
HAL Id: hal-01338037
https://hal.science/hal-01338037v1

Submitted on 27 Jun 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Defining Privacy for Weighted Votes, Single and
Multi-voter Coercion

Jannik Dreier, Pascal Lafourcade, Yassine Lakhnech

To cite this version:
Jannik Dreier, Pascal Lafourcade, Yassine Lakhnech. Defining Privacy for Weighted Votes, Single
and Multi-voter Coercion. European Symposium on Research in Computer Security (ESORICS), Sep
2012, Pise, Italy. �10.1007/978-3-642-33167-1_26�. �hal-01338037�

https://hal.science/hal-01338037v1
https://hal.archives-ouvertes.fr


Defining Privacy for Weighted Votes, Single and
Multi-Voter Coercion?

Jannik Dreier, Pascal Lafourcade, and Yassine Lakhnech

Université Grenoble 1, CNRS, Verimag, FRANCE
firstname.lastname@imag.fr

Abstract. Most existing formal privacy definitions for voting protocols
are based on observational equivalence between two situations where two
voters swap their votes. These definitions are unsuitable for cases where
votes are weighted. In such a case swapping two votes can result in a
different outcome and both situations become trivially distinguishable.
We present a definition for privacy in voting protocols in the Applied
π-Calculus that addresses this problem. Using our model, we are also
able to define multi-voter coercion, i.e. situations where several voters
are attacked at the same time. Then we prove that under certain real-
istic assumptions a protocol secure against coercion of a single voter is
also secure against coercion of multiple voters. This applies for Receipt-
Freeness as well as Coercion-Resistance.

1 Introduction

Privacy is a key requirement in elections as voters can otherwise be blackmailed,
coerced or may be susceptible to vote-buying. Typically privacy is split into three
different properties:

– Vote-Privacy : The votes are kept private.
– Receipt-Freeness: A voter cannot construct a receipt which allows him to

prove to a third party that he voted for a certain candidate. This is to
prevent vote-buying.

– Coercion-Resistance: Even when a voter interacts with a coercer during the
entire voting process, the coercer cannot be sure whether the voter followed
his instructions or actually voted for another candidate.

The design of complex protocols such as voting protocols is known to be error-
prone. This is why formal verification is an ideal tool to ensure the correctness
and security of voting protocols. It has already been used to analyze properties
such as Verifiability, Privacy, Receipt-Freeness and Coercion-Resistance [1–12].

However, most existing symbolic definitions of Privacy are based on the idea
of swapping votes. If the votes are private, a case where Alice votes “yes” and
Bob votes “no” should be indistinguishable from a case where Alice votes “no”
and Bob votes “yes”. Yet this definition is unsuitable for some situations, for

? The original publication is available on www.springerlink.com



example in companies where votes are weighted according to the proportion of
shares held by each shareholder. Consider the following example: Alice owns 50%
of the stocks, and Bob and Carol each hold 25%. The cases where Alice and Bob
swap votes are now easily distinguishable if Carol votes “yes” all the time, as
the result of the vote is different: 75% vs. 50% vote for “yes”. Note that there
are still situations where privacy is ensured in the sense that different situations
give the same result. The last outcome (50% yes, 50% no) could - for example -
also be announced if Alice votes “yes” and Bob and Carol vote “no”. Protocols
supporting vote weights have been proposed, for example Eliasson and Zúquete
[13] developed a voting system supporting vote weights based on REVS [14],
which itself is based on the protocol by Fujioka et al. [15].

Our Contributions: To address this issue, we define a symbolic privacy notion in
the Applied π-Calculus [16] that takes weighted votes into account. Instead of
requiring two executions where voters swap votes to be bisimilar, we require two
executions to be bisimilar if they publish the same result, independent of the
mapping between voters and votes. We analyze the relationship of our notion to
the existing swap-based ones and give precise conditions for formally proving the
equivalence between them. Then, we generalize our notion to Receipt-Freeness
and Coercion-Resistance for weighted votes. We use a variant of the protocol
by Eliasson and Zúquete [13] as a case study for our definition, and provide a
partially automated proof using ProVerif [17].

In the cases of coercion most existing definitions only consider one attacked
voter. Our model also allows to define a case with multiple coerced voters, and
we analyze the relationship between this and the single-voter case. In particular,
we give a formal proof that single- and multi-voter coercion are equivalent for
a given protocol if it satisfies some modularity and de-composability properties.
Using two existing protocols, we show that theses properties are realistic.

Related Work: Previous research on formal verification of voting protocols con-
cerned privacy properties (privacy, receipt-freeness and coercion-resistance) [1–
8], election verifiability [9, 10], or both [11, 12].

In the symbolic model, privacy is usually defined as observational equivalence
of two cases where a pair of voters swap their votes [1–5, 8, 12]. The definitions
mainly differ in the way they model voting processes and deal with specifics of
protocols. Some of them can be verified automatically using standard tools (e.g.
ProVerif [17] and ProSwapper [18]). This swap-based approach was not designed
for weighted votes and, as explained above, may lead to unexpected results in
this case.

The other main approach roots in the computational model. In this case
the real-world protocol is compared to an ideal situation and the attacker’s
advantage is analyzed [7, 11]. Our symbolic definition is somewhat related to
this computational approach, as we also consider some information – the result
– to be leaked even in an ideal situation, and only forbid further leakage. Another
possibility is to consider the overall advantage of the attacker without comparing

2



it to an ideal situation [19]. This advantage is always non-negligible as in certain
situations the votes are always revealed, e.g. in the case of an unanimous vote.

A third approach was proposed by Langer et al. [20]. The authors developed
verifiability and privacy notions based on (un-)linkability between a voter and
his vote. Their definitions have to be instantiated with a concrete formal process
and attacker model. To define unlinkability, they rely on indistinguishability of
runs where votes are swaped, with the same issues as described above.

