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A Formal Taxonomy of Privacy in Voting Protocols

Privacy is one of the main issues in electronic voting. We propose a family of symbolic privacy notions that allows to assess the level of privacy ensured by a voting protocol. Our definitions are applicable to protocols featuring multiple votes per voter and special attack scenarios such as vote-copying or forced abstention. Finally we employ our definitions on several existing voting protocols to show that our model allows to compare different types of protocols based on different techniques, and is suitable for automated verification using existing tools.

I. INTRODUCTION

Electronic voting systems have been designed and employed in practice for several years. However their use in general elections is controversial due to their security issues [START_REF]Use of voting computers in 2005 bundestag election unconstitutional[END_REF], [START_REF]Key issues and conclusions: May 2007 electoral pilot schemes[END_REF], [START_REF] Van Binnenlandse Zaken En Koninkrijksrelaties | Netherland's Ministry of the Interior and Kingdom Relations)[END_REF]. Researchers have identified numerous security properties that are required for secure voting systems and protocols. In this paper we will concentrate on privacy, which is often split into three properties:

• Vote-Privacy: The votes are kept private. This can also be modeled as an unlinkability between the voter and his vote.

• Receipt-Freeness: A voter cannot construct a receipt which allows him to prove to a third party that he voted for a certain candidate. This is to prevent vote-buying. • Coercion-Resistance: Even when a voter interacts with a coercer during the entire voting process, the coercer cannot be sure whether he followed his instructions or actually voted for another candidate.

However the design of protocols to fulfill the high requirements in electronic voting is notoriously difficult and errorprone. To avoid bugs and analyze protocols, formal verification methods are an ideal tool and have been used in security and safety critical system for several years. In the area of voting protocols, many different formal models and definitions of the above mentioned properties have been proposed and used successfully to discover bugs (e.g. in Helios [START_REF] Smyth | Attacking and fixing helios: An analysis of ballot secrecy[END_REF]). However, since the structure, setting and basic design of voting protocols can be quite different depending on the primitives used, many of these definitions are tailored to fit a specific (sub-)group of protocols. Sometimes a protocol can be proved secure in one model, but not in another. This hinders the objective comparisons of protocols.

In particular in the area of privacy properties there is a great variety of models. Moreover, recent research shows that some existing definitions might be insufficient: Smyth and Cortier [START_REF] Smyth | Attacking and fixing helios: An analysis of ballot secrecy[END_REF] pointed out that the ability to copy another voter's vote can enable attacks on privacy.

Our Contributions. 1) We propose a new family of privacy notions which allows to assess the level of privacy provided by a voting protocol. These notions are based on formal definitions of the classical notions (Vote-Privacy, Receipt-Freeness and Coercion-Resistance) in the applied pi calculus [START_REF] Abadi | Mobile values, new names, and secure communication[END_REF], with a refined protocol model and including new attacks.

The resulting family gives a deep understanding of the different levels and requirements for privacy. Additionally -by including a generalization of the notion of "Vote-Independence" [START_REF] Dreier | Vote-independence: A powerful privacy notion for voting protocols[END_REF] -our notions deal with attacks based on vote-copying that were not captured in the model by Delaune et al. [START_REF] Delaune | Verifying privacy-type properties of electronic voting protocols[END_REF]. 2) A deep understanding of privacy properties, and in particular the relationship between the different notions, is a prerequisite for the correct design of voting protocols. We provide a thorough comparison of existing and new notions. 3) Using several case studies [START_REF] Fujioka | A practical secret voting scheme for large scale elections[END_REF], [START_REF] Okamoto | An electronic voting scheme[END_REF], [START_REF] Juels | Coercion-resistant electronic elections[END_REF], [START_REF] Bohli | Bingo voting: Secure and coercion-free voting using a trusted random number generator[END_REF] we show that our model allows the analysis of different types of protocols. To automatically analyze protocols we use ProSwapper [START_REF] Klus | Proswapper: Improved equivalence verifier for proverif[END_REF] and ProVerif [START_REF] Blanchet | Automated verification of selected equivalences for security protocols[END_REF]. Using these tools we can automate some proofs of Vote-Independence which were done by hand previously [START_REF] Dreier | Vote-independence: A powerful privacy notion for voting protocols[END_REF], and check a protocol supporting multiple votes (a variant of [START_REF] Okamoto | An electronic voting scheme[END_REF]). Related Work. Although the informal specifications of the properties are very general, most of the formal models and definitions in the literature are tailored to a specific type of protocols. Many protocols were in fact developed together with their own definitions (e.g. [START_REF] Moran | Receipt-free universally-verifiable voting with everlasting privacy[END_REF], [START_REF] Juels | Coercion-resistant electronic elections[END_REF]) and analyzed by hand in the original paper.

