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Abstract—An electronic auction protocol will only be used by
those who trust that it operates correctly. Therefore, e-auction
protocols must be verifiable: seller, buyer and losing bidders must
all be able to determine that the result was correct. We pose that
the importance of verifiability for e-auctions necessitates a formal
analysis. Consequently, we identify notions of verifiability for
each stakeholder. We formalize these and then use the developed
framework to perform a detailed study of the verifiability for
three examples. We provide an analysis of the protocol by Sako
in the applied π-calculus with help of ProVerif, finding it to be
correct. Additionally we identify issues with two other protocols.

I. INTRODUCTION

Auctions provide sellers and buyers with a way to exchange

goods for a mutually acceptable price. Unlike a marketplace,

where the sellers compete with each other, auctions are a

seller’s market where buyers bid against each other over the

goods for sale. There are many different types of auctions,

varying how to determine winner and price. For example, in

an English auction, buyers bid publicly against each other

and the highest bid wins (e.g. [1]). A Vickrey auction is

rather similar, except that the winning buyer pays the price

of the second-highest bid (see e.g. [2], [3]). Conversely, in a

Dutch auction, the price starts too high – the auctioneer keeps

lowering the price until a buyer claims the good for that price

(e.g. [4]). Sealed-bid auctions are auctions that run in one

round: in the bidding phase, each buyer submits one sealed

bid, which are then simultaneously opened in the opening

phase. Sealed-bid auctions can be used to implement auctions

where the bidder with the highest bid wins (e.g. [5], [6], [7],

[8]), but also Vickrey-style auctions, where the winner pays

the second-highest price (e.g. [3]). Finally, goods auctioned

in bulk (e.g. flowers) may have more than one winner, each

winner paying his own price.

Auctions involve the following stakeholders:

• Bidders: parties interested in buying the goods. Their main

interest is to acquire the goods at as low a price as possible.

• Seller: a party selling goods. His main interest is to sell

the goods for as high a price as possible.

• Auctioneer: the party organizing the auction. His main

interests are to have return customers and high margins (which

may depend on the final price of the sold, as done by eBay).

As is readily apparent, the interests of the various stakehold-

ers are opposed. Buyers are in competition with each other

for the goods on sale, sellers are in competition with buyers

for the price of the goods, the auctioneer may profit directly

from overvalued sale price (which provides an incentive to

collude with the seller), but a reputation for undervalued sale

prices will ensure many repeat customers (which provides

incentive to collude with buyers). Consider e.g. the case where

there are several bids for the same price. In such a case, an

auctioneer might prefer the most “active” bidder instead of

the normal tie-breaking rules, and so favor frequent customers

over occasional ones.

There are thus no impartial parties to oversee the correctness

of the process to determine selling price and winner. For

this reason, an auction system must provide some form of

verifiability for each involved party – irrespective of how the

auction process is run and the winner is determined.

Auction verifiability is easy to achieve in isolation, as hap-

pens in English auctions. However, maintaining verifiability

while ensuring other properties (non-repudiation, privacy, etc.)

is far harder. Too often, newly proposed auction protocols

proudly show how they achieve these other properties, while

only acknowledging the requirement for verifiability in pass-

ing. Typically, verifiability is subsequently claimed without

providing any formal proof, e.g., [9], [10]. To address this, we

propose a generic formal framework applicable independent

of the type of auction.

Contribution. The main contribution of this work is to identify

a set of scheme-independent definitions, which, taken together,

cover verifiability of auctions. To this end, we focus on the

bidders (distinguishing verifiability for losing bidders from the

winning bidder) and the seller. We present this framework as

a set of formal verifiability tests.

Secondly, we use the proposed framework to provide an

in-depth analysis of Sako’s auction protocol [11]. We prove

in ProVerif [12] that the instantiated verifiability tests hold

for one or two bids respectively. We then provide a manual

reduction to this case for the general case of n bids.

Finally, we investigate the auction protocols by Curtis et

al. [10] and by Brandt [9]. Both protocols claim verifiability,

yet we identify issues with each.

