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Abstract—Cryptographic solutions to privacy-preserving mul-
tiparty linear programming are slow. This makes them unsuitable
for many economically important applications, such as supply
chain optimization, whose size exceeds their practically feasible
input range. In this paper we present a privacy-preserving trans-
formation that allows secure outsourcing of the linear program
computation in an efficient manner. We evaluate security by
quantifying the leakage about the input after the transformation
and present implementation results. Using this transformation,
we can mostly replace the costly cryptographic operations and
securely solve problems several orders of magnitude larger.

I. INTRODUCTION

Linear Programming (LP) can be used to solve many prac-
tical optimization problems, e.g. supply chain master planning
[21]. Many practical problems are distributed and require
protection of the input data. For example, in supply chain
master planning, the participating companies need to exchange
information about production costs and capacities. This is very
sensitive data, since it directly impacts the negotiation position.
Consequently no master planning solution will be adopted in
practice that reveals this data [17].

Secure multi-party computation (SMC) [4, 10, 18, 25]
offers a cryptographic solution to the problem. Several parties
can jointly compute a function, e.g. LP, without disclosing
anything except what can be inferred by a party’s input and
output. In theory this offers an ideal solution to the conflict
posed by these problems. There even exist a number of
specialised protocols for secure LP [7, 14, 22].

Nevertheless these solutions suffer from a prohibitively bad
computational performance. We estimate that our prototypical
implementation of Toft’s protocol [22] requires 7 years in
order to solve our use case LP problem with 282 variables.
Supply chain planning problems can easily reach 4 million
variables [6] and these are only single company planning
problems while we consider cross-organizational optimization.
These size of problems are currently solved every day by
non-secure LP solvers. Assuming an average computation
complexity of O(n3) for LP and that Moore’s Law continues
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Fig. 1. Privacy-Preserving Linear Programming based on Problem Transfor-
mation

to hold for the time being, it would still take roughly 80 years
until these problems could be solved securely as fast as they
can be solved non-securely today. Clearly, if we want to solve
these problems today, we need a different approach.

In [23] Vaidya presents a different approach to the problem.
Instead of implementing a LP solver using SMC the problem is
randomly transformed and then the problem is solved using a
non-secure LP solver. Unfortunately, as Bednarz already points
out in [3], Vaidya’s transformation is incorrect and may lead
to solutions which are not admitted in the original problem.
In this paper we present a new, correct transformation. Fur-
thermore we do not settle for an informal assessment of its
security, but instead evaluate it in the framework of leakage
quantification. Finally, we present performance results from
our implementation.

Let L be an instance of a LP problem where parties Xi have
input xi, e.g. variables, constraints or costs. The approach of
[7, 14, 22] is to implement a LP solver for L using SMC where
xi is the input of each party. Let g be our privacy-preserving
transformation, then L′ = g(L) is another instance of a LP
problem, but L′ reveals little information about L. We can
outsource the solution of L′ to an untrusted service provider,
e.g. the cloud. Either a single party computes g on its data, e.g.
a single company instance of supply chain planning, or we can
securely compute g using SMC for multiple parties. We show
that computing g is much more efficient than implementing a
LP solver and even present an optimized secure computation
protocol for it. The solution computed by the cloud on L′ then
needs to be transformed by g′ to the solution of L. Figure 1
depicts our approach to privacy-preserving linear programming
using problem transformation.

In summary this paper contributes

• a novel privacy-preserving transformation for linear pro-
grams regardless of their partitioning.



• a proof that differently from previous work the trans-
formation is correct, i.e. an optimal solution to the
transformed problem always corresponds to an optimal
solution of the original problem.

• an analysis that the transformation is secure in the frame-
work of leakage quantification. In our use case example
the chances of guessing e.g. the optimal values x are less
than 2.30 · 10−1409.

• a secure computation protocol to efficiently compute the
transformation in a multiparty case.

• a theoretical analysis and performance results of our
implementation that show that the transformation is ef-
ficient. In our use case example computing the solution
only required 25 minutes (compared to 7 years for Toft’s
protocol).

The remainder of this paper is structured as follows. In
the next Section we review related work. In Section III we
present our main result, the privacy-preserving transformation.
We prove the correctness of the transformation in Section IV
and analyze its performance in Section V. In Section VI
we summarize our results from leakage quantification of this
transformation. We show the protocol for securely computing
the transformation in Section VII. The results from our use
case example are described in Section VIII. We conclude the
paper in Section IX.