Juels et al. [START_REF] Juels | Coercion-resistant electronic elections[END_REF] (which became the bases for Civitas [START_REF] Clarkson | Civitas: Toward a secure voting system[END_REF]) were the first to give a formal, but computational definition of coercion-resistance. It was later translated to the applied pi calculus and automated using ProVerif [START_REF] Backes | Automated verification of remote electronic voting protocols in the applied pi-calculus[END_REF]. However -as their protocol is based on voting "credentials" -credentials also appear in the definition. Their model is thus unsuitable for protocols that do not use credentials (e.g. Bingo Voting [START_REF] Bohli | Bingo voting: Secure and coercion-free voting using a trusted random number generator[END_REF] or the protocol by Lee et al. [START_REF] Lee | Providing receipt-freeness in mixnet-based voting protocols[END_REF]).

More general definitions were developed by Delaune, Kremer and Ryan [START_REF] Delaune | Verifying privacy-type properties of electronic voting protocols[END_REF]. They express different levels of privacy as observational equivalence in the applied pi calculus [START_REF] Abadi | Mobile values, new names, and secure communication[END_REF]. An attacker should not be able to distinguish one case in which the voter complies with the coercer's instructions and another in which he only pretends to do so and votes as he wishes. However their definitions are too strong for the protocol by Juels et al.: since in one case the targeted voter complies and posts only one correct ballot, and in the other he secretly posts his actual ballot and a fake one to cheat the coercer, both cases can be distinguished by counting the ballots.

Smyth and Cortier [START_REF] Smyth | Attacking and fixing helios: An analysis of ballot secrecy[END_REF] showed that being able to copy votes can compromise privacy if the number of participants is small or a noticeable fraction of voters can be corrupted. For example in the case of three voters, the third voter can try to copy the first voter's vote and submit it as his vote. This will result in (at least) two votes for the candidate chosen by the first voter and his choice can thus be inferred from the result. They also formally analyzed ballot secrecy in Helios using an adaption of the model by Delaune, Kremer and Ryan [START_REF] Delaune | Verifying privacy-type properties of electronic voting protocols[END_REF]. However it was shown that, in general, the DKR model is not sufficient to capture vote-independence. For example the protocol by Lee et al. [START_REF] Lee | Providing receipt-freeness in mixnet-based voting protocols[END_REF] was shown to be coercion-resistant in this model, despite its vulnerability to vote-copy attacks [START_REF] Dreier | Vote-independence: A powerful privacy notion for voting protocols[END_REF].

Küsters and Truderung [START_REF] Küsters | An Epistemic Approach to Coercion-Resistance for Electronic Voting Protocols[END_REF] proposed a first model independent definition of coercion-resistance for voting protocols. Their definition has to be instantiated using a concrete formal model. The exact security level can be defined with respect to certain chosen goals, and excluding explicit special cases. In contrast to our family of notions, their definition is based on traces and not bisimulations.

Computational definitions of receipt-freeness [START_REF] Canetti | Incoercible multiparty computation (extended abstract)[END_REF] and coercion-resistance [START_REF] Unruh | Universally composable incoercibility[END_REF] that can be applied to other applications than voting have also been proposed. Completely application-independent anonymity notions were proposed by Bohli and Pashalidis [START_REF] Bohli | Relations Among Privacy Notions[END_REF]. Although their definitions are very general, the application on voting protocols results in -for this context -rather unusual privacy notions (Pseudonymity etc.), compared to the classic properties such as receipt-freeness or coercion-resistance.