Related work. There are relatively few formal analyses of

auction protocols. Dong et al. [13] study privacy properties of

the protocol by Abe and Suzuki [7] in the applied π-calculus.

More recently, Dreier et al. [14] used the applied π-calculus

to formalize several properties (privacy, non-repudiation, non-

cancellation and fairness) for auction protocols, and studied

(and found problems with) two auction protocols. Besides

these, verifiability in auctions has (to the best of our knowl-



edge) only been studied for particular schemes. However,

in the field of voting several more generic definitions of

verifiability have emerged. Consequently, we look there for

inspiration.

In voting, the property of individual verifiability – a voter

can verify that her vote counts correctly for the result – has

been a well-established notion since the field’s inception [15],

[16], [17], [18]. Sako and Killian [17] introduced the concept

of universal verifiability: the property that any observer may

verify (using only public information) the correctness of the

result. Kremer et al. [19] introduced the notion of eligibility

verifiability: the property whereby any observer may verify,

using only public information, that the set of cast votes from

which the result is determined originates only from eligible

voters, and each eligible voter cast at most one vote. Finally,

Küsters et al. [20] introduced the notion of accountability: the

property that when verifiability fails, it is possible to identify

the person responsible for the failure.

While the intuition behind these notions carries (to some

degree) over to auctions, we do note, that unlike voting,

auctions involve competing parties – hence an illegal bid

(e.g., by the seller) may increase the winning price, while not

changing the winner. Verification of voting systems thus does

not translate directly to verification of auction systems.

Outline. In Section II, we describe our modeling of auctions.

In Section III, we formalize the verifiability definitions, taking

into account the point of view of the seller and the bidders. In

Section IV, we then apply our model to several examples. We

prove that Sako’s protocol guarantees our verifiability property

and we exhibit problems in two other protocols.

II. MODELING AUCTION PROTOCOLS

In this section we describe our model of an auction protocol.

We start by explaining the different parts of an auction

protocol we need to define verifiability, and then give the

formal definition. We only specify the parts necessary to define

verifiability to remain as general as possible, yet the model can

be interpreted in a more precise framework if needed.

We consider different parties, in particular a set of bidders

B and a seller S. Depending on the protocol there might also

be other parties such as an auctioneer, but we do not need to

model them for verifiability purposes as only the bidders and

the seller verify the execution of the protocol.

Bids are of type Bid (in the simplest case just a price).

When being submitted the bids might be encrypted or ano-

nymized to ensure privacy, hence we use the type EBid for

such bids. We assume that there is a public list L of length

n and type List(EBid) of all submitted bids, for example

a bulletin board. To define the soundness of the verification

tests we need a mapping between both types, i.e. a function

getPrice : EBid 7→ Bid that gives the bid for an encrypted

bid. This function does not need to be computable for any

party, as it is only used in the soundness definition.

We also note that the bidders have to register at some

point, or are otherwise authenticated when bidding in order

to be able to obtain their goods once the auction has ended.

This could for example be implemented using signatures,

authentication tokens, MACs etc. Therefore we require a

function isReg : EBid 7→ bool that returns true if a bid was

submitted by a registered bidder, and not modified – this

integrity protection is necessary to prevent manipulation of

bids.

Finally we require a public function that - given a list of

bids - computes the index of the wining bid within the list of

all bids: win : List(Bid) 7→ Index . This might simply be the

index of the maximal bid among all bids, but there may be

more complex operations to determine this index depending

on the type of auction or to deal with ties (i.e. several maximal

bids).

Finally, we assume that the variable winBid of type Index

refers to the index of the announced winning bid at the end

of the auction, and that each bidder has a variable myBid of

type Index that refers to the index of his bid in L.

Note that for a list l we write l[i] to denote the i-th element

of the list starting with 1, and Indices(l) to denote the set of

indices of l, i.e. {1, . . . , n} if l contains n elements.

