Quasi-optimality of approximate solutions in normed vector spaces

Roman Andreev

To cite this version:

Roman Andreev. Quasi-optimality of approximate solutions in normed vector spaces. 2016. hal01338040

HAL Id: hal-01338040

https://hal.science/hal-01338040

Preprint submitted on 27 Jun 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

QUASI-OPTIMALITY OF APPROXIMATE SOLUTIONS IN NORMED VECTOR SPACES

ROMAN ANDREEV ${ }^{\dagger}$

Abstract. We discuss quasi-optimality of approximate solutions to operator equations in normed vector spaces, defined either by Petrov-Galerkin projection or by residual minimization. Examples demonstrate the sharpness of the estimates.

Let X and Y be real normed vector spaces. Let $B: X \rightarrow Y^{\prime}$ be a linear operator. Fix $u \in X-$ the "unknown". Let $X_{h} \times Y_{h} \subset X \times Y$ be nontrivial finite-dimensional subspaces. Abbreviate

$$
\begin{equation*}
\gamma_{h}:=\inf _{w \in X_{h} \backslash\{0\}}\|B w\|_{Y_{h}^{\prime}} /\|w\|_{X} \quad \text { and } \quad\|B\|:=\sup _{w \in\left(u+X_{h}\right) \backslash\{0\}}\|B w\|_{Y_{h}^{\prime}} /\|w\|_{X} . \tag{1}
\end{equation*}
$$

Throughout, we assume the "discrete inf-sup condition": $\gamma_{h}>0$. We define $B_{h}: X_{h} \rightarrow Y_{h}^{\prime}$ by $\left.w \mapsto(B w)\right|_{Y_{h}}$. In the first proposition we require $\operatorname{dim} X_{h}=\operatorname{dim} Y_{h}$. In the second we admit $\operatorname{dim} Y_{h} \geq \operatorname{dim} X_{h}$.

Proposition 1. Suppose $\operatorname{dim} X_{h}=\operatorname{dim} Y_{h}$. Then there exists a unique $u_{h} \in X_{h}$ such that

$$
\begin{equation*}
\left\langle B u_{h}, v\right\rangle=\langle B u, v\rangle \quad \forall v \in Y_{h} \tag{2}
\end{equation*}
$$

The mapping $u \mapsto u_{h}$ is linear with $\left\|u_{h}\right\|_{X} \leq \gamma_{h}^{-1}\|B u\|_{Y_{h}^{\prime}}$ and satisfies the quasi-optimality estimate:

$$
\begin{equation*}
\left\|u-u_{h}\right\|_{X} \leq\left(1+\gamma_{h}^{-1}\|B\|\right) \inf _{w_{h} \in X_{h}}\left\|u-w_{h}\right\|_{X} \tag{3}
\end{equation*}
$$

Proof. The map B_{h} is linear and injective by (1). It is bijective due to finite $\operatorname{dim} X_{h}=\operatorname{dim} Y_{h}=\operatorname{dim} Y_{h}^{\prime}$. Thus a unique $u_{h}:=\left.B_{h}^{-1}(B u)\right|_{Y_{h}}$ exists and $u \mapsto u_{h}$ is linear. By (1), $\gamma_{h}\left\|u_{h}\right\|_{X} \leq\left\|B_{h} u_{h}\right\|_{Y_{h}^{\prime}}=\|B u\|_{Y_{h}^{\prime}}$. From $\left\|u-u_{h}\right\|_{X} \leq$ $\left\|u-w_{h}\right\|_{X}+\left\|w_{h}-u_{h}\right\|_{X}$ and $\gamma_{h}\left\|w_{h}-u_{h}\right\|_{X} \leq\left\|B\left(u_{h}-w_{h}\right)\right\|_{Y_{h}^{\prime}}=\left\|B\left(u-w_{h}\right)\right\|_{Y_{h}^{\prime}} \leq\|B\|\| \| u-w_{h} \|_{Y_{h}^{\prime}}$ we obtain (3).
Proposition 2. The set $U_{h}:=\operatorname{argmin}_{w_{h} \in X_{h}}\left\|B u-B w_{h}\right\|_{Y_{h}^{\prime}} \subset X_{h}$ of residual minimizers is nonempty, convex and bounded. Any $u_{h} \in U_{h}$ satisfies the quasi-optimality estimate

$$
\begin{equation*}
\left\|u-u_{h}\right\|_{X} \leq\left(1+2 \gamma_{h}^{-1}\|B\| \|\right) \inf _{w_{h} \in X_{h}}\left\|u-w_{h}\right\|_{X} . \tag{4}
\end{equation*}
$$