Outline of the Paper. In the next section, we give a brief introduction of the applied pi calculus and develop our model of a voting process. Section III starts by explaining informally our privacy notions and subsequently gives the formal definitions. In Section IV, we discuss the relationship between the different notions, explain the hierarchy implied by the definitions and analyze several case studies to illustrate our definitions. In the last section, we conclude and discuss future work.

II. PRELIMINARIES A. The Applied Pi Calculus

The applied pi calculus [START_REF] Abadi | Mobile values, new names, and secure communication[END_REF] is a formal language to describe concurrent processes (in particular cryptographic protocols) with tool support [START_REF] Klus | Proswapper: Improved equivalence verifier for proverif[END_REF], [START_REF] Blanchet | Automated verification of selected equivalences for security protocols[END_REF]. The calculus consists of names (which typically correspond to data or channels), variables, and a signature Σ of function symbols which can be used to build terms. Functions typically include encryption and decryption (for example enc(message, key), dec(message, key)), hashing, signing etc. Terms are correct (i.e. respecting arity and sorts) combinations of names and functions. Equalities are modeled using an equational theory E which defines a relation = E . A classical example which describes the correctness of symmetric encryption is dec(enc(message, key), key) = E message. Plain processes are constructed using the following grammar:

P , Q, R := processes 0 null process P |Q parallel composition !P replication νn.P name/variable restriction if M = N then P else Q conditional in(u, x) message input out(u, x) message output
Extended processes are plain processes or active substitutions { M /x}. The substitution { M /x} replaces the variable x with term M . We denote by f v(A), bv(A), f n(A), bn(A) the free variables, bound variables, free names or bound names respectively. A process is closed if all variables are bound or defined by an active substitution. A context C[ ] denotes a process with a hole for a process. More details and the semantics are given in the original paper [START_REF] Abadi | Mobile values, new names, and secure communication[END_REF]. To reason about the equivalence or bisimilarity of processes, we use the following bisimilarity relation.

Definition 1 (Labeled Bisimilarity (≈ l ) [START_REF] Abadi | Mobile values, new names, and secure communication[END_REF]): Labeled bisimilarity is the largest symmetric relation R on closed processes, such that A R B implies 1)

A ≈ s B, 2) if A → A , then B → B and A R B for some B , 3) if A α -→ A and f v(α) ⊆ dom(A) and bn(α) ∩ f n(B) = ∅, then B → * α
-→→ * B and A R B for some B . Each interaction on one side can be simulated by the other side, and the processes are statically equivalent (see [START_REF] Abadi | Mobile values, new names, and secure communication[END_REF]) at each step during the execution, thus an attacker cannot distinguish both sides.

To formally describe the interaction between a voter and the attacker, we use the following two definitions. The first one turns a process P into another process P ch that reveals all its inputs and secret data on the channel ch.

Definition 2 (Process P ch [START_REF] Delaune | Verifying privacy-type properties of electronic voting protocols[END_REF]): Let P be a plain process and ch be a channel name. We define P ch as follows:

• 0 ch = 0, • (P |Q) ch = P ch |Q ch ,
• (νn.P ) ch = νn.out(ch, n).P ch when n is a name of base type, • (νn.P ) ch = νn.P ch otherwise, • (in(u, x).P ) ch = in(u, x).out(ch, x).P ch when x is a variable of base type, • (in(u, x).P ) ch = in(u, x).P ch otherwise, • (out(u, M ).P ) ch = out(u, M ).P ch , • (!P ) ch = !P ch ,

• (if M = N then P else Q) ch = if M = N then P ch else Q ch .
In the remainder we assume that ch / ∈ f n(P ) ∪ bn(P ) before applying the transformation. The second definition does not only reveal the secret data, but also takes orders from an outsider before sending a message or branching, i.e. the process is under complete remote control.