Definition 1. An auction protocol is a tuple (B, S, L,
getPrice, isReg , win, winBid) where

• B is the set of bidders,

• S is the seller,

• L is a list of all submitted bids,

• getPrice : EBid 7→ Bid is a function that maps submitted

bids to bids,

• isReg : EBid 7→ {true, false} is a function that returns

true if a bid was submitted by a registered bidder,

• win : List(Bid) 7→ Index is a function that returns the

index of the winning bid,

• winBid is a variable referring to the index of the winning

bid at the end of the auction.

III. DEFINING VERIFIABILITY

In this section, we formally define verifiability for auction

protocols. In the first part we consider only first-price auctions.

Thereafter we generalise the definitions to account for second-

price, multi-price, and other types of auctions.

A. First-Price Auctions

To understand which verifications are needed, we start by

discussing three different stakeholder’s perspectives:

• A losing bidder wants to be convinced that he actually

lost. This can be achieved by proving

- that the winning bid was actually superior to his bid (as

defined by the win function), and

- that the winning bid was submitted by another bidder

(preventing both seller and auctioneer from maliciously adding

or manipulating bids to influence the final price).

• A winning bidder wants to check:

- that he actually submitted the winning bid,

- that the final price is correctly computed,

- that all other bids originated from bidders, and

- that no bid was modified.



Together, these verification checks ensure that the winning

bidder is indeed the correct winner, for the correct price.

Moreover, the last two checks ensure that the auction process

was only influenced by legitimate bidders – neither seller nor

auctioneer influenced the process.

• The seller wants to verify that:

- the announced winner is correct, and

- the winning price is correct.

in particular if the outcome of the auction was not de-

termined publicly (e.g. privately by the auctioneer, or using

distributed computations among the bidders).

To execute these verifications, we introduce some Verifica-

tion Tests.

Definition 2 (Verification Test). We define a Verification Test

as an efficient terminating algorithm that takes as input the

data visible to a participant of an auction protocol and returns

a Boolean value.

We deliberately do not specify more details at this point as

they will depend on the underlying protocol model. Such a

test could be a logical formula (whose size is polynomial in

the input) in a symbolic model or a polynomial-time Turing-

machine in a computational model. Obviously there can be

different tests for different participants (e.g. for bidders and

the seller), since they may have different views of the protocol

execution.

We define verifiability as follows.

Definition 3 (Verifiability - 1st-Price Auctions). An auction

protocol (B, S, L, getPrice, isReg , win, winBid) ensures

Verifiability if we have Verification Tests rvs, rvw, ovl, ovw,

ovs respecting the following conditions:

1) Soundness:

a) Registration and Integrity Verifiability (RV):

• Anyone can verify that all bids on the list were

submitted by registered bidders:

rvs = true =⇒ ∀b ∈ L : isReg(b) = true

• Anyone can verify that the winning bid is one of

the submitted bids:

rvw = true =⇒ winBid ∈ Indices(L)

b) Outcome Verifiability (OV):

• A losing bidder can verify that his bid was not

the winning bid:

ovl = true =⇒ myBid 6= win(getPrice(L))
• A winning bidder can verify that his bid was the

winning bid:

ovw = true =⇒ myBid = win(getPrice(L))
• The seller can verify that the winning bid is

actually the highest submitted bid:

ovs = true =⇒ winBid = win(getPrice(L))

2) Completeness: If all participants follow the protocol

correctly, the above tests succeed (i.e., the implications

hold in the opposite direction, ⇐=, as well).

where – with abuse of notation – we write getPrice(L) for

getPrice(L[1]), . . ., getPrice(L[n]).

Consider the perspective of a losing bidder: He can verify

that his bid was not the winning bid (ovl), and that the winning

bid was among the ones submitted by registered bidders, which

were also not modified (rvs and rvw). Similarly a winning

bidder can check that his bid was actually the winning bid

(ovw), and that the other bids were submitted by other bidders

and not modified (rvs). Lastly, the seller can also check that

the bids using for computing the winner were submitted only

by registered bidders (rvs and rvw), and that the outcome

was correct (ovs). Hence these tests cover all the verifications

discussed above.