Küsters and Truderung [6] were the first to explicitly consider multi-voter
coercion. In their abstract model, Single-Voter Coercion and Multi-Voter Coer-
cion turned out to be different in general. Subsequently they proposed a modi-
fied definition of Coercion-Resistance that implies both Single- and Multi-Voter
Coercion-Resistance. In our model Single- and Multi-Voter Coercion are equiva-
lent under certain assumptions on the protocol, hence we do not need to change
the initial definition. Additionally, the conditions allow us to precisely charac-
terize the difference between both notions.

Outline: In the next section, we present the Applied π-Calculus and recall the
privacy definitions given by Delaune et al. [2]. In Section 3, we introduce our pri-
vacy definition and show under which condition it is equivalent to the existing
ones. Then, in Section 4, we define Single- and Multi-Voter Receipt-Freeness,
analyze their relationship and prove their equivalence under certain assump-
tions. In Section 5 we define Single- and Multi-Voter Coercion-Resistance and
again prove their equivalence under the same hypotheses, before concluding in
Section 6.

2 Preliminaries

In this section we recall the Applied π-Calculus, introduce our model of voting
protocols and present existing privacy definitions.

2.1 Applied π-Calculus

The Applied π-Calculus [16] is a formal language to describe concurrent pro-
cesses. The calculus consists of names (which typically correspond to data or
channels), variables, and a signature Σ of function symbols which can be used to
build terms. Functions typically include encryption and decryption – for example
enc(message, key), dec(message, key) – hashing, signing etc. Terms are correct
(i.e. respecting arity and sorts) combinations of names and functions. We distin-
guish the type “channel” from other base types. To model equalities we use an
equational theory E which defines a relation =E . A classical example which de-
scribes the correctness of symmetric encryption is dec(enc(message, key), key)
=E message. Processes are constructed using the grammars detailed in Figure 1.

The substitution {M/x} replaces the variable x with term M . We denote by
fv(A), bv(A), fn(A), bn(A) the free variables, bound variables, free names or
bound names respectively. A process is closed if all variables are bound or defined

3



P , Q, R := plain processes
0 null process
P |Q parallel composition
!P replication
νn.P name restriction (“new”)
if M = N then P conditional

else Q
in(u, x).P message input
out(u, x).P message output

(a) Plain process

A, B, C := active processes
P plain process
A|B parallel composition
νn.A name restriction
νx.A variable restriction
{M/x} active substitution

(b) Extended process

Fig. 1. Grammars for plain and extended or active processes

by an active substitution. The frame Φ(A) of an active process A is obtained by
replacing all plain processes in A by 0. This frame can be seen as a representation
of what is statically known to the exterior about a process. The domain dom(Φ) of
a frame Φ is the set of variables for which Φ defines a substitution. An evaluation
context C[ ] denotes an active process with a hole for an active process that is
not under replication, a conditional, an input or an output. In the rest of the
paper we use the following usual notions of equivalence and bisimilarity based
on the original semantics [16] given in our technical report [21].

Definition 1 (Equivalence in a Frame [16]). Two terms M and N are equal
in the frame φ, written (M = N)φ, if and only if φ ≡ νñ.σ, Mσ = Nσ, and
{ñ} ∩ (fn(M) ∪ fn(N)) = ∅ for some names ñ and some substitution σ.

Definition 2 (Static Equivalence (≈s) [16]). Two closed frames φ and ψ
are statically equivalent, written φ ≈s ψ, when dom(φ) = dom(ψ) and when for
all terms M and N we have (M = N)φ if and only if (M = N)ψ. Two extended
processes A and B are statically equivalent (A ≈s B) if their frames are statically
equivalent.

The intuition behind this definition is that two processes are statically equivalent
if the messages exchanged with the environment cannot be distinguished by an
attacker (i.e. all operations on both sides give the same results). This idea can
be extended to labeled bisimilarity.

Definition 3 (Labeled Bisimilarity (≈l) [16]). Labeled bisimilarity is the
largest symmetric relation R on closed active processes, such that A R B implies:

1. A ≈s B,

2. if A→ A′, then B →∗ B′ and A′ R B′ for some B′,

3. if A
α−→ A′ and fv(α) ⊆ dom(A) and bn(α)∩fn(B) = ∅, then B →∗ α−→→∗ B′

and A′ R B′ for some B′.

In this case each interaction on one side can be simulated by the other side, and
the processes are statically equivalent at each step during the execution, thus an
attacker cannot distinguish both sides.

4



2.2 Modeling Voting Protocols

We model voting protocols in the Applied π-Calculus as follows.

Definition 4 (Voting Protocol). A voting protocol is a tuple (V,A1, . . . , Am, ñ)
where V is the process that is executed by the voter, the Aj’s are the processes
executed by the election authorities, and ñ is a set of private channels. We also
assume the existence of a particular public channel res that is only used to pub-
lish the result of the election.

Note that we have only one process for the voters. This means that different
voters will execute the same process, but with different variable values (e.g. the
keys, the vote etc.). To reason about privacy, we talk about instances of a voting
protocol, which we call voting processes.

Definition 5 (Voting Process). A voting process of a voting protocol (V , A1,
. . ., Am, ñ) is a closed process

νñ′.(V σid1σv1 | . . . |V σidnσvn |A1| . . . |Al),

where l ≤ m, ñ′ includes the secret channel names ñ, V σidiσvi are the processes
executed by the voters, σidi is a substitution assigning the identity to a process
(this determines for example the secret keys), σvi specifies the vote and Aj’s are
the election authorities which are required to be honest.

The restricted channel names model private channels. Note that we only model
the honest authorities as unspecified parties are subsumed by the attacker.

2.3 Existing Privacy Definitions

Before we can formally define privacy, we need the following two transformations.
The first one turns a process P into another process P ch that reveals all its inputs
and secret data on the channel ch.