II. RELATED WORK

Our work is related to secure multi-party LP solvers [7, 14,
22], secure outsourcing [1, 2, 3, 9, 15, 16, 23] and leakage
quantification [5, 20, 24].

A. Secure Multi-Party LP Solvers

As mentioned above, different distributed LP solvers based
on secure multi-party computation have been developed. Toft
[22] used a distributed secure Simplex algorithm based on
secret sharing. This algorithm is usable for any number of
participants and provides information-theoretic security. Yet
it turned out to be too slow in practice for realistically
sized problems in many applications such as Supply Chain
Management.

Li and Atallah [14] also used a distributed Simplex algo-
rithm. In contrary to Toft [22] they concentrated on the case
where the data is shared among only two parties. It is unclear
if their algorithm can be efficiently extended to the multi-party
case.

Catrina and de Hoogh [7] developed a more efficient version
of the distributed Simplex algorithm using fixed-point arith-
metics. However, their solution still is only suitable for small
inputs as it suffers from a higher asymptotic and worst-case
complexity than our transformation.

B. Secure Outsourcing

Vaidya [23] used a transformation approach which is the
basis for our transformation. He supposed a scenario where
one party holds the objective function and the other party
the constraints. As a consequence his transformation does not

protect the entire Linear Program, which is not appropriate
for most applications. Additionally, he did not provide a
formal security analysis and his work suffers from correctness
problems [3].

Mangasarian [15, 16] proposed similar transformations for
special input distributions (horizontal or vertical partitioning).
Supply chain optimization problems have a more complex
distribution which combines both cases. Additionally, his
approach for horizontal partitioning is limited to equality
constraints. This is not sufficient for supply chain optimization
either, as we have to deal with capacity constraints expressed
as inequality constraints. Our transformation addresses both
shortcomings and is suitable for more general data distribu-
tions. Moreover he does not provide a formal security analysis.

Furthermore there is work on related problems such as
matrix multiplication and linear systems of equations [1, 2, 9].

C. Leakage Quantification

To give a formal security assessment of our transformation,
we use methods of Leakage Quantification which measure
how much information about the secret input is revealed to
an attacker. In particular, we concentrate on the metric of
“Multiplicative Advantage” which was first developed – but
not called so – by Smith [20] based on entropy loss using a
special type of min-entropy. Later on, this was analyzed more
closely by Braun et al. [5] who proposed another, simpler
definition – the one we use in this paper. Compared to other
metrics such as entropy loss or channel capacity using the
standard Shannon-entropy, it is particularly expressive for one-
try attacks as it gives a worst-case evaluation. To assess
complex operations we make use of some theorems by Wibmer
et al. [24] on the leakage of combined channels.

III. THE TRANSFORMATION

Linear Programming is a standard tool in business opti-
mization. A Linear Program (LP) consists of a set of unknown
variables x, a linear target function c(x) representing the costs
which shall be minimized (or equivalently the gain which has
to be maximized) and a set of constraints (linear equalities or
inequalities):

min cTx
s.t. M1x = b1

M2x ≤ b2
x ≥ 0

We use a positive monomial matrix1 Q to hide c (as proposed
by [23, 3]):

min cTQQ−1x
M1QQ

−1x = b1
M2QQ

−1x ≤ b2
Q−1x ≥ 0

1A monomial matrix contains exactly one non-zero entry per row and
column.



and a positive vector r to hide x

min cTQ(Q−1x+ r)
M1Q(Q−1x+ r) = b1 +M1Qr
M2Q(Q−1x+ r) ≤ b2 +M2Qr

(Q−1x+ r) ≥ r

For z = Q−1x+ r and a strictly positive diagonal matrix S2

we have

min cTQz
M1Qz = b1 +M1Qr
M2Qz ≤ b2 +M2Qr

Sz ≥ Sr

Then we define c′T = cTQ,

M ′ =

 M1Q 0
M2Q A−S

 , b′ =

 b1 +M1Qr
b2 +M2Qr
−Sr


where A is a permutation matrix3 representing slack-
variables4. This allows us to rewrite the program as follows:

min c′Ts zs
s.t. M ′zs = b′

zs ≥ 0

where c′s is c′ with added zeros for the slack-variables and zs
is the variable vector (z with added slack-variables). To hide
the contents of M ′ and b′ we use a nonsingular matrix P and
with M ′′ = P ∗M ′ and b′′ = P ′ ∗ b′ we have

min c′Ts z
s.t. M ′′zs = b′′

zs ≥ 0

As z = Q−1x+ r, the resulting x can be obtained from z by
calculating x = Q(z − r).