Note that in the case of soundness we require the conditions

to hold even in the presence of malicious participants (since the

tests should check if they did their work correctly), whereas in

the case of completeness we only consider honest participants.

This is necessary as otherwise e.g. a dishonest auctioneer could

announce the correct result, but publish incorrect evidence.

Hence the verification tests fail although the outcome is

correct, but this acceptable since the auctioneer did not “work

correctly” in the sense that he deviated from the protocol

specification.

Note that this definition can be applied to sealed-bid auc-

tions, where all bids are submitted in a private way, as well as

Dutch or English auctions where offers are publicly announced

and the price decreases or increases.

Consider the following toy example: All bidders publish

their (not encrypted and not signed) bids on a bulletin board,

and at the end of the bidding phase the auctioneer announces

the winner. In this case there is a simple test for rvw:

anyone can simply test if the winning bid is one of published

ones. However there is no test for rvs since bids are not

authenticated. If we require bidders to sign their bids before

publishing them, we also have a simple test for rvs: verifying

the signatures.

It is clear that we have simple tests for ovl, ovw and ovs
since everybody can compute the winner on the public list

of unencrypted bids. This however means that the protocol

ensures no privacy, and no fairness since a bidder can chose

his price depending on the previously submitted bids. If we

add encryption for the bids to address this shortcomings, the

situation becomes more complex and the auctioneer has to

prove that he actually computed the winner correctly, for

example using zero-knowledge proofs.

B. Other Types of Auctions

To extend our definition to second-price auctions (or more

generally (M +1)st-price auctions), we have to keep in mind

that in this case, the price also depends on the other submitted

bids – and not only the winning bid. More generally, we could

also imagine situations where the winner has to pay the mean

of the first three bids, or other more complex values. Or we

can imagine auctions of bulk goods: A seller offers N units

of a good, and bidders can make offers such as “I want to

buy X units at price Y ”. In that case there may be a list of

winners, and a list of prices they have to pay. To deal with

such types of auctions, we generalize our definition as follows.



First, we enrich our model of an auction protocol with a type

Price . The function win now returns lists of winners and

prices win : List(Bid) 7→ List(Index )×List(Price). We also

assume that there are two variables winPrice and myPrice

instantiated as the announced list of winning prices and the

price announced to a winning bidder respectively. Similarly

winBid is now instantiated as a list of indices of bids.

For such auctions, registration verifiability does not change,

but winner(s) and seller also want to verify the price they pay

to prevent a malicious party from increasing price(s).

Definition 4 (Generalized Verifiability). An auction protocol

(B, S, L, getPrice, isReg , win, winBid , winPrice) ensures

Verifiability if we have Verification Tests rvs, rvw, ovl, ovw,

ovs respecting the following conditions:

1) Soundness:

a) Registration and Integrity Verifiability (RV):

• Anyone can verify that all bids on the list were

submitted by registered bidders:

rvs = true =⇒ ∀b ∈ L : isReg(b) = true

• Anyone can verify that the winning bids are

among the submitted bids:

rvw = true =⇒ ∀b ∈ winBid : b ∈
Indices(L)

b) Outcome Verifiability (OV):

Let (indexes , prices) = win(getPrice(L))

• A losing bidder can verify that his bid was not

the winning bids:

ovl = true =⇒ myBid /∈ indexes

• A winning bidder can verify that his bid was

among the winning bids, and that his price is

correct:

ovw = true =⇒
∃i : (myBid = indexes [i] ∧myPrice = prices [i])

• The seller can verify that the list of winners and

the winning prices are correctly determined:

ovs = true =⇒
(winBid = indexes ∧ winPrice = prices)

2) Completeness: If all participants follow the protocol

correctly, the above tests succeed (i.e., the implications

hold in the opposite direction, ⇐=, as well).

where – with abuse of notation – we write getPrice(L) for

getPrice(L[1]), . . ., getPrice(L[n]).