Definition 6 (Process P ch [2]). Let P be a plain process and ch be a channel
name. P ch is defined as follows:

– 0ch =̂ 0,
– (P |Q)ch =̂ P ch|Qch,
– (νn.P )ch =̂ νn.out(ch, n).P ch if n is a name of base type, (νn.P )ch =̂ νn.P ch

otherwise,
– (in(u, x).P )ch =̂ in(u, x).out(ch, x).P ch if x is a variable of base type,

(in(u, x).P )ch =̂ in(u, x).P ch otherwise,
– (out(u,M).P )ch =̂ out(u,M).P ch,
– (!P )ch =̂ !P ch,
– (if M = N then P else Q)ch =̂ if M = N then P ch else Qch.

In the remainder we assume that ch /∈ fn(P )∪ bn(P ) before applying the trans-
formation. The second transformation does not only reveal the secret data, but
also takes orders from an outsider before sending a message or branching.

5



Definition 7 (Process P c1,c2 [2]). Let P be a plain process and c1, c2 be
channel names. P c1,c2 is defined as follows:

– 0c1,c2 =̂ 0,
– (P |Q)c1,c2 =̂ P c1,c2 |Qc1,c2 ,
– (νn.P )c1,c2 =̂ νn.out(c1, n).P c1,c2 if n is a name of base type, (νn.P )c1,c2 =̂
νn.P c1,c2 otherwise,

– (in(u, x).P )c1,c2 =̂ in(u, x).out(c1, x).P c1,c2 if x is a variable of base type,
(in(u, x).P )c1,c2 =̂ in(u, x).P c1,c2 otherwise,

– (out(u,M).P )c1,c2 =̂ in(c2, x).out(u, x).P c1,c2 where x is a fresh variable,
– (!P )c1,c2 =̂ !P c1,c2 ,
– (if M = N then P else Q)c1,c2 =̂ in(c2, x).if x = true then P c1,c2

else Qc1,c2 where x is a fresh variable and true is a constant.

To hide the output of a process, we use the following definition.

Definition 8 (Process A\out(ch,·) [2]). Let A be an extended process. We define
the process A\out(ch,·) as νch.(A|!in(ch, x)).

We now recall the privacy definitions given by Delaune et al. [2], which are
the bases for many other definitions [1, 3–5, 8, 12]. Their main idea for defining
privacy is simple: A protocol respects privacy if any two instances where two
voters swap votes are bisimilar.

Definition 9 (Swap-Privacy (SwP) [2]). A protocol satisfies Swap-Privacy
(SwP) if for any context S corresponding to a voting process with a hole for two
voters and for all votes σvA and σvB we have

S [V σidAσvA |V σidBσvB ] ≈l S [V σidAσvB |V σidBσvA ] .

In the literature S may sometimes contain corrupted or coerced voters (e.g. in
[8]), here we will suppose that it contains only honest voters and authorities to
be able to clearly distinguish single- and multi-voter coercion.

Defining Receipt-Freeness is a bit more complicated as the voter will execute
some counter strategy, i.e. a different process, to fake the receipt, but it can still
be expressed as a bisimilarity between two situations. In the first situation, the
targeted voter votes a and reveals his secret data. In the second situation, he
executes another process – the counter-strategy – which allows him to vote b
and fake the secret data in a way that both instances are bisimilar. A protocol
is receipt-free if such a process – a counter-strategy – exists.

Definition 10 (Swap-Receipt-Freeness (SwRF) [2]). A protocol satisfies
Swap-Receipt-Freeness (SwRF) if for any context S corresponding to a voting
process with a hole for two voters and for all votes σvA and σvB there exists a
process V ′ such that V ′\out(chc,·) ≈l V σidAσvB and

S
[
(V σidAσvA)chc|V σidBσvB

]
≈l S [V ′|V σidBσvA ] .

6



One could define Coercion-Resistance in the same way, but in that case the at-
tacker could force the targeted voter to vote d (and not a) in the situation where
he complies with the instructions. This would make both situations trivially dis-
tinguishable by just looking at the result. To prevent this, Delaune et al. [2]
use a context C that is required to force the voter to vote a, but can otherwise
interact in any way with the voter.

Definition 11 (Swap-Coercion-Resistance (SwCR) [2]). A protocol satis-
fies Swap-Coercion-Resistance (SwCR) if for any context S corresponding to a
voting process with a hole for two voters and for all votes σvA and σvB there exists
a process V ′ such that for any context C with C = νc1.νc2.( |P ) and ñ∩fn(C) =
∅, S [C [(V σidAσvA)c1,c2 ] |V σidBσvB ] ≈l V P ′A

[
(V σidAσvA)chc|V σidBσvB

]
we have

C [V ′]
\out(chc,·) ≈l V σidAσvB and

S [C [(V σidAσvA)c1,c2 ] |V σidBσvB ] ≈l S [C [V ′] |V σidBσvA ] .

Delaune et al. [2] showed that any protocol ensuring (SwCR) ensures (SwRF),
and any protocol ensuring (SwRF) ensures (SwP).

3 Defining Privacy

Our privacy definition is based on the observation that - as the result of the
vote is always published - some knowledge about the voter’s choices can always
be inferred from the outcome. The classical example is the case of a unanimous
vote where the contents of all votes are revealed just by the result. Yet - as
already discussed in the introduction - there can also be other cases where some
of the votes can be inferred from the result, in particular in the case of weighted
votes. If for example Alice holds 66% of the shares and Bob 34%, both votes
are always revealed when announcing the result: If one option gets 66% and the
other 34%, it is clear which one was chosen by Alice or Bob. However, if we have
a different distribution of the shares (e.g. 50%, 25% and 25%), some privacy
is still possible as there several situations with the same result. Thus our main
idea: If two instances of a protocol give the same result, an attacker should not
be able to distinguish them. Note that this includes the classic definition where
votes are swapped, if this give the same result.

3.1 Formal Definition

To express this formally, we need to define the result of an election. As defined
above, we suppose that the result is always published on a special channel res.
The following definition allows us to hide all channels except for a specified
channel c, which we can use for example to reason about the result on channel
res.

