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QUASI-OPTIMALITY OF APPROXIMATE SOLUTIONS IN NORMED VECTOR SPACES

ROMAN ANDREEV†

ABSTRACT. We discuss quasi-optimality of approximate solutions to operator equations in normed vector spaces, defined
either by Petrov–Galerkin projection or by residual minimization. Examples demonstrate the sharpness of the estimates.

Let X and Y be real normed vector spaces. Let B : X → Y ′ be a linear operator. Fix u ∈ X – the “unknown”.
Let Xh× Yh ⊂ X × Y be nontrivial finite-dimensional subspaces. Abbreviate

γh := inf
w∈Xh\{0}

‖Bw‖Y ′h
/‖w‖X and |||B||| := sup

w∈(u+Xh)\{0}
‖Bw‖Y ′h

/‖w‖X .(1)

Throughout, we assume the “discrete inf-sup condition”: γh > 0. We define Bh : Xh→ Y ′h by w 7→ (Bw)|Yh
. In

the first proposition we require dim Xh = dim Yh. In the second we admit dim Yh ≥ dim Xh.

Proposition 1. Suppose dim Xh = dim Yh. Then there exists a unique uh ∈ Xh such that

〈Buh, v〉 = 〈Bu, v〉 ∀v ∈ Yh.(2)

The mapping u 7→ uh is linear with ‖uh‖X ≤ γ−1
h ‖Bu‖Y ′h

and satisfies the quasi-optimality estimate:

‖u− uh‖X ≤ (1+ γ−1
h |||B|||) inf

wh∈Xh

‖u−wh‖X .(3)

Proof. The map Bh is linear and injective by (1). It is bijective due to finite dim Xh = dim Yh = dim Y ′h . Thus a
unique uh := B−1

h (Bu)|Yh
exists and u 7→ uh is linear. By (1), γh‖uh‖X ≤ ‖Bhuh‖Y ′h

= ‖Bu‖Y ′h
. From ‖u− uh‖X ≤

‖u−wh‖X +‖wh−uh‖X and γh‖wh−uh‖X ≤ ‖B(uh−wh)‖Y ′h
= ‖B(u−wh)‖Y ′h

≤ |||B|||‖u−wh‖Y ′h
we obtain (3). �

Proposition 2. The set Uh := argminwh∈Xh
‖Bu − Bwh‖Y ′h

⊂ Xh of residual minimizers is nonempty, convex and
bounded. Any uh ∈ Uh satisfies the quasi-optimality estimate

‖u− uh‖X ≤ (1+ 2γ−1
h |||B|||) inf

wh∈Xh

‖u−wh‖X .(4)

Proof. The first statement is elementary: consider the metric projection of (Bu)|Yh
∈ Y ′h onto BhXh ⊂ Y ′h . Quasi-

optimality is obtained as above, except that ‖B(uh−wh)‖Y ′h
≤ ‖B(u−uh)‖Y ′h

+‖B(u−wh)‖Y ′h
≤ 2‖B(u−wh)‖Y ′h

. �

The set Uh of minimizers is a singleton if the unit ball of Y ′h is strictly convex. Since Yh is finite-dimensional,
this is the case if and only if the norm of Yh is Gâteaux differentiable.

The constants in (3) and (4) are sharp: Take X = Y = R2 with the |·|1 norm. Then |·|∞ is the norm of Y ′. Take
u := (0,1) and B(w1, w2) := (w1 +w2, w2). Set Xh := R× {0} (  B is identity on Xh). Observe |||B||| = 1.

• For (3) let Yh := R× {0}. Then ‖Bwh‖Y ′h
= ‖wh‖X for all wh ∈ Xh gives γh = 1. Now, uh = (1, 0) ∈ Xh

solves (2). In the quasi-optimality estimate we have ‖u− uh‖X = 2 while ‖u−wh‖X = 1 for wh = 0.
• For (4) let Yh := Y . Again, γh = 1. Since Bu= (1,1), the set of minimizers Uh is the segment [0, 2]×{0}.

For uh := (2,0) ∈ Uh we have ‖u− uh‖X = 3 while ‖u− wh‖X = 1 for wh = 0. With a slight perturbation
of the norms, say, we can achieve Uh = {uh} without essentially changing the distances.

If X and Y are Hilbert spaces and B : X → Y ′ is bounded by ‖B‖ then in both propositions the mapping
Ph : X → X , u 7→ uh, is a well-defined bounded linear projection with ‖Ph‖ ≤ γ−1

h ‖B‖. The argument of
[1] J. Xu and L. Zikatanov. Some observations on Babuška and Brezzi theories. Numer. Math., 94(1), 2003.

then improves the quasi-optimality estimate to ‖u− uh‖X ≤ ‖Ph‖ infwh∈Xh
‖u−wh‖X .
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