Note that e.g. in the case of a second-price auction verifying

the price, for example in test ovw, may implicitly include

some more registration verification, namely checking that

the second-highest bid was actually submitted by a bidder.

Otherwise a malicious seller could add a higher second-highest

bid or manipulate the existing one to achieve a higher selling

price. This is however included in our model as the function

win only works on the list L, hence adding another bid later

on to manipulate the bidding price violates the test, and adding

or manipulating a bid in L violates rvs.

IV. CASE STUDIES

In this section, we discuss our three case studies: The

protocols by Sako [11], Curtis et al. [10] and Brandt [9].

A. Protocol by Sako [11]

Kazue Sako [11] proposed a protocol for sealed-bid first-

price auction which hides the bids of losing bidders and

ensures verifiability. In this protocol dishonest authorities can

break privacy, but because of verifiability any manipulation of

the auction outcome can be detected.

1) Informal Description: The protocol works as follows:

1) The authorities set up a list of encryption and decryption

algorithms Ev and Dv , and a list of constant Mv where

each entry corresponds to a bidding price. They publish

the encryption algorithms and the constants on a bulletin

board.

2) To bid for price p, a bidder encrypts Mp using Ep, signs

it and publishes the bid Cp = Ep(Mp) together with the

signature on the bulletin board.

3) After the bidding phase is over, the authorities check the

signatures and start decrypting with the highest possible

price t = pmax. If Dt(Ci) = Mt, then the bid i was

a bid for price t. If all decryptions fail, the authorities

decrease t and try again. Each time a decryption is done,

they publish a proof of correct decryption to enable

verifiability. This can be a zero-knowledge proof, or it

might be achieved by simply publishing the secret key

as in one of the examples in the original paper [11].

4) To verify the outcome, anybody can verify the signa-

tures, and check the proofs of correct decryption.

2) Formal Model: We formalize this protocol using a set

of bidders B and a seller S. The list of all submitted bids L

is published on the bulletin board. The function getPrice(C)
decrypts the bid by trying all possible prices until the correct

value is found, i.e. until Dt(C) = Mt (as the authorities

would), and then returns t. The function isReg simply checks

the signature. The function win returns the index of the highest

bid, and winBid will point to the index of the winning bid at

the end of the auction as announced by the authorities on the

bulletin board.

3) Analysis summary: In this part, we analyze verifiability

given the above model and protocol description. We start with

a high-level summary, then model the tests in the applied π-

calculus and claim their soundness and completeness for this

protocol (proofs of which are available in the techreport [?]).

a) Summary: In the original paper Sako sketches some

verifications, which can be translated to our model as follows.

The test rvs simply checks all the signatures. For rvw one

can check if the encrypted value appears in the list of bids on

the bulletin board when the winner is announced. Finally the

test for ovl, ovw and ovs works as follows: Any participant

can check that all decryptions corresponding to a potentially

higher bid were unsuccessful (i.e. the result was different from

Mt), and verify the proofs of correct decryption. To check if

he won or lost, a bidder can simply compare his bid to the



winning price. Similarly the seller can check if the announced

winning bid is actually the winning bid.

We can easily model the verifiability tests as processes as

well, they will simply receive the necessary data on some

channels and output a certain message depending on whether

they accepted this input or not. This also allows us to check

soundness and completeness of the tests in ProVerif, since

these properties can be modeled as reachability properties

such as “If the input to the test was generated by honest

participants according to the protocol, can the process “test”

emit a message “KO”?” (which corresponds to completeness)

or “Is it possible for an attacker to send messages to the

process “test” such that it emits a message “OK” although

the input is not correct?” (which corresponds to soundness).

The first test rvs, described in Listing 1, is actually a

simple implementation of our soundness condition (∀b ∈ L :
isReg(b) = true): It receives all bidders’ public keys and the

bids, and then verifies all signatures. We show that is sound

and complete in Theorem 1.