Definition 12 (P |c). Let P |c = νc̃h.P where c̃h are all channels except for c,
i.e. we hide all channels except for c.

7



Now we can formally define our privacy notion: If two instances of a protocol
give the same result, they should be bisimilar.

Definition 13 (Vote-Privacy (VP)). A voting protocol ensures Vote-Privacy
(VP) if for any two instances V PA = νñ.(V σid1σvA1 | . . . | V σidnσvAn | A1 | . . .
| Al) and V PB = νñ.(V σid1σvB1 | . . . | V σidnσvBn | A1 | . . . | Al) we have

V PA|res ≈l V PB |res ⇒ V PA ≈l V PB .

A simple interpretation of this definition is that everything apart from the result
on channel res has to remain private. This obviously relies heavily on the no-
tion of “result” and the modeling of the protocol. Typically the result will only
contain only the sum of all votes, which corresponds to a simple and intuitive
understanding of privacy.

Some protocols may leak some additional information, for example the num-
ber of ballots on the bulletin board. For instance in the protocol by Juels et al.
[11] voters can post fake ballots. In this case, the above definition of the result
may lead to a too restrictive privacy notion, since two situations with the same
votes but a different number of fakes are required to be bisimilar. To address this
issue, we can include the number of ballots in the result if we want to accept the
additional leakage. This gives very fine-grained control about the level of privacy
we want to model.

Note that if the link between a voter and his vote is also published as part
of the result on channel res, our definition of privacy may be true although this
probably does not correspond to the intuitive understanding of privacy. This
is however coherent within the model since everything apart from the result is
private; simply the result itself leaks too much information.

3.2 Link to Existing Definitions

To establish the relationship of our definition and the existing ones, we need
to formally characterize their difference. Intuitively the swap-based definition
assumes that swapping two votes will not change the result. This can be formal-
ized as follows: If two instances of the protocol with the same voters give the
same result, then the votes are a permutation of each other, and vice versa. This
precludes weighted votes, thus the name “Equality of Votes”.

Definition 14 (Equality of Votes (EQ)). A voting protocol respects Equality
of Votes (EQ) if for any V PA = νñ.(V σid1σvA1 | . . . |V σidnσvAn |A1| . . . |Al) and

V PB = νñ.(V σid1σvB1 | . . . |V σidnσvBn |A1| . . . |Al) we have

V PA|res ≈l V PB |res ⇔ ∃π : ∀i : σvBi = σvA
π(i)

,

where π is a permutation.

This allows us to formally prove that our definition is equivalent to the existing
ones if (EQ) holds.

8



Theorem 1 (Equivalence of Privacy Definitions). If a protocol respects
(EQ), then (VP) and (SwP) are equivalent.

The full formal proof can be found in our technical report [21]. Intuitively, be-
cause of (EQ), two instances of a protocol can only have the same result if the
votes are a permutation of each other. As any permutation can be written as a
sequence of simple permutations (swaps), (SwP) is enough to generate any possi-
ble permutation, which gives (VP). Conversely, the definition of (SwP) becomes
just a particular case of (VP).

It is easy to see that this condition (EQ) is necessary: If a protocol uses
weighted votes (e.g. Alice 66%, Bob 34%), it may satisfy (VP), but not (SwP).

Similarly, consider the following example: In the official result announced
on channel res, a pre-selected candidate always wins - this could be the case if
the authorities are dishonest and want to manipulate the election outcome. If
however at the same time the ballots on the bulletin board allow to calculate
the result, such a protocol may ensure (SwP) – if the ballots cannot be linked to
the voters –, but not (VP) because two instances with a different outcome based
on the ballots will have the same “result” on res. Note that such a protocol
would contradict (EQ) because we have instances where the votes are not a
permutation of each other, but still give the same result.

3.3 Example: A Variant of FOO

Eliasson and Zúquete [13] propose an implementation of a voting system sup-
porting vote weights based on REVS [14], which itself is based on the protocol
by Fujioka et al. [15], often referred to as “FOO”.

Informal description: The protocol by Fujioka et al. [15]. is split into three
phases. In the first phase, the voter obtains the administrator’s signature on a
commitment to his vote:

– Voter Vi chooses his vote vi and computes a commitment xi = ξ(vi, ki) for
a random key ki.

– He blinds the commitment using a blinding function χ, a random value ri
and obtains ei = χ(xi, ri).

– He signs ei and sends the signature si = σVi(ei) together with ei and his
identity to the administrator A.

– The administrator checks if Vi has the right to vote, has not yet voted, and
if the signature si is correct. If all tests succeed, he signs di = σA(ei) and
sends it back to Vi.

– Vi unblinds the signature and obtains yi = δ(di, ri). He checks the signature.

In the second phase, the actual voting takes place:

– Voter Vi sends (xi, yi) to the collector C through an anonymous channel.
– C checks the administrator’s signature and enters (xi, yi) into a list.

9



When all ballots are cast or when the deadline is over, the counting phase begins:

– The collector publishes the list of correct ballots.
– Vi verifies that his commitment appears on the list and sends ri together with

the commitment’s index l on the list to C using an anonymous channel.
– The collector C opens the l-th ballot using ri and publishes the vote.

Adding Vote Weights: In [13] Eliasson and Zúquete discuss several possibil-
ities on how to implement weights in this protocol:

– including the weight in the vote (which requires trusting the voter for cor-
rectness or zero-knowledge proofs to verify the weight)

– using different keys when the vote is signed by the administrator, where each
key corresponds to a different weight

– using multiple ballots per voter, i.e. if for example voter A holds 70% and
voter B 30% of the shares, voter A sends 7 and voter B 3 ballots.