IV. CORRECTNESS

For the transformation to be useful in practice, we have to
ensure that the transformed program can still be used to find
a solution to the original problem. We show (for more details
see the technical report [8]) that any optimal (i.e. with minimal
cost) and feasible (with respect to the constraints) solution
to the transformed problem corresponds to an optimal and
feasible solution of the original problem using the following
two lemmas.

Lemma 1. A solution x is feasible in the original problem
if and only if z = Q−1x + r is a feasible solution to the
transformed problem.

2A diagonal matrix where the entries on the main diagonal Ai,i are strictly
positive.

3A permutation matrix is a monomial matrix where the non-zero entries
are “1”.

4A slack-variable is used to express inequality constraints as equality
constraints. The idea is to introduce an additional variable for each constraint
which takes up the “remainder” or “slack”. For example, instead of 3x1 ≤ 10
we can write 3x1 + s1 = 10 for s1 ≥ 0.

Proof: This is true by construction. The multiplication
by P does not change the solution set as P is invertible.
Q is monomial (which gives correctness for this part of the
transformation as shown by Bednarz et al. [3]) and r is positive
to not interfere with z ≥ 0. As S is a strictly positive diagonal
matrix, the multiplication by S is actually a multiplication of
each row with a positive scalar which leaves the inequalities
untouched.

Lemma 2. Let z be the solution that minimizes c′T z in the
transformed LP. Then x = Q(z − r) minimizes cTx in the
original problem.

Proof: We will use a proof by contradiction. Suppose that
there is a solution x′ with cTx′ < cTx. Then

cTx′ < cTQ(z − r)
⇔ cTx′ < cTQz − cTQr
⇔ cTQQ−1x′ + cTQr < cTQz
⇔ c′T (Q−1x′ + r) < c′T z

(1)

Apparently z′ = Q−1x′+r is a valid solution for transformed
LP with strictly lower cost than z. Hence z is not optimal.  

V. PERFORMANCE

Performance is a key aspect of our approach: The transfor-
mation has to be significantly less complex than solving the
problem itself, otherwise outsourcing would not represent an
efficiency gain to the clients.

From a theoretical viewpoint this is easy to see, as the
most expensive operation during the transformation is the
multiplication by P . Let m1 and m2 denote the number
of rows of M1 and M2 respectively, and n the number of
variables. Then the multiplication using a naive algorithm is
in O((m1 +m2 + n)2 × (2n +m2)). This is more efficient
than the simplex algorithm (on which the secure LP solvers
[7, 14, 22] are built on) with exponential worst case complexity
[13]. Even in the average case or compared to interior point
methods performance will be better due to smaller constants.

We discuss practical performance in our use case example
in Section VIII.

VI. SECURITY

We analyze the security of our transformation in the follow-
ing setting: An attacker wants to obtain the input data, i.e. the
original LP. He knows the transformed LP and some abstract
facts about the input, for example that the input values are
within a certain range.

Ideally we would like to give a classical security proof.
However, as our transformation is based on disguising using
random noise, our transformation will probably leak some
information. This makes the classical cryptological security
definitions unsuitable. Nevertheless leaking some information
can be acceptable for many applications as long as the leakage
is small and bounded. In return, we get dramatic performance
improvements which can be more important than perfect secu-
rity. Nevertheless, we want to formally evaluate this leakage,



and to show that it is “small and bounded”. This is possible
using Leakage Quantification methods based on information
theory.

Due to space limitations, we are not able to discuss the
entire analysis here (for details see our Technical Report [8]).
We limit ourselves to defining the metric “Multiplicative
Advantage” and presenting the results of our analysis, i.e. the
bounds on the leakage of different parts of the transformation.
In the last part of this section we analyze possible attacks.