1 l e t t e s t r v s =

2 i n ( chK1 , k1 ) ; . . . i n ( chKn , kn ) ;

3 i n ( chBB1 , ( m1 , s1 ) ) ; . . . i n ( chBBn , ( mn , sn ) ) ;

4 i f c h e c k s i g n ( s1 , k1 ) = m1 && . . . &&

5 c h e c k s i g n ( sn , kn ) = mn t h e n o u t ( chRVS ,OK)

6 e l s e o u t ( chRVS ,KO) .

Listing 1. The test rvs.

Theorem 1. The test rvs (see Listing 1) for the protocol by

Sako [11] is sound and complete.

Proof. See the tech report [?].

The second test rvw, given in Listing 2, takes all published

bids on channel chBB and the winning bid published on

channel chW and checks if the winning bid is among the

published ones. This is again the direct implementation of

the soundness condition, and we show that it is sound and

complete in the following theorem.

1 l e t t e s t r v w =

2 i n ( chBB1 , ( m1 , s1 ) ) ; . . . i n ( chBBn , ( mn , sn ) ) ;

3 i n (chW , ( m, ind , p r i c e ) ) ;

4 i f m1=m | | . . . | | mn=m t h e n

5 o u t (chRVW,OK)

6 e l s e

7 o u t (chRVW,KO) .

Listing 2. The test rvw .

Theorem 2. The test rvw (see Listing 2) for the protocol by

Sako [11] is sound and complete.

Proof. See the tech report [?].

For the outcome verification tests we employ a similar

approach. Note that for Sako’s protocol the tests ovl, ovw and

ovs are all the same, and are described by process testov.

Due to space considerations, we refer to the tech report for

the listing of the test.

Theorem 3. The test testov for the protocol by Sako [11]

is sound and complete.

Proof. See the tech report [?].

We thus conclude that all proposed tests are sound and

complete, hence the protocol by Sako [11] is verifiable1

B. Protocol by Curtis et al. [10]

The protocol by Curtis et al. [10] was designed to support

any type of sealed-bid auction while guaranteeing fairness,

privacy, verifiability and non-repudiation.

1) Informal Description: The main idea of the protocol is

the following: The bidders register with a trusted Registration

Authority (RA) using a Public-Key Infrastructure (PKI), which

issues pseudonyms that will then be used for submitting bids

to the Seller (S). The seller eventually receives all bids in

clear and can hence apply any auction function possible, yet

he cannot link a bid to a bidder because of the pseudonyms.

The protocol is split into three phases: Registration, Bidding,

and Winner determination.

• Registration: Each bidder sends his identity, a hash of

his bidding price bi and a signature of h(bi) to the RA.

The RA checks the identity and the signature using the

PKI, and replies with an encrypted and signed message

containing a newly generated pseudonym p and the

hashed bid h(bi).
• Bidding: The RA generates a new symmetric key k. Each

bidder will send c = EncpkS
(bi), his bid bi encrypted

with the seller’s public key, and a signature of c, together

with his pseudonym to the RA. The RA will reply with a

signature on c, and encrypts the bidders message, together

with the hashed bid h(bi) from phase one, using the

symmetric key k. This encrypted message is then send

to the seller.

• Winner determination: After all bids have been submitted,

the RA will reveal the symmetric key k to the seller. The

seller can then decrypt the bids, verify the correctness of

the hash and determine the winner. To identify the winner

using the pseudonym he can ask the RA to reveal the true

identity.