Proof. The first statement is elementary: consider the metric projection of $\left.(B u)\right|_{Y_{h}} \in Y_{h}^{\prime}$ onto $B_{h} X_{h} \subset Y_{h}^{\prime}$. Quasioptimality is obtained as above, except that $\left\|B\left(u_{h}-w_{h}\right)\right\|_{Y_{h}^{\prime}} \leq\left\|B\left(u-u_{h}\right)\right\|_{Y_{h}^{\prime}}+\left\|B\left(u-w_{h}\right)\right\|_{Y_{h}^{\prime}} \leq 2\left\|B\left(u-w_{h}\right)\right\|_{Y_{h}^{\prime}}$.

The set U_{h} of minimizers is a singleton if the unit ball of Y_{h}^{\prime} is strictly convex. Since Y_{h} is finite-dimensional, this is the case if and only if the norm of Y_{h} is Gâteaux differentiable.

The constants in (3) and (4) are sharp: Take $X=Y=\mathbb{R}^{2}$ with the $|\cdot|_{1}$ norm. Then $|\cdot|_{\infty}$ is the norm of Y^{\prime}. Take $u:=(0,1)$ and $B\left(w_{1}, w_{2}\right):=\left(w_{1}+w_{2}, w_{2}\right)$. Set $X_{h}:=\mathbb{R} \times\{0\}\left(\rightsquigarrow B\right.$ is identity on $\left.X_{h}\right)$. Observe $\|B\|=1$.

- For (3) let $Y_{h}:=\mathbb{R} \times\{0\}$. Then $\left\|B w_{h}\right\|_{Y_{h}^{\prime}}=\left\|w_{h}\right\|_{X}$ for all $w_{h} \in X_{h}$ gives $\gamma_{h}=1$. Now, $u_{h}=(1,0) \in X_{h}$ solves (2). In the quasi-optimality estimate we have $\left\|u-u_{h}\right\|_{X}=2$ while $\left\|u-w_{h}\right\|_{X}=1$ for $w_{h}=0$.
- For (4) let $Y_{h}:=Y$. Again, $\gamma_{h}=1$. Since $B u=(1,1)$, the set of minimizers U_{h} is the segment $[0,2] \times\{0\}$. For $u_{h}:=(2,0) \in U_{h}$ we have $\left\|u-u_{h}\right\|_{X}=3$ while $\left\|u-w_{h}\right\|_{X}=1$ for $w_{h}=0$. With a slight perturbation of the norms, say, we can achieve $U_{h}=\left\{u_{h}\right\}$ without essentially changing the distances.
If X and Y are Hilbert spaces and $B: X \rightarrow Y^{\prime}$ is bounded by $\|B\|$ then in both propositions the mapping $P_{h}: X \rightarrow X, u \mapsto u_{h}$, is a well-defined bounded linear projection with $\left\|P_{h}\right\| \leq \gamma_{h}^{-1}\|B\|$. The argument of
[1] J. Xu and L. Zikatanov. Some observations on Babuška and Brezzi theories. Numer. Math., 94(1), 2003.
then improves the quasi-optimality estimate to $\left\|u-u_{h}\right\|_{X} \leq\left\|P_{h}\right\| \inf _{w_{h} \in X_{h}}\left\|u-w_{h}\right\|_{X}$.

[^0]Date: June 27, 2016. MSC (2010): 65N30. Support: Swiss NSF \#164616.

[^0]: ${ }^{\dagger}$ Université Paris Diderot, Sorbonne Paris Cité, LJLL (UMR 7598 CNRS), F-75205, Paris, France.
 E-mail address: roman. andreev@upmc.fr