A. Multiplicative Advantage

The disguising transformation is modeled as a communica-
tion channel as in information theory, and we try to measure by
how much the knowledge of the output increases the chances
of guessing the input.

Definition 1 (Channel). A discrete, noisy and memoryless
channel C is given by
• A finite set X = x1, ..., xn called the input alphabet,
• a finite set Y = y1, ..., yn called the output alphabet,
• for each x ∈ X a random variable C|x that takes values

in Y .

In this model the input x ∈ X represents the data to hide,
the output y ∈ Y is the “encrypted” or “disguised” data that is
passed into the cloud. The definition of the input alphabet X
is important as it reflects the attackers “abstract knowledge”
about the input, for example that the input is a value within a
certain range.

Braun et al. [5] defined the notion of “advantage” based on
a similar notion (“vulnerability”) by Smith [20]. For a random
variable X characterizing the input distribution let

PRpriori(X) = max
i
p(X = xi)

denote the a priori probability of a right guess (i.e. the
probability of an attacker correctly guessing the input if it
has not yet seen the output of the channel). Similarly let

PRposteriori(X) =
∑
j

max
i

(p(yj |xi)p(X = xi))

denote the a posteriori probability of a right guess (i.e. the
probability of an attacker correctly guessing the input after
having seen the output of the channel). Then we define

L′(X) =
PRposteriori(X)

PRpriori(X)

the factor by which the knowledge of the output of the channel
increases the chances of a right guess for a given X5.

Definition 2 (Multiplicative Advantage). The Multiplicative
Advantage or Multiplicative Leakage of a channel C is defined
as

L(C) = max
X

L′(X)

5Braun et al. [5] call this value the Multiplicative Leakage. The interesting
point is the maximum of this value over all X , which we call Multiplicative
Leakage.

L(C) is independent of the input distribution, which is
convenient if this distribution is not known. Additionally
L′(X) has the advantage of attaining its maximum for a
uniform input distribution [5, 24] which yields

L(C) =
∑
j

max
i
p(yj |xi)

This result is very useful in practice as p(yj |xi) are the
entries of the channel matrix. Furthermore Wibmer et al. [24]
showed that multiplicative leakage can be used to easily bound
the leakage of compositions of independent channels which
simplifies the analysis of complex protocols. In our technical
report [8] we calculate bounds on the leakage of several basic
operations (permutations, scalar and matrix multiplication)
which we now use to analyze the overall leakage of our
transformation.

B. Establishing Bounds on the Leakage

Using the bounds on the leakage of the basic operations,
we establish bounds on the leakage of the three main parts
of the transformation: The cost function, the variables and the
constraints.

1) Leakage of the cost function c: In our transformation c
is hidden by a monomial matrix Q, i.e. a permutation followed
by a multiplication of each entry with a scalar value. Wibmer
et al. [24] showed that the leakage of two independent channels
arranged one after the other is bounded by the minimum of
both leakages. Hence we obtain

L(cln,k) ≤ min

((
n+l
l+1 + 1

)k
, (A(n,l)+k)!
k!∗(A(n,l))!

)
where cln,k denotes the channel for a k-dimensional input
vector c hidden by a multiplication by a monomial matrix
and A(n, l) is the number of different values of f =

∏l
i=1 fi

with fi ∈ {1, . . . , n}. The first value is the leakage of a scalar
multiplication, the second value bounds the leakage of the
permutation (cf. [8]). Note that this is an evaluation of c only,
although Q appears in other places in the transformation as
well (in the constraint matrix, on the right hand side and in
z). When evaluating all parts together, this results in partly
dependent channels. However, this simplification is realistic
as the other occurrences are well-hidden, as we discuss later
on.

2) Leakage of the variables x: The variable vector zs
consists of two parts: The non-slack variables z and the
slack-variables. The non-slack variables contain values z =
Q−1x+ r.

Wibmer et al. [24] showed that for a channel y = rx + r′

with r′ < r ≤ rm and x ≤ xm the leakage is bounded between

log(xm + 2) ≤ L(”y = rx+ r′”) ≤ 2 log(xm + 2)

for rm → +∞. The channel ”z = Q−1x+r” can be modeled
as a permutation followed by the ”y = rx+ r′”-channel as Q
resp. Q−1 is a monomial matrix and thus we have

L(”z = Q−1x+ r”) ≤ min

(
2 log(xm + 2),

(xm + k)!

k! ∗ xm!

