA,AB): A protocol fulfills V PO,FA,AB

if for any voting process S′ and any substitutions σfA , σfB and
σfC , and for any context A such that A = νc̃h.(|A′chout))
where c̃h are all unbound channels and names in A′ and
in the “hole”, there exists a substitution σf ′

A
such that for

all votes σvA and σvB where σvB does not make a voter
abstain we have A [S′ [V σidAσfAσvA |V σidBσfBσvB |0]] ≈l
A
[
S′

[
V σidAσf ′

A
σvB |V σidBσfBσvA |0

]]
. In this case, σvA can

make a voter abstain. As σvB may not specify abstention, we
have an observational equivalence between a situation where
the targeted voter abstains, and a situation where he votes
and the counterbalancing voter abstains. This captures security
against forced-abstention-attacks.

Example 5 (RF I,PO,AB): A protocol fulfills RF I,PO,AB

if for any voting process S there exists a process V ′,
and for any substitutions σfA , σfB and σfC , and for
any context A such that A = νc̃h.(|A′chout)) where c̃h
are all unbound channels and names in A′ and in the
“hole”, there exists a substitution σf ′

A
such that for all

votes σvA and σvB where σvB and σvA do not make
a voter abstain we have V ′\out(chc,·) ≈l V σidAσf ′

A
σvB

and A
[
S
[
V σidAσfAσ

chc
vA |V σidBσfBσvB |V σ

c1,c2
idC

]]
≈l

A
[
S
[
V ′|V σidBσfBσvA |V σ

c1,c2
idC

]]
.

Note that again it is sufficient to prove S
[
V σidAσfAσ

chc
vA |

V σidBσfBσvB |V σ
c1,c2
idC

]
≈l S

[
V ′|V σidBσfBσvA |V σ

c1,c2
idC

]
as

labeled bisimilarity is closed under the application of con-
texts. If there is only one correct behavior of V σA, this
coincides with the definition of Vote-Independence with Pas-
sive Collaboration in the DKR-model [6]: If a protocol is

3The code used is available on our website: http://www-verimag.imag.fr/
∼dreier/papers/sfcs-code.zip.

Protocol Privacy Notion Comments
Juels et al. [10] CRI,FA,EB Requires fakes to achieve CR
Bingo Voting [11] CRI,PO,AB Trusted voting machine
- variant CRI,FA,AB Secure against forced abstention
Lee et al. [17] CRO,PO,AB Vulnerable to vote-copying
Okamoto [9] RF I,PO,AB Based on trap-door commitments
- variant RF I,FA,AB Private channel to administrator
Fujioka et al. [8] V P I,PO,AB Based on blind signatures
- variant V P I,PO,AB Permits multiple votes
Simp. Voting Prot. V PO,PO,AB Vulnerable to vote-copying

TABLE I
RESULTS OF THE CASE STUDIES

receipt-free, there exists a counter-strategy (V ′) that allows
the targeted voter to fake the receipt and vote differently.
Analogously, Vote-Independence in the DKR-model corre-
sponds to V P I,PO,AB , and Vote-Independence with passive
Collaboration corresponds to CRI,PO,AB in our model.

IV. HIERARCHY AND CASE STUDIES

As already described in Section III, we have a hierarchy of
notions in each dimension.

Proposition 1: For Privacy ∈ {V P ,RF ,CR} , Abs ∈
{FA,PO} and Behavior ∈ {AB,EB} we have:

1) If a protocol respects PrivacyI,Abs,Behavior, then it also
respects PrivacyO,Abs,Behavior.

2) If a protocol respects PrivacyEve,FA,Behavior, it also
respects PrivacyEve,PO,Behavior.

3) If a protocol respects PrivacyEve,Abs,AB , it also re-
spects PrivacyEve,Abs,EB .

4) Coercion-Resistance is stronger than Receipt-Freeness,
which is stronger than Vote-Privacy:
• If a protocol respects CREve,Abs,Behavior, it also

respects RFEve,Abs,Behavior.
• If a protocol respects RFEve,Abs,Behavior, it also

respects V PEve,Abs,Behavior.
This was partly shown before in the DKR-model [7], the
extension to our model is straightforward. All the formal
proofs are given in our technical report [22].

We applied our family of notions on several case studies,
chosen to show that each of our dimensions corresponds to
a different property of real-world protocols. Due to space
limitations we cannot discuss the protocols in details here
(see our technical report [22]). The results are summed up
in and Table I. The proofs of coercion-resistance and receipt-
freeness were done by hand, yet we were able to verify
automatically a variant of the protocol by Fujioka et al. [8]
which allows for multiple votes per voter. Additionally we
were able to automate the originally manual proof of “Vote-
Independence” for the same protocol using a slightly modified
model compared to the original paper [6].