2) Formal Model: We have the set of bidders B and a seller

S. We do not need to specify the type of bids Bid since the

protocol supports any type of bids. The bids are published

when the auctioneer reveals the symmetric key, i.e. L contains

bids of the following type: (Pseudo×PEnc(Bid)×Hash),
where Pseudo is the type of pseudonyms, PEnc is a public-

key encryption and Hash are hash values. The function

getPrice will simply decrypt the encrypted bid (the second

entry of the tuple). The function isReg will return true if and

1 The ProVerif input files for Sako’s protocol are available from
http://www-verimag.imag.fr/∼dreier/papers/csf-code.zip as part of a detailed
case study of multiple protocols.

http://www-verimag.imag.fr/~dreier/papers/csf-code.zip


only if the hash value is correct, the pseudonym was actually

attributed by the RA and the bid was submitted correctly

signed by the bidder with this pseudonym. The protocol is

independent of the used auction mechanism and hence does

not define win . The seller will simply decrypt all bids and

can then apply any function win . He will publish the winning

price and the winning bidders pseudonym, and winBid will

denote the index of the bid containing this pseudonym.

3) Analysis: Since the seller does the winner determination

on his own, there is a simple test for ovs: He can check his

own computations. As the computation of the winner is not

specified in order to support any type of auction, we cannot

give tests for ovl and ovw – they would have to be designed

as a function of the used auction algorithm. Yet there is also

a test for rvw: Checking if the pseudonym appears in the list

of bids.

However, the messages from the RA to the seller are not

authenticated, hence there can be no suitable tests for rvs

once the (encrypted) bids are revealed. Even if they were

authenticated, this still requires trusting the RA (contrary to

the goal of verifiability) since there is no way to verify if a

pseudonym actually corresponds to a bidder. This also shows

a simple attack: the RA can create a new pseudonym and

submit a bid under this pseudonym, which may allow him

to manipulate the auction outcome. protocol provides no test

for rvw and ovw since the seller is the only one capable of

decrypting the bids and computing the winner.

C. Protocol by Brandt [9]

The protocol by Brandt [9] realizes a first-price sealed-bid

auction and was designed to ensure full privacy in a completely

distributed way. It exploits the homomorphic properties of a

distributed El-Gamal Encryption scheme for a secure multi-

party computation of the winner.

1) Informal Description: The participating bidders and the

seller communicate using a bulletin board, i.e. an append-

only memory accessible for everybody. The bids are encoded

as bit-vectors where each entry corresponds to a price. The

protocol then uses linear algebra operations on the bid vectors

to compute a function fi, which returns a vector containing

one entry “1” if the bidder i submitted the highest bid, and

different numbers ( 6= 1) otherwise. To be able to compute this

function in a completely distributed way, and to guarantee

that no coalition of malicious bidders can break privacy,

these computations are performed on the encrypted bids using

homomorphic properties of a distributed El-Gamal Encryption.

In a nutshell, the protocol realizes the following steps:

1) Firstly, the distributed key is generated: each bidder

chooses his part of the secret key and publishes the

corresponding part of the public key on the bulletin

board.

2) Each bidder then computes the joint public key, encrypts

his offer using this key and publishes it on the bulletin

board.

3) Then the auction function fi is calculated for every bid-

der using some operations exploiting the homomorphic

property of the encryption scheme.

4) The outcome of this computation (n encrypted values)

are published on the bulletin board, and each bidder

partly decrypts each value using his secret key.

5) These shares are send to the seller, who can combine all

to obtain the result (i.e. all fi). He publishes part of the

shares such that each bidder j can only compute his fj
to see if he won or lost (using his knowledge and the

published shares), but not the other fi.

2) Formal Model: We have a set of bidders B and a seller

S. The list of all submitted bids L is published on the bulletin

board. The function getPrice(C) decrypts the bid using the

joint private key. The function win returns the index of the

highest bid submitted, in case of ties the one submitted by

the bidder with the smallest index. The protocol has two

particularities: Firstly there is no registration (and hence no

meaningful function isReg), and secondly the winner is not

publicly announced – only the winning bidder and the seller

know at the end who won. We can still assume that winBid

gives the index of the winning bid, although only the seller and

the winning bidder have access to it. We assume that there is a

magical function isReg that can check if a bid was submitted

by a registered bidder, however the absence of registration and

authentication means that we cannot implement it.