We implemented the latter variant in the Applied π-Calculus. Using a manual
proof (see [21] for details) we can show that

V PA|res ≈l V PB |res ⇒
n∑
i=1

vAi ∗ wi =

n∑
i=1

vBi ∗ wi. (1)

Using a python script available on our website [22] that generates all cases to
check based on the number of voters and the discrete weight distribution, we can
use Proverif to then establish (2) which gives that this variant ensures (VP).

n∑
i=1

vAi ∗ wi =

n∑
i=1

vBi ∗ wi ⇒ V PA ≈l V PB (2)

4 Receipt-Freeness

In this section we define receipt-freeness for weighted votes. We first consider
the case where only one voter is attacked, then we define multi-voter attacks.

4.1 Single-Voter Receipt-Freeness (SRF)

We combine the idea by Delaune et al. (Def. 10) with our definition of Privacy: If
two instances of a voting protocol give the same result, they should be bisimilar
even if one voter reveals his secret data in one case or fakes it in the other.

Definition 15 (Single-Voter Receipt Freeness (SRF)). A voting protocol
ensures Single-Voter Receipt Freeness (SRF) if for any voting processes V PA
= νñ.(V σid1σvA1 | . . . | V σidnσvAn | A1 | . . . | Al), V PB = νñ.(V σid1σvB1 | . . . |

10



V σidnσvBn | A1 | . . . | Al) and any number i ∈ {1, . . . , n} there exists a process

V ′i such that we have V
′\out(chci,·)
i ≈l V σidiσvBi and

V PA|res ≈l V PB |res ⇒ V P ′A

[
(V σidiσvAi )chci

]
≈l V P ′B [V ′i ] ,

where V P ′A and V P ′B are like V PA and V PB, but with holes for the voter V σidi .

As for (VP), our definition is equivalent to the existing one based on swapping
if the protocol ensures (EQ), which is the case if it does not use weighted votes.
Similarly to swap-based definitions, (SRF) is stronger than (VP). The proof is
analogous to the proof in the swap-based model (see [21] for details).

4.2 Multi-Voter Receipt-Freeness (MRF)

We now generalize the idea of Receipt-Freeness to the case where multiple voters
are attacked. Instead of only considering one attacked voter i, we consider a set
I of attacked voters. To be receipt-free, it should be possible for all attacked
voters to fake the receipt. Note that we assume that there is always at least one
honest voter, except for the case with only one voter.

Definition 16 (Multi-Voter Receipt Freeness (MRF)). A voting protocol
ensures Multi-Voter Receipt Freeness (MRF) if for any voting processes V PA
= νñ.(V σid1σvA1 | . . . | V σidnσvAn | A1 | . . . | Al), V PB = νñ.(V σid1σvB1 | . . . |
V σidnσvBn | A1 | . . . | Al) and any subset I ⊂ {1, . . . , n}, I 6= {1, . . . , n} if n > 1,

then there exists processes V ′i such that we have ∀i ∈ I : V
′\out(chc,·)
i ≈l V σidiσvBi

and

V PA|res ≈l V PB |res ⇒ V P ′A

[
|
i∈I

(V σidiσvAi )chci
]
≈l V P ′B

[
|
i∈I
V ′i

]
,

where V P ′A and V P ′B are like V PA and V PB, but with holes for all voters
V σidi , i ∈ I.

By choosing I = {i} we obtain that (MRF) implies (SRF). Under certain con-
ditions the converse is also true. To prove this, we define a “generalized voting
process” which is like a voting process, but some voters might be under attack.

Definition 17 (Generalized Voting Process). A Generalized Voting Pro-
cess is a voting process V P with variables for the voter’s processes that can ei-
ther be a “normal” voter or a voter communicating with the intruder, i.e. V P =

νñ.(V1| . . . |Vn|A1| . . . |Al) where Vi ≈l V σidiσvi or V
\out(chci,·)
i ≈l V σidiσvi .

The next definition captures the key properties required for our proof. It ex-
presses two modularity conditions of a voting protocol.

Definition 18 (Modularity (Mod)). A voting protocol is modular (Mod) if
it is composable and decomposable. A voting protocol is composable if for any

11



generalized voting processes V PA and V PB there exists a generalized voting pro-
cess V P such that V P ≈l V PA|V PB. A voting protocol is decomposable if any
generalized voting process V P = νñ.(V1| . . . |Vn|A1| . . . |Al) can be decomposed
into processes V Pi = νñi.(Vi|Ai1| . . . |Ail) where

V P ≈l V P1| . . . |V Pn. (3)

Imagine a protocol where in order to escape coercion the voters can claim that a
certain ballot on the bulletin board is their ballot, but it was actually prepared by
some honest authority to allow the voters to create a fake receipt. If we suppose
that this ballot exists only once no matter how many voters are attacked, it would
be enough for a single voter to fake his receipt. However we cannot compose two
instances with one attacked voter each, as they would use the same fake ballot
which would be noticeable for the attacker. Hence the above definition also
captures the fact that faking the receipt to escape coercion can be done by each
voter independently.

Another property we need for our proof is Correctness, i.e. the fact that if in
two instances the voters’ choices are the same, they give the same result1.

Definition 19 (Correctness (Cor)). A voting protocol is correct if for any
generalized voting processes V PA = νñA.(V1,A| . . . |Vn,A|A1| . . . |Al) and V PB =

νñB .(V1,B | . . . |Vn,B |A1| . . . |Al) with for any i and X ∈ {A,B}: V \out(chci,·)i,X ≈l
V σidiσvi , we have

V PA|res ≈l V PB |res (4)

It is easy to see that Correctness is implied by Equality of Votes as the identity
is a permutation, hence any protocol ensuring (EQ) ensures (Cor) [21]. Putting
everything together, we are able to prove the equivalence of (SRF) and (MRF).

Theorem 2. If a protocol is modular, correct and ensures Single-Voter Receipt
Freeness, it also ensures Multi-Voter Receipt Freeness.

The full proof is given in our technical report [21]. The main idea is that we
can decompose an instance with multiple attacked voters into instances with at
most one attacked voter, where we can apply the single-voter assumption, and
recompose the result. Note that the assumptions (Mod), (EQ) are satisfied by
many well-known protocols (e.g. [23, 15, 24]), we illustrate this on an example.