Definition 3 (Process P c1,c2 [START_REF] Delaune | Verifying privacy-type properties of electronic voting protocols[END_REF]): Let P be a plain process and c 1 , c 2 be channel names. We define P c1,c2 as follows:

• 0 c1,c2 = 0, • (P |Q) c1,c2 = P c1,c2 |Q c1,c2 , • (νn.P ) c1,c2 = νn.out(c 1 , n).P c1,c2
when n is a name of base type, • (νn.P ) c1,c2 = νn.P c1,c2 otherwise, • (in(u, x).P ) c1,c2 = in(u, x).out(c 1 , x).P c1,c2 when x is a variable of base type and x is a fresh variable, • (in(u, x).P ) c1,c2 = in(u, x).P c1,c2 otherwise,

• (out(u, M ).P ) c1,c2 = in(c 2 , x).out(u, x).P c1,c2 , • (!P ) c1,c2 = !P c1,c2 , • (if M = N then P else Q) c1,c2 = in(c 2 , x).if x = true then P c1,c2 else Q c1,c2
where and x is a fresh variable and true is a constant. The following definition hides the output of a process.

Definition 4 (Process A \out(ch,•) [START_REF] Delaune | Verifying privacy-type properties of electronic voting protocols[END_REF]): Let A be an extended process. We define the process A \out(ch,•) as νch.(A|!in(ch, x)).

B. Voting Protocol and Process

First of all, we define the notion of a voting protocol. Informally, a voting protocol specifies the processes executed by voters and authorities.

Definition 5 (Voting Protocol): A voting protocol is a tuple (V, A 1 , . . . , A m , ñ) where V is the process that is executed by the voter, the A j 's are the processes executed by the election authorities, and ñ is a set of private channels. Note that the protocol only defines one process V which will be instantiated for each voter. Yet here may be several authorities, for example a registrar, a bulletin board, a mixer, a tallier, . . . . In our privacy definitions we reason about privacy using concrete instances of a voting protocol. An instance is called aVoting Process.

Definition 6 (Voting Process): A voting process of a voting protocol

(V, A 1 , . . . , A m , ñ) is a closed plain process ν m.(V σ id1 σ f1 σ v1 | . . . |V σ idn σ fn σ vn |A 1 | . . . |A l )
where l ≤ m, m includes the secret channel names, V σ idi σ vi σ fi are the processes executed by the voters where:

• σ idi is a substitution assigning the identity to a process (this determines for example the secret keys), • σ vi specifies the vote(s) and if the voter abstains,

• and σ fi defines the other behavior, in particular if fake votes are issued, and the A j s are the honest election authorities. We notice that if an authority is not supposed to be honest, it is not modeled and left to the context, i.e. the attacker (thus l ≤ m). Note also that each voter runs the same process V , which is instantiated with a different σ idi (his identity), σ vi (his vote(s)) and σ fi (the fakes). If a protocol does not allow fakes, σ fi is empty.

This model allows us to reason about more than one correct behavior, which is necessary if for example a voter can decide to abstain from voting or if -in case of multiple votes 1 -he can vote between 0 and n times in the same election. In this case V defines all the possible executions, and σ vi and σ fi will determine which of them is executed. Another application are protocols where voters can submit fake ballots and/or several real ballots, even if only one of them is actually counted (like in the one by Juels et al. [START_REF] Juels | Coercion-resistant electronic elections[END_REF]). In that case σ vi determines those who are actually counted, and σ fi the others.

Example 1: As a running example, we consider the following simple voting protocol.

Informal description: To construct a ballot, each voter encrypts his vote with the administrator's public key and signs it. The resulting ballot is posted on the bulletin board. After the voting deadline is over, the administrator checks if each ballot is signed by an eligible voter. He then decrypts the correct ballots and publishes the result.

Formal description in our model: The protocol is a tuple (V, A, ∅) where A = in(ch, (sig, vote)). if checksign(sig, pkv) = vote then sync 1.out(chR, dec(vote, ska)) V = νr.let evote = enc(v, pka, r) in out(ch, (sign(evote, skv), evote)) where -by abuse of notationsync 1 is a synchronization point as implemented by ProSwapper [START_REF] Klus | Proswapper: Improved equivalence verifier for proverif[END_REF]. A substitution determining the identity of a voter would in this case assign the secret key, e.g. σ id k = { sk k/skv}. The substitution specifying the vote as for example a vote for candidate a would be σ v k = { a /v}. As the protocol does not specify the possibility to create fakes, σ v k is the empty substitution.