)
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Fig. 2. Overview of a possible attack

As mentioned before, the matrix Q is also used in the hiding
of c. This is not a problem, since the vector r prevents the
search for common factors (see cryptanalysis below).

The slack variables contain potentially correlated values as
well (S ∗ Q−1x), but since they are permuted, it is hidden
which variable belongs to which constraint. This further com-
plicates exploiting correlation by common factors.

3) Leakage of the Constraints (M1, M2, b1 and b2): The
leakage of the constraints is difficult to estimate due to the
number and complexity of related transformation steps. We
can however argue that their security is essentially based on
P , as the following analysis shows.

On the one hand, breaking the hiding with P almost
completely reveals all other hiding operations (see Figure 2).
If the attacker knows P , he can obtain S, which allows him
to calculate r. This gives access to b1 and b2. As Q is a
monomial matrix, each row of M{1,2}Q is multiplied with the
same factor which he can guess with very high probability
when searching for common factors (see the cryptanalysis for
details). This then leaks a permutation of M1, M2 and c, which
may be a complete break if the attacker knows something
about the structure of M1 or M2 which allows him to undo
the permutation. Hence we can say that the constraints are at
most as safe as P .

On the other hand they are unlikely less safe than P ,
since conversely the knowledge of the constraints noticeably
increases the chances of guessing P .

We now give an estimation of the leakage of P . To simplify
the analysis, we use the following channel model: The input
alphabet X are invertible square matrices of dimension (m1+
m2+ k)× (m1+m2+ k) (where m1 and m2 are the number
of rows of M1 and M2; k is the number of variables). The
channel output is

P ∗B = P ∗
(

B’ 0
A

)
where A is a permutation matrix of dimension (m2 + k) ×
(m2+k), and B′ a random matrix of dimension (m1+m2+
k) × (k + 1). B′ represents the parts of M ′ which contain
M1Q, M2Q and −S as well as b′ (which can be seen as
just another column of the matrix). The general idea is that
A is responsible for most of the leaked information about
P , and that attackers have very limited knowledge about the
other parts of the matrix, so that modeling them as random is
reasonable.

This model allows us to use another theorem by Wibmer
et al. [24] on parallel channels. We split the channel CP into
a first channel CP,1 which calculates P ∗ B′, and a second

channel CP,2 which calculates

P ∗
(

0
A

)
Then the theorem gives that

max {L(CP,1), L(CP,2)} ≤ L(CP ) ≤ L(CP,1)L(CP,2)

CP,1 corresponds to a matrix multiplication channel M ′
k,n,l

[8]. The leakage of CP,2 can be bounded as follows

L(CP,2) ≤
∏m2+k

i=1 ((n+ 1)m1+m2+l − i)
(m2 + k)!

when P contains values between 0 and n. This is formally
shown in the technical report [8].

C. Cryptanalysis

In this Section we discuss several attacks on P and Q, the
most important parts of the transformation.

1) Attacks on P : The most promising approaches to attack
P are based on the structure of the matrices, in particular the
slack-variables as the following example illustrates. Consider
these constraints:

M ∗ x ≤ b
x ≥ 0

When adding slack-variables we obtain (I is the identity
matrix) (

M I
)
∗ x′ = b
x′ ≥ 0

If we multiply by P the result is(
P ∗M P

)
∗ x′ = P ∗ b
x′ ≥ 0

This means that the slack-variables completely reveal P .
Unfortunately the most general type of matrix we can use
instead of the identity matrix I is a monomial matrix A as A
and A−1 have to be positive [11]. Yet this is only partly helpful
as the knowledge of P ∗A allows an attacker to calculate

M ′ = (P ∗A)−1 ∗ (P ∗M)
= A−1 ∗ P−1 ∗ P ∗M
= A−1 ∗M

As A is a monomial matrix, A−1 ∗M is a permutation of M
where each column is multiplied with the same value - which
can be obtained with very high probability when searching for
common factors.

Not transforming the inequalities into equalities is not an
option, as this would reduce our choice of P to monomial
matrices for correctness reasons. This would turn P ∗M into
an easy target for factorization attacks and thus not provide
enough security.