Remark. We have to be careful when modeling protocols using a full PKI. If we
model the PKI inside the voting process, decomposing a protocol would result
in two instances using different keys, which will most probably be visible to an
attacker and the bisimilarity (3) will not hold. A possible solution could be to
externalize the PKI into a context K such that K[V P ] ≈l K[V P1|V P2], which
ensures that V P1 and V P2 use the same keys. This would allow us to obtain the
same result for protocols such as [25, 26].

1 This does not entirely cover intuitive correctness as it will be fulfilled by protocols
always giving the same result independently from the votes, but it will fail for a
protocol announcing a random result.

12



4.3 Example: Protocol by Okamoto

The protocol by Okamoto [24] uses trapdoor commitments to achieve (SwRF),
but it is not (SwCR) [2].

Informal Description: The protocol is split in 3 phases. In the first phase the
voter obtains a signature on a commitment to his vote from the administrator:

– Each voter Vi chooses his vote vi and computes a trapdoor commitment
xi = ξ(vi, ki, tdi) for a random key ki and a trapdoor tdi.

– Vi blinds the commitment using a blinding function χ, a random value ri
and obtains ei = χ(xi, ri).

– Vi signs ei and sends the signature si = σVi(ei) together with ei and his
identity to the administrator A.

– The administrator checks if Vi has the right to vote, has not yet voted, and
if the signature si is correct. If all tests succeed, he signs di = σA(ei) and
sends it back to Vi.

– Vi checks the signature, unblinds di using δ and obtains yi = δ(di, ri).

In the second phase the actual voting takes place:

– Vi sends the signed trapdoor commitment yi to the collector C through an
anonymous channel.

– C checks the administrator’s signature.
– Vi sends (vi, ri, xi) to the timeliness member T through an untappable

anonymous channel.

When all ballots are cast or when the deadline is over, the counting phase begins:

– C publishes the list of correct ballots (xi, yi).
– T publishes a randomly shuffled list of votes vi and a zero-knowledge proof

that he knows a permutation π for which xπ(i) = ξ(vi, ri).

Analysis: The protocol is receipt-free because the trapdoor allows a voter to
open the commitment in any way to fake a receipt for any candidate as formally
shown by Delaune et al. [2]. Here we use a slightly modified version of their
model to show that it also respects (MRF)2, see technical report [21] for details.

It is also easy to see that the protocol ensures (EQ) as votes are not weighted
and the honest timeliness members will publish the correct result. We can also
find that it is modular by analyzing the structure of the voting processes. In the
case of n voters, we have the form

νchT.(V1| . . . |Vn |
i=1,...,n

processT),

2 Essentially we do not use the key distribution process as no keys are required to be
secret. We model them as free variables instead.

13



where processT is the process executed by the timeliness member and chT is the
private channel between voters and the timeliness member. For k ∈ {1, . . . , n−1},
a possible decomposition would be

νchT.(V1| . . . |Vk |
i=1,...,k

processT)|νchT.(Vk+1| . . . |Vn |
i=k+1,...,n

processT),

which is obviously bisimilar. It is easy to see that this also works for composing
processes. This is because each instance contains the same private channel and
as many processT as voters. Thus the protocol is modular, and using Theorem 2
we have that the protocol by Okamoto ensures (MRF).

Note that this would also hold for a variant of the protocol with weighted
votes. Similarly to the first example we could implement this using multiple
ballots, and the resulting protocol ensures (SRF), (MRF), (Cor) and (Mod), but
neither (EQ) nor (SwRF).

5 Coercion-Resistance

After discussing Receipt-Freeness, we now define Coercion-Resistance. As before,
we start with Single-Voter Coercion-Resistance.

5.1 Single-Voter Coercion (SCR)

In this case, we combine (VP) with (SwCR): If two instances of a voting protocol
give the same result, they should be bisimilar even if one voter interacts with
the attacker in one case or only pretends to do so in the other case. The coercion
is modeled by the context C that interacts with the voter and tries to force him
to vote for a certain candidate.

Definition 20 (Single-Voter Coercion-Resistance (SCR)). A voting pro-
tocol ensures Single-Voter Coercion-Resistance (SCR) if for any voting processes
V PA = νñ.(V σid1σvA1 | . . . | V σidnσvAn | A1 | . . . | Al), V PB = νñ.(V σid1σvB1
| . . . | V σidnσvBn | A1 | . . . | Al) and any number i ∈ {1, . . . , n} there ex-
ists a process V ′i such that for any context Ci with Ci = νc1.νc2.( |Pi) and

ñ ∩ fn(C) = ∅, V P ′A
[
Ci

[
(V σidiσvAi )c1,c2

]]
≈l V P ′A

[
(V σidiσvAi )chci

]
we have

Ci [V ′i ]
\out(chc,·) ≈l V σidiσvBi and

V PA|res ≈l V PB |res ⇒ V P ′A

[
Ci

[
(V σidiσvAi )c1,c2

]]
≈l V P ′B [Ci [V ′i ]] ,

where V P ′A and V P ′B are like V PA and V PB, but with a holes for the voter
V σidi .

As above, we can easily link this definition to the existing swap-based definition
using (EQ): If a protocol respects (EQ), (SCR) and (SwCR) are equivalent. The
proof given in [21] is similar to the (SRF) case.

14



5.2 Multi-Voter Coercion (MCR)

We now discuss Multi-Voter Coercion-Resistance. To model the case where mul-
tiple voters are attacked, we consider the set I of attacked voters.