To facilitate notation we denote by S and S two contexts which are like voting processes but with holes for two and three voters respectively. Definition 7 (S and S ): We define evaluation contexts S and S such that

• S is like a voting process, but has a hole instead of three processes among (V σ idi σ vi σ fi ) 1≤i≤n • S which is like as voting process, but has a hole instead of two processes among (V σ idi σ vi σ fi ) 1≤i≤n . Finally, we formally define what it means for a voting process to abstain. An abstaining voter does not send any message on any channel, in particular no ballot, which would correspond to a voter that does not even go to polling station. This is stronger than just voting for a particular "null" candidate ⊥, which will still result in sending a ballot (a blank vote).

Definition 8 (Abstention): A substitution σ vi makes a voter abstain if V σ idi σ vi ≈ l 0. Note that abstention is determined by σ vi only, so the voter abstains for any σ fi .

III. DEFINING PRIVACY: A MULTIDIMENSIONAL APPROACH

In our setting, the attacker targets one voter (the targeted voter) and tries to extract information about the targeted voter's vote(s). If the attacker knows the votes of all other voters, he can infer the targeted voter's vote from the result. Thus we suppose that he is unsure about the vote(s) of one other voter (the counterbalancing voter).

We express privacy as an observational equivalence. Intuitively, an attacker should not be able to distinguish between an execution in which the targeted voter behaves and votes as the attacker wishes, and another execution where he only pretends to do so and votes differently. To ensure that the attacker cannot tell the difference by just comparing the result, the counterbalancing voter will compensate the different vote.

Starting from the definitions of Coercion-Resistance, Receipt-Freeness and Vote-Privacy in the literature [START_REF] Delaune | Verifying privacy-type properties of electronic voting protocols[END_REF], [START_REF] Backes | Automated verification of remote electronic voting protocols in the applied pi-calculus[END_REF], [START_REF] Juels | Coercion-resistant electronic elections[END_REF] we propose extensions in the four following dimensions: Communication between attacker and targeted voter, Vote-Independence, security against forced-abstention-attacks and knowledge about the behavior of the counterbalancing voter.

1) Communication between the attacker and the targeted voter: We define three different levels: a) In the simplest case, the attacker only observes publicly available data and communication. We call this case Vote-Privacy, denoted V P . b) In the second case, the targeted voter tries to convince the attacker that he voted for a certain candidate by revealing his secret data. Yet the attacker should not be able to determine if he actually sent his real data, or a fake receipt. We call this case Receipt-Freeness, denoted RF . c) In the strongest case, the voter pretends to be completely under the control of the attacker, i.e. he reveals his secret data and follows the intruder's instructions. Yet the attacker should be unable to determine if he complied with his instructions or if he only pretended to do so. We call this case Coercion-Resistance, denoted CR. It is easy to see that Coercion-Resistance is stronger than Receipt-Freeness, which is stronger than Vote-Privacy (CR > RF > V P ).

2) Vote-Independence/Corrupted Voter: The attacker may control another legitimate voter (neither the targeted nor the counterbalancing voter). In that case he could be able to compromise privacy by trying to relate the corrupted voter's vote to the targeted voter's vote (e.g. by copying it) or using the corrupted voter's secret data, such as his credentials or keys. In our definitions, we distinguish two case for Eve (the attacker): a) Eve is an Outsider (denoted O): The attacker is an external observer. b) Eve is an Insider (denoted I): The attacker has a legitimate voter under his control. Intuitively, Insider is the stronger setting (I > O).