To solve the problem, we treat equality constraints sepa-
rately. This reduces the size of A, as we need less slack-
variables. If A is smaller than P , it only leaks a permutation
of some columns of P and not the entire matrix. However,
this requires that in the input problem some of the constraints
are equations, which is not always the case. Yet in our target



application Supply Chain Management most of the constraints
are actually equations, which turns this into a very well-suited
solution.

If the input problem contains only inequality constraints, we
can still improve security by assigning non-zero costs to slack-
variables and permuting the variables to hide them among the
real variables. A possible way to do this without changing the
optimal solution is by analyzing the dual problem [19].

2) Attacks on Q: Q is a positive monomial matrix, i.e. it can
be written as Q = D∗E where D is a diagonal matrix and E a
permutation matrix. Thus Q−1 = (D ∗E)−1 = E−1 ∗D−1 =
ET ∗D−1 where

D =

D1 · · · 0
...

. . .
...

0 · · · Dn

 , D−1 =


1
D1

· · · 0
...

. . .
...

0 · · · 1
Dn


Q appears in several places in the transformation. This

can be an issue if the resulting products of Q and Q−1

with M1, M2, c etc. allow the search for common factors.
Since two random numbers have an asymptotic probability
6/π2 ≈ 61% of being coprime [12], this search is very
likely to be successful if we have access to several numbers
containing the same factor. Thus we have to ensure that there
are no two or more values which contain the same factor. We
now analyze all occurrences of Q inside the transformation.
• The cost function

c′ = cT ∗Q = cT ∗ (D ∗ E)
=

(
c1 ∗D1 c2 ∗D2 · · · cn ∗Dn

)
∗ E

contains all the factors of D, but each factor appears only
once inside one of the entries.

• M{1,2}Q has the following structure

M1 ∗Q =M1 ∗ (D ∗ E)

=

 M1,1 ∗D1 · · · M1,n ∗Dn

...
...

Mm1,1 ∗D1 · · · Mm1,n ∗Dn

 ∗ E
This is open for attack as there are lots of values
containing the same factor. However, since inside M ′

there is −S below (cf. Eq. III), M ′′ = P ∗ M ′ has a
different structure. For example

M ′′1,1 =

m1∑
i=1

P1,i ∗ (M1Q)i,1

+

m2∑
i=1

P1,i+m1 ∗ (M2Q)i,1 − P1,m1+m2+1 ∗ S1

contains a common factor Dj in all summands except for
the last. This is enough to make the values unusable for
factorization attacks.

• M{1,2}Qr is secure against factorization attacks since

(M1Qr)1 =

n∑
i=1

(M1Q)1,i ∗ ri

where each (M1Q)1,i contains a different Dj .

• z = Q−1x + r is protected against factorization attacks
by r.

• The slack-variables could also leak the factors inside Q
as the i-th constraint concerning S has the form −Si ∗
zi + Zsi = −Si ∗ ri which gives

Zsi = Si ∗ (zi − ri) = Si ∗ ((Q−1x)i + ri − ri)
= Si ∗ (Q−1x)i

This would allow the search for common factors. How-
ever, the slack-variables are permuted independently of
Q so that it is unknown which variable belongs to which
constraint. To find possible matches an attacker could
search for pairs of variable whose difference is smaller
than the maximum of r. However, this is made harder by
S as Zsi−zi = Si ∗zi−Si ∗ri−zi = (Si−1)zi−Si ∗ri
(and not −ri as it would be the case if Si = 1 for all i).

Overall only in c′ the factors inside Q are easily accessible.
Thus the search for common factors is difficult, if possible at
all, which is of great importance for the security of c.

VII. GOING MULTI-PARTY

To be able use the transformation in a multi-party scenario,
we propose to use secure computations based on Shamir-
shared values as developed by Ben-Or et al. [4]. In short,
this technique allow us to share values among the p parties
in a way that the knowledge of less than k < p/2 of the p
shares does not reveal any information about the secret value.
Yet these shares can be used to make computations (additions,
multiplications etc.) on the secret values. After finishing the
computations, we can put the shares of the result together
and reconstruct it – whereas all input and intermediate values
remain secret.