Definition 21 (Multi-Voter Coercion-Resistance (MCR)). A voting pro-
tocol ensures Multi-Voter Coercion-Resistance (MCR) if for any voting processes
V PA = νñ.(V σid1σvA1 | . . . | V σidnσvAn | A1 | . . . | Al), V PB = νñ.(V σid1σvB1
| . . . | V σidnσvBn | A1 | . . . | Al) and any subset I ⊂ {1, . . . , n}, I 6= {1, . . . , n}
if n > 1, there exists processes V ′i such that for any contexts Ci, i ∈ I with

Ci = νc1.νc2.( |Pi) and ñ ∩ fn(C) = ∅, V P ′A
[
|
i∈I
Ci

[
(V σidiσvAi )c1,c2

]]
≈l

V P ′A

[
|
i∈I

(V σidiσvAi )chci
]

we have ∀i ∈ I : Ci [V ′i ]
\out(chc,·) ≈l V σidiσvBi and

V PA|res ≈l V PB |res ⇒ V P ′A

[
|
i∈I
Ci

[
(V σidiσvAi )c1,c2

]]
≈l V P ′B

[
|
i∈I
Ci [V ′i ]

]
,

where V P ′A and V P ′B are like V PA and V PB, but with holes for all voters
V σidi , i ∈ I.

As for (MRF), (MCR) implies (SCR), and (MCR) resp. (SCR) is stronger than
(MRF) resp. (SRF) (for the proofs, see the technical report [21]). We also have
equivalence between (SCR) and (MCR) under the same assumptions as in the
case of Receipt-Freeness using a similar proof.

5.3 Example: Bingo Voting

Bingo Voting was developed by Bohli et al. [23] to achieve coercion-resistance as
well as individual and universal verifiability by using a trusted random number
generator (RNG) and a voting booth.

Informal Description: We consider an election with k voters and l candidates.
The protocol is split into three phases: The pre-voting phase, the voting phase
and the post-voting phase. In the pre-voting phase, the voting machine generates
k random values ni,j for every candidate pj . It commits to the k · l pairs (ni,j , pj)
and publishes the shuffled commitments.

In the voting phase, the voter enters the voting booth and selects the can-
didate he wants to vote for on the voting machine. The RNG generates a ran-
dom number r which is transmitted to the voting machine and displayed to the
voter. The voting machine chooses for each candidate a dummy vote except for
the voter’s choice. For this candidate the random value from the RNG is used
and the receipt (a list of all candidates and the corresponding dummy or real
votes) is created. Finally the voter checks that the number displayed on the RNG
corresponds to the entry of his candidate on the receipt.

In the post-voting phase the voting machine announces the result, publishes
all receipts and opens the commitments of all unused dummy votes. The ma-
chine also generates non-interactive zero-knowledge proofs that each unopened
commitment was actually used as a dummy vote in one of the receipts.

15



SwCR

SwRF

SwP

SCR

SRF

VP

EQ

EQ

EQ

MCR

MRF

Cor, Mod

Cor, Mod

Fig. 2. Relations among the notions. A
C−→ B means that under the assumption C a

protocol ensuring A also ensures B.

Analysis: The protocol satisfies (SwRF) as the receipt contains only random
numbers, and it is impossible for the attacker to know which entry corresponds to
the random value generated by the RNG [4]. It also ensures (SwCR) as voting
takes places inside a secured voting booth. This was formally proven in the
DKR-model [4], and we use the same model to show that it satisfies (MCR). As
before, it is easy to see that the protocol ensures Equality of Votes and hence
Correctness as votes are not weighted. By analyzing the structure of the voting
process, we can see that the protocol also is modular. In the case of n voters, we
have the following voting process

νprivChM1 . . . νprivChMn.νprivChRM1 . . . νprivChRMn.
νprivChR1 . . . νprivChRn.(V1| . . . |Vn|M1,...,n;l|R1| . . . |Rn)

where Ri are the trusted random number generators, M1,...,n;l is the voting
machine process for n voters from 1 to n and l candidates, and privChMi,
privChRMi and privChRi are the private channels between the voter and the
voting machine, the RNG and the voting machine, and the RNG and the voter
respectively. For k ∈ {1, . . . , n− 1}, this can be rewritten as

νprivChM1 . . . νprivChMk.νprivChRM1 . . . νprivChRMk.
νprivChR1 . . . νprivChRk.(V1| . . . |Vk|M1,...,k;l|R1| . . . |Rk)|

νprivChMk+1 . . . νprivChMn.νprivChRMk+1 . . . νprivChRMn.
νprivChRk+1 . . . νprivChRn.(Vk+1| . . . |Vn|Mk+1,...,n;l|Rk+1| . . . |Rn)

as M1,...,n;l ≈l M1,...,k;l|Mk+1,...,n;l. This can be easily seen from the applied π-
code [21]. It is easy to see that this also works for composing processes. Hence
we have all necessary conditions and obtain that Bingo Voting ensures (MCR).

6 Conclusion

We presented an intuitive definition of privacy for voting protocols that gen-
eralizes to situations with weighted votes. We extended the definition to in-
clude Receipt-Freeness and Coercion-Resistance as well. We considered situa-
tions where only one voter is under attack, and others where multiple voters

16



are attacked. We were able to show that - under the assumptions that votes
are not weighted and correctly counted - the single voter case is equivalent to
(SwP), (SwRF), (SwCR) as defined by Delaune et al. [2]. Moreover, we proved
that the multi-voter case is equivalent to the single-voter case if the protocol is
correct (Cor) and respects a modularity condition (Mod). This condition allows
us to compose and decompose protocols, which expresses the fact the different
parts of the protocol are independent. Figure 2 summarizes our results. Finally,
we illustrated our work by analyzing two existing protocols. As future work, we
would like to translate these symbolic definitions to the computational setting.

Acknowledgments: This work was partly supported by the ANR project ProSe
(decision ANR 2010-VERS-004).