3) Security against forced-abstention-attacks: A protocol can ensure that a voter can still vote as intended, although a coercer wants him to abstain. Note that in contrast to the literature [START_REF] Juels | Coercion-resistant electronic elections[END_REF], [START_REF] Backes | Automated verification of remote electronic voting protocols in the applied pi-calculus[END_REF], we define this property independently from of Coercion-Resistance, as we also want to apply it in the case of Vote-Privacy. Our model expresses this by requiring the observational equivalence to hold: a) in any case, i.e. even if the voter is forced to abstain. We call this case security against Forced-Abstention-Attacks, denoted F A. b) if the targeted voter does not abstain from voting (i.e. always participates). We call this case Participation Only, denoted P O. In this dimension security against Forced-Abstention-Attacks is a stronger property than Participation Only (F A > P O). 4) Knowledge about the behavior of the counterbalancing voter: To model different knowledge about the behavior of the counterbalancing voter, we consider two cases: a) The observational equivalence holds for any behavior of this voter, i.e. any σ fi . This models an attacker that knows if the counterbalancing voter is going to post fake ballots, or a situation where there is no "noise" (=fake ballots) on the bulletin board. We call this case Any Behavior, denoted AB. b) The observational equivalence holds for at least one behavior of this voter, which may additionally change, i.e. one σ fi and one σ f i . In this case, the attacker is unsure about the number of fake ballots, i.e. there is enough noise. We call this case Exists Behavior, denoted EB. Any Behavior is stronger than EB (AB > EB). The strongest possible property is thus CR I,F A,AB , the weakest V P O,P O,EB . If we leave out the parameter, we take the weakest setting as a default, i.e. V P denotes V P O,P O,EB .

A. Definitions in the applied pi calculus

Our definition is parametrized using the following parameters (as explained above):

• P rivacy = {CR, RF, V P } ("Coercion-Resistance", "Receipt-Freeness" or "Vote-Privacy"). • Eve = {I, O} ("Insider" or "Outsider").

• Abs = {F A, P O} ("Security against Forced-Abstention-Attacks"or "Participation Only"). • Behavior = {AB, EB} ("Any Behavior"or "Exists Behavior"). Definition 9 (P rivacy Eve,Abs,Behavior ): A protocol fulfills P rivacy Eve,Abs,Behavior if for any voting process S there exists a process V and for any substitution σ f A and σ f C , and any context A such that A = ν ch.( |A chout )) where ch are all unbound channels and names in A and in the "hole",

• if Behavior is EB: ∃ substitutions σ f B , σ f B and σ f A , • if Behavior is AB: ∀ σ f B = σ f B ∃ σ f A ,
such that for all votes σ v A and σ v B where V σ v B does not make a voter abstain2 , one of the following holds depending on the privacy setting:

• if Privacy is Vote-Privacy (V P ): A [S [V σ id A σ f A σ v A |V σ id B σ f B σ v B |V C ]] ≈ l A S V σ id A σ f A σ v B |V σ id B σ f B σ v A |V C • if Privacy is Receipt-Freeness (RF ): -V \out(chc,•) ≈ l V σ id A σ f A σ v B -A S V σ id A σ f A σ chc v A |V σ id B σ f B σ v B |V C ≈ l A S V |V σ id B σ f B σ v A |V C • if Privacy is Coercion-Resistance (CR): For any context C = νc 1 .νc 2 .( |P ) with ñ ∩ f n(C) = ∅ and S C V σ c1,c2 id A |V σ id B σ f B σ v B |V C ≈ l S V σ id A σ f A σ chc v A |V σ id B σ f B σ v B |V C we have -C [V ] \out(chc,•) ≈ l V σ id A σ f A σ v B -A S C V σ c1,c2 id A |V σ id B σ f B σ v B |V C ≈ l A S C [V ] |V σ id B σ f B σ v A |V C where • If Eve is:
-Insider(I): S := S and

V C := V σ c1,c2 id C
-Outsider (O): S := S and V C := 0

• If Abs is: -Participation Only (P O): V σ id A does not abstain, i.e. V σ id A σ f A σ v A ≈ l 0.
-Security against Forced-Abstention-Attacks (F A), he may abstain. The context A represents the attacker. We chose to make the attacker's behavior explicit as some protocols (such as the one by Juels et al. [START_REF] Juels | Coercion-resistant electronic elections[END_REF]) require σ f B and σ f B to be chosen as a function of the attacker (see our technical report [START_REF] Dreier | A formal taxonomy of privacy in voting protocols[END_REF] for details, note however that V is chosen only as a function of the protocol). To ensure that A does not only forward the channels (which would leave the attacker to the outside again and thus contradict our intention of choosing the processes as a function of A), we require A to bind all free names and channels inside. He will only forward the knowledge he is able to obtain during the execution of the protocol.