As in our scenario the input values (M{1,2}, b{1,2}, c) are
distributed among the parties, we have to assemble the data
and jointly choose the random values (P , Q, S, A, r). The
assembly of the data depends on the initial partitioning in the
problem. However - as long as each value is clearly “owned”
by one party (which is usually the case) - the assembly is not
a problem: Each party shares its values and the matrices and
vectors are filled with the shares.

When choosing the random matrices and vectors, we have
to ensure the randomness and the correct form of the result, i.e.
guarantee that Q is a monomial matrix, A a permutation matrix
and so on. Moreover we need to ensure that no party knows
the resulting values, because they would allow the parties to
undo the transformation and access the secret data.

The basic idea is that each party randomly chooses its
random values (i.e. party i chooses matrices Pi, Qi, Si, Ai and
a vector ri) and we combine them to have jointly and fairly
chosen random values. Ideally, even the knowledge of p − 1
of these p input values should not leak any information about
the result. To achieve this, we rely on secure computations
again. After each party has chosen its input, we calculate
P =

∏p−1
i=0 Pi, Q =

∏p−1
i=0 Qi, S =

∑p−1
i=0 Si, A =

∏p−1
i=0 Ai

and r =
∑p−1

i=0 ri. As these computations take place in a finite
field, the result is random, and even knowing p − 1 of the p



input values does not reveal anything about the output. This
leads to following protocol:

1) Each party i chooses a random invertible matrix Pi, a
random positive monomial matrix Qi, a random positive
diagonal Matrix Si, a random permutation Matrix Ai

and a random positive vector ri.
2) Each party i securely shares its parts of M1, M2, b1, b2

and c as well as Pi, Qi, Si, Ai and ri.
3) Secure computation of P , Q, S, A and r as described

above. Assembly of M1, M2, b1, b2 and c.
Transformation:

Calculation of M ′′ = P ∗

 M1Q 0
M2Q A−S

,

b′′ = P ∗

 b1 +M1Qr
b2 +M2Qr
−Sr

 and

c′Ts =
(
cT ∗Q 0 . . . 0

)
.

4) c′Ts , M ′′ and b′′ are reconstructed from the shares and
passed into the cloud.

5) The Cloud solves the Linear Program

min c′Ts zs
s.t. M ′′zs = b′′

zs ≥ 0

6) Secure sharing of the solutions z
7) Secure distributed computing of x = Q(z − r)
8) Output of values of x to their respective owner.

A. Optimization: Fast Matrix Multiplication

Matrix multiplication is the key operation of our transforma-
tion. When using secure computations on Shamir-shared val-
ues, multiplications are expensive due to the degree-reducing
step on the shares. We want to reduce this overhead as much
as possible.

A naive implementation (see Algorithm VII.1) of the mul-
tiplication of a shared (m×k) matrix A and a (k×n) matrix
B will result in a time complexity of O(mkn), a round com-
plexity (i.e. the number of points in time when communication
is necessary) of O(mkn) and a communications complexity
(i.e. the number of messages exchanged) ofO(mknp2) as each
degree-reducing step requires one round and O(p2) messages
[4]. This can be reduced to one round and O(mnp2) messages
by postponing the degree-reducing step as much as possible.

If Ax,y and By,z are shares of a polynomial with degree
k, then temp is of degree 2k. Yet, as adding two shares does
not increase the degree of the polynomial, we can calculate
Cx,z =

∑k−1
y=0 Ax,y ∗ By,z without exceeding a degree of 2k.

Thus we can postpone the degree-reducing step until the end of
all calculations and execute it in parallel on the whole matrix to
reduce round complexity to 1 and communication complexity
to O(mnp2) (see Algorithm VII.26).

6This algorithm is somewhat similar to the inner product algorithm of
Catrina and de Hoogh [7], but generalized to a complete matrix multiplication.