References

1. Backes, M., Hritcu, C., Maffei, M.: Automated verification of remote electronic
voting protocols in the applied pi-calculus. Computer Security Foundations Sym-
posium, IEEE 0 (2008) 195–209

2. Delaune, S., Kremer, S., Ryan, M.: Verifying privacy-type properties of electronic
voting protocols. Journal of Computer Security 17 (December 2009) 435–487

3. Delaune, S., Kremer, S., Ryan, M.D.: Verifying privacy-type properties of elec-
tronic voting protocols: A taster. In Chaum, D., Jakobsson, M., Rivest, R.L.,
Ryan, P.Y.A., Benaloh, J., Kuty lowski, M., Adida, B., eds.: Towards Trustworthy
Elections – New Directions in Electronic Voting. Volume 6000 of LNCS. Springer
(May 2010) 289–309

4. Dreier, J., Lafourcade, P., Lakhnech, Y.: Vote-independence: A powerful privacy
notion for voting protocols. In: Proceedings of the 4th Workshop on Foundations
& Practice of Security (FPS). LNCS, Springer (2011)

5. Dreier, J., Lafourcade, P., Lakhnech, Y.: A formal taxonomy of privacy in voting
protocols. In: First IEEE International Workshop on Security and Forensics in
Communication Systems (ICC’12 WS - SFCS). (2012)

6. Küsters, R., Truderung, T.: An Epistemic Approach to Coercion-Resistance for
Electronic Voting Protocols. In: 2009 IEEE Symposium on Security and Privacy
(S&P 2009), IEEE Computer Society (2009) 251–266

7. Moran, T., Naor, M.: Receipt-free universally-verifiable voting with everlasting
privacy. In: CRYPTO 2006. Volume 4117 of LNCS., Springer (2006) 373–392

8. Smyth, B., Cortier, V.: Attacking and fixing helios: An analysis of ballot secrecy.
In: Proceedings of the 24th IEEE Computer Security Foundations Symposium
(CSF’11), IEEE (2011) 297–311

9. Kremer, S., Ryan, M., Smyth, B.: Election verifiability in electronic voting proto-
cols. In: Proceedings of the 15th European Symposium on Research in Computer
Security, ESORICS 2010. Volume 6345 of LNCS., Springer (2010) 389–404

10. Smyth, B., Ryan, M.D., Kremer, S., Kourjieh, M.: Towards automatic analysis
of election verifiability properties. In: Proceedings of the Joint Workshop on Au-
tomated Reasoning for Security Protocol Analysis and Issues in the Theory of
Security (ARSPA-WITS’10). Volume 6186 of LNCS., Springer (2010) 146–163

11. Juels, A., Catalano, D., Jakobsson, M.: Coercion-resistant electronic elections. In:
Proceedings of the 2005 ACM workshop on Privacy in the electronic society. WPES
’05, ACM (2005) 61–70

17



12. Kremer, S., Ryan, M.: Analysis of an electronic voting protocol in the applied
pi calculus. In: Proceedings of the 14th European Symposium On Programming
(ESOP’05). Volume 3444 of LNCS., Springer (2005) 186–200

13. Eliasson, C., Zúquete, A.: An electronic voting system supporting vote weights.
Internet Research 16(5) (2006) 507–518

14. Joaquim, R., Zúquete, A., Ferreira, P.: Revs - a robust electronic voting system.
In: IADIS International Conference e-Society 2003, Lisboa (Portugal), June 3-6.
(2003)

15. Fujioka, A., Okamoto, T., Ohta, K.: A practical secret voting scheme for large scale
elections. In Seberry, J., Zheng, Y., eds.: Advances in Cryptology – AUSCRYPT
’92. Volume 718 of LNCS. Springer Berlin / Heidelberg (1992) 244–251

16. Abadi, M., Fournet, C.: Mobile values, new names, and secure communication.
In: Proceedings of the 28th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages. POPL ’01, New York, ACM (2001) 104–115

17. Blanchet, B., Abadi, M., Fournet, C.: Automated verification of selected equiva-
lences for security protocols. Journal of Logic and Algebraic Programming 75(1)
(2008) 3–51

18. Klus, P., Smyth, B., Ryan, M.D.: Proswapper: Improved equivalence verifier for
proverif. http://www.bensmyth.com/proswapper.php (2010)

19. Küsters, R., Truderung, T., Vogt, A.: A game-based definition of coercion-
resistance and its applications. In: Proceedings of the 2010 23rd IEEE Computer
Security Foundations Symposium. CSF ’10, Washington, DC, USA, IEEE Com-
puter Society (2010) 122–136

20. Langer, L., Jonker, H., Pieters, W.: Anonymity and verifiability in voting: under-
standing (un)linkability. In: Proceedings of the 12th international conference on
Information and communications security. ICICS’10, Springer-Verlag (2010) 296–
310

21. Dreier, J., Lafourcade, P., Lakhnech, Y.: On defining privacy in the presence of
weighted votes and the equivalence of single and multi-voter coercion. Technical
Report TR-2012-2, Verimag Research Report (March 2012) Available at http:

//www-verimag.imag.fr/TR/TR-2012-2.pdf.
22. Dreier, J.: The code and scripts used to automatically verify the examples is avail-

able at http://www-verimag.imag.fr/~dreier/papers/foo-weighted-code.zip

(2011)
23. Bohli, J.M., Müller-Quade, J., Röhrich, S.: Bingo voting: Secure and coercion-

free voting using a trusted random number generator. In: E-Voting and Identity.
Volume 4896. Springer Berlin / Heidelberg (2007) 111–124

24. Okamoto, T.: An electronic voting scheme. In: Proceedings of the IFIP World
Conference on IT Tools. (1996) 21–30

25. Lee, B., Boyd, C., Dawson, E., Kim, K., Yang, J., Yoo, S.: Providing receipt-
freeness in mixnet-based voting protocols. In: Information Security and Cryptology
- ICISC 2003. Volume 2971 of LNCS. Springer Berlin / Heidelberg (2004) 245–258

26. Wen, R., Buckland, R.: Masked ballot voting for receipt-free online elections. In:
Proceedings of the 2nd International Conference on E-Voting and Identity. VOTE-
ID ’09, Berlin, Heidelberg, Springer-Verlag (2009) 18–36

18