B. Examples and relation to existing notions

The following examples illustrate how the parameters change the definition and give intuitions.

Example 2 (V P O,P O,AB ): A protocol fulfills V P O,P O,AB if for any voting process S and any substitutions σ f A , σ f B and σ f C , and for any context A such that A = ν ch.( |A chout )) where ch are all unbound channels and names in A and in the "hole", there exist a substitution σ f A such that for all votes σ v A and σ v B where σ v B and σ v A does not make a voter abstain we have A

[S [V σ id A σ f A σ v A |V σ id B σ f B σ v B |0]] ≈ l A S V σ id A σ f A σ v B |V σ id B σ f B σ v A |0 .
Note that -as labeled bisimilarity is closed under the application of contexts -it is sufficient to prove Protocol Privacy Notion Comments Juels et al. [START_REF] Juels | Coercion-resistant electronic elections[END_REF] CR I,F A,EB Requires fakes to achieve CR Bingo Voting [START_REF] Bohli | Bingo voting: Secure and coercion-free voting using a trusted random number generator[END_REF] CR I,P O,AB Trusted voting machine -variant CR I,F A,AB Secure against forced abstention Lee et al. [START_REF] Lee | Providing receipt-freeness in mixnet-based voting protocols[END_REF] CR O,P O,AB Vulnerable to vote-copying Okamoto [START_REF] Okamoto | An electronic voting scheme[END_REF] RF I,P O,AB Based on trap-door commitments -variant RF I,F A,AB Private channel to administrator Fujioka et al. [START_REF] Fujioka | A practical secret voting scheme for large scale elections[END_REF] V P I,P O,AB Based on blind signatures -variant V P I,P O,AB Permits multiple votes Simp. Voting Prot. V P O,P O,AB Vulnerable to vote-copying TABLE I RESULTS OF THE CASE STUDIES receipt-free, there exists a counter-strategy (V ) that allows the targeted voter to fake the receipt and vote differently. Analogously, Vote-Independence in the DKR-model corresponds to V P I,P O,AB , and Vote-Independence with passive Collaboration corresponds to CR I,P O,AB in our model.

IV. HIERARCHY AND CASE STUDIES

As already described in Section III, we have a hierarchy of notions in each dimension.

Proposition 1: For P rivacy ∈ {V P , RF , CR} , Abs ∈ {F A, P O} and Behavior ∈ {AB, EB} we have:

1) If a protocol respects P rivacy I,Abs,Behavior , then it also respects P rivacy O,Abs,Behavior . 2) If a protocol respects P rivacy Eve,F A,Behavior , it also respects P rivacy Eve,P O,Behavior . 3) If a protocol respects P rivacy Eve,Abs,AB , it also respects P rivacy Eve,Abs,EB . 4) Coercion-Resistance is stronger than Receipt-Freeness, which is stronger than Vote-Privacy:

• If a protocol respects CR Eve,Abs,Behavior , it also respects RF Eve,Abs,Behavior . • If a protocol respects RF Eve,Abs,Behavior , it also respects V P Eve,Abs,Behavior . This was partly shown before in the DKR-model [START_REF] Delaune | Verifying privacy-type properties of electronic voting protocols[END_REF], the extension to our model is straightforward. All the formal proofs are given in our technical report [START_REF] Dreier | A formal taxonomy of privacy in voting protocols[END_REF].

We applied our family of notions on several case studies, chosen to show that each of our dimensions corresponds to a different property of real-world protocols. Due to space limitations we cannot discuss the protocols in details here (see our technical report [START_REF] Dreier | A formal taxonomy of privacy in voting protocols[END_REF]). The results are summed up in and Table I. The proofs of coercion-resistance and receiptfreeness were done by hand, yet we were able to verify automatically a variant of the protocol by Fujioka et al. [START_REF] Fujioka | A practical secret voting scheme for large scale elections[END_REF] which allows for multiple votes per voter. Additionally we were able to automate the originally manual proof of "Vote-Independence" for the same protocol using a slightly modified model compared to the original paper [START_REF] Dreier | Vote-independence: A powerful privacy notion for voting protocols[END_REF].