Algorithm VII.1 Matrix Multiplication C = A ∗B, naive
1: for x = 0 to m− 1 do
2: for z = 0 to n− 1 do
3: sum← 0
4: for y = 0 to k − 1 do
5: temp← Ax,y ∗By,z

6: execute degree-reducing step on temp
7: sum← sum+ temp
8: end for
9: Cx,z ← sum

10: end for
11: end for

Algorithm VII.2 Matrix Multiplication C = A∗B, optimized
communication

1: for x = 0 to m− 1 do
2: for z = 0 to n− 1 do
3: sum← 0
4: for y = 0 to k − 1 do
5: sum← sum+Ax,y ∗By,z

6: end for
7: Cx,z ← sum
8: end for
9: end for

10: execute degree-reducing step on all m ∗ n entries of C in
parallel

VIII. USE CASE: SUPPLY CHAIN OPTIMIZATION

Supply Chain Optimization problems can be expressed as
linear programs [21]. Each variable corresponds either to
the number of units to produce at a certain factory at a
certain time, to the inventory (per factory and time), or to
transported units (between two factories). The constraints are
flow constraints (e.g. ”all produced units are either shipped
to the next stage in the chain or remain in the inventory”),
capacity constraints (e.g. ”factory X can produce at most n
units of product Y in period i”) and demand constraints (e.g.
”in period i, k units of product Z are sold to customers”). The
cost function is composed of production costs (per produced
unit), shipping costs (price of shipping one unit from factory
X to factory Y ) and inventory costs (the price of stocking
products or intermediate components at a factory).

This means that variable is “owned” either by one company
(for production an inventory variables) or by two companies
(for transport variables). Hence we have a simple structure
which allows us to easily set up the distributed linear program
as discussed above. Furthermore, most of the constraints (the
flow and demand constraints) are expressed as equations,
which is convenient for our transformation.

A. Experimental Results

To analyze the practical performance of our approach, we
implemented a prototype. The test data is a sample supply
chain structure with five companies. To scale the size of the
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problem, this optimization was done for different numbers
of planning periods which increases the number of variables
and constraints. The measured timings include sharing of
the values, performing the transformation, reconstructing the
transformed LP, solving it using a standard LP solver and back-
transforming the solution using secure computation again (for
more details see the technical report [8]).

The results (see Figure VIII-A) are promising: The standard
test case (six periods: 180 constraints, 282 variables) is solved
in approximately 25 minutes, and even the bigger test cases
are completed within two hours. This is sufficiently fast for
practical usage and much quicker than the distributed Simplex
algorithms.

Based on the bounds established above, we calculated the
numerical values for the a-posteriori probabilities of a right
guess in the six-period case for a uniform input distribution:

• cost function c: PRposteriori ≤ 3.76 · 10−220
• values x: PRposteriori ≤ 2.30 · 10−1409

As explained above, there is no easily calculable bound on the
leakage of the constraints, but the chances of guessing P only
based on A are less than 2.34 · 10−746370.

IX. CONCLUSION

In this paper we proposed a disguising transformation for
linear programs. We proved correctness and analyzed security
in the framework of leakage quantification by establishing
bounds on the leakage of the secret data. Subsequently we
developed a secure multi-party protocol to make the transfor-
mation usable in a distributed case.

Based on this protocol we implemented a prototype for
secure supply chain optimization. We conducted experiments
which show significant performance gains compared to en-
tirely distributed secure simplex algorithms.

Moreover, the basic ideas of the transformation can easily be
extended and generalized to fit other problems such as systems
of linear equations. This highlights the power of disguising
approaches.

A. Future Work

We can imagine several extensions to the transformation to
enhance security, for example splitting variables or creating
fake variables in order to protect c. These measures have
to be checked for their security as well as their impact on
performance.

Furthermore the numerical stability of the transformation
should be examined. During our experiments a standard LP-
Solver was always able to find the correct solution, however
rounding errors and performance deterioration could be ob-
served from time to time. This also is of interest as numerical
effects could lead to attacks.

The security analysis could also be refined in some parts.
In particular the interconnections between the different parts
of the transformation should be examined more precisely as
this is one of the most probable entrance point for attacks.
Additionally it would be desirable to refine the bounds on the
leakage of combined channels (i.e. to show that for example
the combination of a multiplication and a permutation is
strictly better than the best of them alone) and give - if
possible - a closed-form bound on the leakage of a matrix
multiplication.

As our security analysis currently supposes a Honest-but-
Curious-Scenario, it could also be interesting to analyze the
possible influence of malicious participants with byzantine
behavior (i.e. participants that give wrong input data or do not
follow the protocol) on the results. In the case of distributed
supply chain management, it would be particularly interesting
to examine if parties are able to obtain a financial advantage
by manipulating the outcome using specially prepared input
data, and if this would be noticeable to the other parties.
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