

Quasi-optimality of approximate solutions in normed vector spaces

Roman Andreev

▶ To cite this version:

Roman Andreev. Quasi-optimality of approximate solutions in normed vector spaces. 2016. hal-01338040

HAL Id: hal-01338040 https://hal.science/hal-01338040

Preprint submitted on 27 Jun 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

QUASI-OPTIMALITY OF APPROXIMATE SOLUTIONS IN NORMED VECTOR SPACES

ROMAN ANDREEV[†]

Abstract. We discuss quasi-optimality of approximate solutions to operator equations in normed vector spaces, defined either by Petrov–Galerkin projection or by residual minimization. Examples demonstrate the sharpness of the estimates.

Let *X* and *Y* be real normed vector spaces. Let $B : X \to Y'$ be a linear operator. Fix $u \in X$ – the "unknown". Let $X_h \times Y_h \subset X \times Y$ be nontrivial finite-dimensional subspaces. Abbreviate

(1)
$$\gamma_h := \inf_{w \in X_h \setminus \{0\}} \|Bw\|_{Y'_h} / \|w\|_X \text{ and } \|B\| := \sup_{w \in (u+X_h) \setminus \{0\}} \|Bw\|_{Y'_h} / \|w\|_X.$$

Throughout, we assume the "discrete inf-sup condition": $\gamma_h > 0$. We define $B_h : X_h \to Y'_h$ by $w \mapsto (Bw)|_{Y_h}$. In the first proposition we require dim $X_h = \dim Y_h$. In the second we admit dim $Y_h \ge \dim X_h$.

Proposition 1. Suppose dim $X_h = \dim Y_h$. Then there exists a unique $u_h \in X_h$ such that

(2)
$$\langle Bu_h, v \rangle = \langle Bu, v \rangle \quad \forall v \in Y_h.$$

The mapping $u \mapsto u_h$ is linear with $||u_h||_X \leq \gamma_h^{-1} ||Bu||_{Y'_h}$ and satisfies the quasi-optimality estimate:

(3)
$$\|u - u_h\|_X \le (1 + \gamma_h^{-1} \|\|B\||) \inf_{w_h \in X_h} \|u - w_h\|_X.$$

Proof. The map B_h is linear and injective by (1). It is bijective due to finite $\dim X_h = \dim Y_h = \dim Y'_h$. Thus a unique $u_h := B_h^{-1}(Bu)|_{Y_h}$ exists and $u \mapsto u_h$ is linear. By (1), $\gamma_h ||u_h||_X \le ||B_h u_h||_{Y'_h} = ||Bu||_{Y'_h}$. From $||u - u_h||_X \le ||u - w_h||_X + ||w_h - u_h||_X$ and $\gamma_h ||w_h - u_h||_X \le ||B(u_h - w_h)||_{Y'_h} = ||B(u - w_h)||_{Y'_h} \le ||B|||||u - w_h||_{Y'_h}$ we obtain (3). \Box

Proposition 2. The set $U_h := \operatorname{argmin}_{w_h \in X_h} \|Bu - Bw_h\|_{Y'_h} \subset X_h$ of residual minimizers is nonempty, convex and bounded. Any $u_h \in U_h$ satisfies the quasi-optimality estimate

(4)
$$\|u - u_h\|_X \le (1 + 2\gamma_h^{-1} \|\|B\|\|) \inf_{w_h \in X_h} \|u - w_h\|_X.$$

Proof. The first statement is elementary: consider the metric projection of $(Bu)|_{Y_h} \in Y'_h$ onto $B_h X_h \subset Y'_h$. Quasi-optimality is obtained as above, except that $||B(u_h - w_h)||_{Y'_h} \le ||B(u - u_h)||_{Y'_h} + ||B(u - w_h)||_{Y'_h} \le 2||B(u - w_h)||_{Y'_h}$. \Box

The set U_h of minimizers is a singleton if the unit ball of Y'_h is strictly convex. Since Y_h is finite-dimensional, this is the case if and only if the norm of Y_h is Gâteaux differentiable.

The constants in (3) and (4) are sharp: Take $X = Y = \mathbb{R}^2$ with the $|\cdot|_1$ norm. Then $|\cdot|_{\infty}$ is the norm of Y'. Take u := (0, 1) and $B(w_1, w_2) := (w_1 + w_2, w_2)$. Set $X_h := \mathbb{R} \times \{0\}$ ($\rightsquigarrow B$ is identity on X_h). Observe ||B||| = 1.

- For (3) let $Y_h := \mathbb{R} \times \{0\}$. Then $\|Bw_h\|_{Y'_h} = \|w_h\|_X$ for all $w_h \in X_h$ gives $\gamma_h = 1$. Now, $u_h = (1,0) \in X_h$ solves (2). In the quasi-optimality estimate we have $\|u u_h\|_X = 2$ while $\|u w_h\|_X = 1$ for $w_h = 0$.
- For (4) let Y_h := Y. Again, γ_h = 1. Since Bu = (1, 1), the set of minimizers U_h is the segment [0, 2] × {0}. For u_h := (2, 0) ∈ U_h we have ||u u_h||_X = 3 while ||u w_h||_X = 1 for w_h = 0. With a slight perturbation of the norms, say, we can achieve U_h = {u_h} without essentially changing the distances.

If *X* and *Y* are Hilbert spaces and $B : X \to Y'$ is bounded by ||B|| then in both propositions the mapping $P_h : X \to X$, $u \mapsto u_h$, is a well-defined bounded linear projection with $||P_h|| \le \gamma_h^{-1} ||B||$. The argument of

[1] J. Xu and L. Zikatanov. Some observations on Babuška and Brezzi theories. *Numer. Math.*, 94(1), 2003. then improves the quasi-optimality estimate to $||u - u_h||_X \le ||P_h|| \inf_{w_h \in X_h} ||u - w_h||_X$.

[†]UNIVERSITÉ PARIS DIDEROT, SORBONNE PARIS CITÉ, LJLL (UMR 7598 CNRS), F-75205, PARIS, FRANCE. E-mail address: roman.andreev@upmc.fr

Date: June 27, 2016. MSC (2010): 65N30. Support: Swiss NSF #164616.