V. CONCLUSION

We proposed a modular family of formal privacy notions in the applied pi calculus which allows to assess the level of privacy provided by a voting protocol. We applied the family of notions in several case studies, including a case with multiple votes per voter (a variant of FOO [START_REF] Fujioka | A practical secret voting scheme for large scale elections[END_REF]) and forced abstention attacks (see Table I). In particular we were able to show that the different dimensions of our definitions correspond to different properties of real-world protocols, and that in many cases the verification can be done automatically using existing tools.

Future Work. In this paper we employ a possibilistic approach: We call a protocol secure if there is a way for the targeted voter to escape coercion. As we do not consider probabilities, the adversary may still have a certain probability of detecting that the coerced voter tried to resist coercion. This lies beyond the scope of this paper, yet a computational translation of our definitions should be able to address it.

This work was supported by ANR SeSur AVOTE. 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. DOI http://dx.doi.org/10.1109/ICC.2012.6364938

By multiple votes we mean a protocol where each voter can vote several times in the same election, and each vote is transmitted in a separate ballot.

This condition ensures that in the case P O no voter can abstain.S [V σ idA σ f A σ v A |V σ id B σ f B σ v B ] ≈ l S V σ id A σ f A σ v B | V σ id B σ f B σ v A ]If there is only one correct behavior of V (i.e. no fakes), we can rewrite this asS [V σ id A σ v A |V σ id B σ v B ] ≈ l S [V σ id A σ v B |V σ id B σ v A ] (1)

The code used is available on our website: http://www-verimag.imag.fr/ ∼ dreier/papers/sfcs-code.zip.

This coincides with the definition of Vote-Privacy given by Delaune et al. [START_REF] Delaune | Verifying privacy-type properties of electronic voting protocols[END_REF]: Two situations where two voters swap votes are bisimilar. We also note that Receipt-Freeness in the DKR-model corresponds to RF O,P O,AB in our model, and Coercion-Resistance in the DKR-model corresponds to CR O,P O,AB in our model.

Example 3 (Application): Consider our running example of a simple voting protocol. We show that it ensures V P O,P O,AB as defined above. We suppose the secret keys to be secret and the administrator to be honest. In that case, Proverif is able to prove [START_REF]Use of voting computers in 2005 bundestag election unconstitutional[END_REF], which shows that the simple voting protocol ensures V P O,P O,AB . 3 . It is easy to see that this protocol does not guarantee Vote-Privacy for an inside attacker (V P I,P O,AB ), as he can simply access the votes on the bulletin board and copy them. He can identify which vote was posted by which voter using the signatures. The protocol is not receiptfree (RF Eve,Abs,Behavior ) either as the randomness used for encrypting the vote can be used as a receipt. Since the bulletin board reveals which voters participated, it is not resistant against forced-abstention attacks.

Example 4 (V P O,F A,AB ): A protocol fulfills V P O,F A,AB if for any voting process S and any substitutions σ f A , σ f B and σ f C , and for any context

where ch are all unbound channels and names in A and in the "hole", there exists a substitution σ f A such that for all votes σ v A and σ v B where σ v B does not make a voter abstain we have

In this case, σ v A can make a voter abstain. As σ v B may not specify abstention, we have an observational equivalence between a situation where the targeted voter abstains, and a situation where he votes and the counterbalancing voter abstains. This captures security against forced-abstention-attacks.

Example 5 (RF I,P O,AB ): A protocol fulfills RF I,P O,AB if for any voting process S there exists a process V , and for any substitutions σ f A , σ f B and σ f C , and for any context A such that A = ν ch.( |A chout )) where ch are all unbound channels and names in A and in the "hole", there exists a substitution σ f A such that for all votes σ v A and σ v B where σ v B and σ v A do not make a voter abstain we have

as labeled bisimilarity is closed under the application of contexts. If there is only one correct behavior of V σ A , this coincides with the definition of Vote-Independence with Passive Collaboration in the DKR-model [START_REF] Dreier | Vote-independence: A powerful privacy notion for voting protocols[END_REF]: If a protocol is