V. CONCLUSION

We proposed a modular family of formal privacy notions
in the applied pi calculus which allows to assess the level
of privacy provided by a voting protocol. We applied the
family of notions in several case studies, including a case

with multiple votes per voter (a variant of FOO [8]) and
forced abstention attacks (see Table I). In particular we were
able to show that the different dimensions of our definitions
correspond to different properties of real-world protocols, and
that in many cases the verification can be done automatically
using existing tools.

Future Work. In this paper we employ a possibilistic ap-
proach: We call a protocol secure if there is a way for the
targeted voter to escape coercion. As we do not consider
probabilities, the adversary may still have a certain probability
of detecting that the coerced voter tried to resist coercion.
This lies beyond the scope of this paper, yet a computational
translation of our definitions should be able to address it.

REFERENCES

[1] Bundesverfassungsgericht (Germany’s Federal Constitutional Court),
“Use of voting computers in 2005 bundestag election unconstitutional,”
March 2009.

[2] UK Electoral Commission, “Key issues and conclusions: May 2007
electoral pilot schemes.”

[3] Ministerie van Binnenlandse Zaken en Koninkrijksrelaties (Netherland’s
Ministry of the Interior and Kingdom Relations), “Stemmen met potlood
en papier (voting with pencil andpaper),” May 2008.

[4] B. Smyth and V. Cortier, “Attacking and fixing helios: An analysis of
ballot secrecy,” in CSF’11. IEEE, 2011.

[5] M. Abadi and C. Fournet, “Mobile values, new names, and secure
communication,” in POPL’01, 2001, pp. 104–115.

[6] J. Dreier, P. Lafourcade, and Y. Lakhnech, “Vote-independence: A
powerful privacy notion for voting protocols,” in 4th Workshop on
Foundations & Practice of Security (FPS), ser. LNCS, vol. 6888.
Springer, 2011, p. 164ff.

[7] S. Delaune, S. Kremer, and M. Ryan, “Verifying privacy-type properties
of electronic voting protocols,” Journal of Computer Security, vol. 17,
pp. 435–487, 2009.

[8] A. Fujioka, T. Okamoto, and K. Ohta, “A practical secret voting scheme
for large scale elections,” in Advances in Cryptology – AUSCRYPT ’92,
ser. LNCS. Springer, 1992, vol. 718, pp. 244–251.

[9] T. Okamoto, “An electronic voting scheme,” in Proceedings of the IFIP
World Conference on IT Tools, 1996.

[10] A. Juels, D. Catalano, and M. Jakobsson, “Coercion-resistant electronic
elections,” in WPES’05. ACM, 2005, pp. 61–70.

[11] J.-M. Bohli, J. Müller-Quade, and S. Röhrich, “Bingo voting: Secure
and coercion-free voting using a trusted random number generator,” in
E-Voting and Identity, ser. LNCS. Springer, 2007, vol. 4896, pp. 111–
124.

[12] P. Klus, B. Smyth, and M. D. Ryan, “Proswapper: Improved equivalence
verifier for proverif.” http://www.bensmyth.com/proswapper.php, 2010.

[13] B. Blanchet, M. Abadi, and C. Fournet, “Automated verification of
selected equivalences for security protocols,” Journal of Logic and
Algebraic Programming, vol. 75, no. 1, pp. 3–51, 2008.

[14] T. Moran and M. Naor, “Receipt-free universally-verifiable voting with
everlasting privacy,” in CRYPTO 2006, ser. LNCS, vol. 4117. Springer,
2006, pp. 373–392.

[15] M. R. Clarkson, S. Chong, and A. C. Myers, “Civitas: Toward a secure
voting system,” IEEE Symposium on Security and Privacy, vol. 0, pp.
354–368, 2008.

[16] M. Backes, C. Hritcu, and M. Maffei, “Automated verification of remote
electronic voting protocols in the applied pi-calculus,” CSF, vol. 0, pp.
195–209, 2008.

[17] B. Lee, C. Boyd, E. Dawson, K. Kim, J. Yang, and S. Yoo, “Providing
receipt-freeness in mixnet-based voting protocols,” in ICISC, ser. LNCS.
Springer Berlin / Heidelberg, 2004, vol. 2971.

[18] R. Küsters and T. Truderung, “An Epistemic Approach to Coercion-
Resistance for Electronic Voting Protocols,” in S&P. IEEE, 2009, pp.
251–266.

[19] R. Canetti and R. Gennaro, “Incoercible multiparty computation (ex-
tended abstract),” in FOCS, 1996, pp. 504–513.

[20] D. Unruh and J. Müller-Quade, “Universally composable incoercibility,”
in CRYPTO 2010, ser. LNCS. Springer, 2010, vol. 6223, pp. 411–428.

[21] J.-M. Bohli and A. Pashalidis, Relations Among Privacy Notions.
Springer, 2009, pp. 362–380.

[22] J. Dreier, P. Lafourcade, and Y. Lakhnech, “A formal taxonomy of
privacy in voting protocols,” Verimag Research Report, Tech. Rep.
TR-2011-10, May 2011, available at http://www-verimag.imag.fr/TR/
TR-2011-10.pdf.