3) Analysis: The protocol includes no authentication or

registration, hence there is no suitable test for rvs. An attacker

may hence submit bids on behalf of a bidder, which cannot

be detected using a verification test. Yet using the values

published on the bulletin board everybody can check if the

values used for the computation were the previously submitted

bids, and as the winning index will be among them, we have

a test for rvw.

The author claims that the protocol is verifiable as the

parties have to provide zero-knowledge proofs for their com-

putations, however there are two problems.

Firstly a winning bidder cannot verify if he actually won.

To achieve privacy, the protocol hides all outputs of fi except

for the entry containing “1”. This is done by exponentiation

of all entries xi of the return vector x with random values, i.e.

by calculating x
∑

j rj

i . If xi is one, this will still return one,

but a random value for any other value of x. Yet these random

values rj may add up to zero (mod q), hence the returned value

will be x0

i = 1 and the bidder will conclude that he won

(xi = 1), although he actually lost (xi 6= 1). Hence simply

verifying the proofs is not sufficient – such a test ovw would

not be sound. For the same reason the seller might observe

two or more “1”-values even though all proofs are correct,

and will be unable to decide which bidder actually won. He

could even exploit such a situation to his advantage: He can

simply tell both bidders that they won and take money from

both, although there is only one good to sell. If the bidders

do not exchange additional data there is no way for them to

discover that something went wrong, since the seller is the



only party having access to all values. The probability of the

random values adding up to zero is low, yet this means that

there are cases where the verifiability tests are not sound.

Secondly the paper does not exactly specify the proofs that

have to be provided in the joint decryption phase. If the bidders

only prove that they use the same private key on all decryptions

(and not also that it is the one they used to generate their

public key), they may use a wrong one. This will lead to a

wrong decryption where with very high probability no value is

“1”, as they will be random. Hence all bidders will think that

they lost, thus allowing a malicious bidder to block the whole

auction, as no winner is determined. Hence, if we assume that

ovl consists in verifying the proofs, a bidder trying to verify

that he lost using the proofs might perform the verification

successfully, although the result is incorrect and he actually

won – since he would have observed a “1” if the vector had

been correctly decrypted. This problem can be addressed by

requiring the bidders to also prove that they used the same

private key as in the key generation phase.

V. CONCLUSION

In this work, we identified the types of verifiability nec-

essary for the stakeholders in auctions. We then formalized

these requirements in a protocol-independent way, resulting

in tests rvs, rvw, ovl, ovw, ovs, which together constitute a

general verifiability framework for auction protocols.

We illustrated the use of the proposed tests by three case

studies. In the first case study, we provided an in-depth

analysis of the protocol by Sako [11], the first work to fully

hide the bids of losing bidders. For this, we formalized Sako’s

protocol in the applied π-calculus, and proved soundness and

completeness of the instantiation of our tests for this protocol.

The case for one (resp. two) bid(s) was proven using ProVerif,

the case for n bids was reduced to this case by manual proof.

In addition, we analyzed the auction protocols by Curtis et

al. [10] and by Brandt [9]. The protocol by Curtis et al. is

correct only for a trusted Registration authority – which runs

contrary to the point of verification: that the authorities no

longer need to be trusted. Brandt’s protocol does not have

sound verifiability tests: it is technically possible for a losing

bidder to conclude he won. Moreover, it may also be possible

for a bidder to prevent anyone from winning by using a wrong

decryption key. To prevent this, bidders must prove that the

private key matches the previously announced public key.

Future work. The proposed tests enable protocol indepen-

dent reasoning about auction verifiability. The developed tests

have been applied a posteriori, which works well for sealed-

bid auctions. We are investigating how to extend the frame-

work to handle interactive auctions, such as traditional English

auctions. In such auctions a non-bidder may submit a higher

bid. An interested bidder may then overbid, before realizing

that this was not necessary. Checks executed after the auction

will not prevent this. Looking further ahead, we are interested

in the full relationship between fairness and verifiability in

auctions. As illustrated, there exist verifiability requirements

without which violations of fairness may occur. The exact

relationship between fairness and verifiability however is an

open question.
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