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REGULAR VARIATION OF A RANDOM LENGTH SEQUENCE OF RANDOM

VARIABLES AND APPLICATION TO RISK ASSESSMENT

C. TILLIER AND O. WINTENBERGER

Abstract. When assessing risks on a finite-time horizon, the problem can often be reduced to the
study of a random sequence C(N) = (C1, . . . , CN ) of random length N , where C(N) comes from the
product of a matrix A(N) of random size N ×N and a random sequence X(N) of random length N .
Our aim is to build a regular variation framework for such random sequences of random length, to
study their spectral properties and, subsequently, to develop risk measures. In several applications,
many risk indicators can be expressed from the asymptotic behavior of ||C(N)||, for some norm
‖ · ‖. We propose a generalization of Breiman Lemma that gives way to an asymptotic equivalent to
‖C(N)‖ and provides risk indicators such as the ruin probability and the tail index for Shot Noise
Processes on a finite-time horizon. Lastly, we apply our final result to a model used in dietary risk
assessment and in non-life insurance mathematics to illustrate the applicability of our method.

1. Introduction

Risk analyses play a leading role within fields such as dietary risk, hydrology, nuclear security,
finance and insurance. Moreover, risk analysis is present in the applications of various probability
tools and statistical methods. We see a significant impact on the scientific literature and on public
institutions (see [7], [1], [12] or [16]).

In insurance, risk theory is useful for getting information regarding the amount of aggregate claims
that an insurance company is faced with. By doing so, one may implement solvency measures to
avoid bankruptcy; see [22] for a survey of non-life insurance mathematics. To further illustrate the
importance of risk analysis, we turn to the field of dietary risk. Here, toxicologists determine con-
tamination levels which could later be used by mathematicians to build risk indicators. For example,
in [6], authors proposed a dynamic dietary risk model, which takes into account both the elimination
and the accumulation of a contaminant in the human body; see [13], [14], and [7] for a survey on
dietary risk assessment.

Besides, risk theory typically deals with the occurrences of rare events which are functions of heavy-
tailed random variables, for example, sums or products of regularly varying random variables; see [18]
and [21] for an exhaustive survey on regular variation theory. Non-life insurance mathematics and
dietary risk management both deal with a particular kind of Shot Noise Processes {S(t)}t>0, defined
as

(1) S(t) =

N(t)
∑

n=0

Xih(t, Ti), t > 0,

where (Xi)i≥0 are independent and identically random variables, h is a measurable function and
{N(t)}t>0 is a renewal process; see Section 4 for details. In this context, a famous risk indicator
is the ruin probability on a finite-time horizon that is the probability that the supremum of the
process S exceeds a threshold on a time window [0, T ], for a given T > 0. It is straightforward that
maxima necessarily occur on the embedded chain and it is enough to study the discrete-time random
sequence S(N(T )) := (S(T1), S(T2), . . . , S(TN(T ))), which is of random length N(T ). Then, instead of

Key words and phrases. Ruin theory, multivariate regular variation, risk indicators, Breiman Lemma, asymptotic
properties, stochastic processes, extremes, rare events.
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dealing with the extremal behavior of {S(t)}t≤T , we only need to understand the extremal behavior

of ‖S(N(T ))‖∞.
We go further and point out that many risk measures in non-life insurance mathematics and in

dietary risk assessment can be analyzed from the tail behavior of ‖C(N)‖ where C(N) = (C1, . . . , CN )
is a random sequence of random length N and ‖ · ‖ is a norm such that

(2) ‖ · ‖∞ ≤ ‖ · ‖ ≤ ‖ · ‖1.

Thus we consider discrete-time processes C(N) = (C1, . . . , CN ) where for all 1 ≤ i ≤ N , Ci ∈ R+

and N is an integer-valued random variable (r.v.), independent of the Ci’s. We are interesting in the
case when the Ci’s are regularly varying random variables. We restrict ourselves to the process C(N)
which can be written in the form

(3) C(N) = A(N)X(N),

where X(N) = (X1, . . . , XN )′ is a random vector with identically distributed marginals which are
not necessarily independent and A(N) is a random matrix of random size N ×N independent of the
entries Xi of the vector X(N) and of N . However, X(N) and A(N) are still dependent through N
that determines their dimensions. Notice that C(N) covers a wide family of processes with possibly
dependent (Xi)i≥0.

Our main objectives are: to define regular variation properties for a random length sequence of
random variables and to study the spectral properties in order to develop risk measures. As it will
become clear later, the randomness of the size N of the vector C(N) makes it difficult to use the
common definition of multivariate regular variation in terms of vague convergence; see [17]. Indeed, to
handle regular variation of a random sequence of random length, we need to define a regular variation
framework for an infinite-dimensional space of sequences defined on (R+)N

∗

. We tackle the problem
using the notion of M-convergence, introduced recently in [20]. A main difference with the finite-
dimensional case is that the choice of the norm matters as it determines the infinite-dimensional space
to consider; see [5], [3], [25] and [26] for a comprehensive review of finite-dimensional multivariate
regular variation theory.

The key point of our approach is the use of a norm satisfying (2) that allows to build regular
variation via polar coordinates. This approach combined with an extension of Breiman Lemma leads
to characterize the regular variation properties of C(N); see [10] for the statement and the proof of
Breiman Lemma. According to the choice of the norm, it characterizes several risk indicators for a
large family of processes.

For a particular class of Shot Noise Processes, we recover the result of [19] regarding the tail behavior
when N is a Poisson process and when the (Xi)i≥0 are asymptically independent and identically
distributed. We give also the ruin probability for shot noise processes defined as (1) when the (Xi)i≥0

are not necessarily independent. Moreover, we shall supplement the information missing by these two
indicators by suggesting new ones; see Section 4 for details. We first turn our interest to the Expected
Severity, a widely-used risk indicator in insurance. It is an alternative to Value-at-Risk that is more
sensitive to the losses in the tail of the distribution. Then, we shall introduce an indicator called
Integrated Expected Severity which supplies information on the total losses themselves. Lastly, our
focus will shift to the Expected Time Over a Threshold, which corresponds to the average time spent
by the process above a given threshold.

The paper is constructed as follows: firstly, we specify the framework and describe the assumptions
on the model. In Section 3, we define regular variation for a random length sequence of random
variables, followed by an extension of Breiman Lemma. Next, we attempt to apply and develop risk
indicators for a particular class of stochastic processes: the Shot Noise Processes. We also apply
our final result to a model used in dietary risk assessment called Kinetic Dietary Exposure Model
introduced in [6]. Finally, Section 5 is devoted to proving the main results of this paper.
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2. Framework and assumptions

2.1. Regular variation in c‖·‖. In order to provide an extension of Breiman Lemma for the norm
of a sequence C(N) = (C1, . . . , CN ) defined as in (3), we define regular variation for any vector
X(N) = (X1, X2, . . . , XN , 0, . . .) when N is a strictly positive random integer. We denote by c00 the
set of sequences with a finite number of non-zero components. To build a regular variation framework
on this space seems to be very natural for our purpose but we cannot do it since c00 is not complete.
Indeed, it is not closed in (l∞, ‖ · ‖∞). For example, consider the sequence of c00 with elements
ui = (1, 1/2, 1/3, . . . , 1/i, 0, 0, . . .), i ∈ N. Its limit as i → ∞ is not an element of c00. Therefore, we
will choose the completion of c00 in l∞ space denoted by c‖·‖. In the rest of the paper, we write ‖ · ‖
when the norm satisfies (2).

Definition 1. The space c‖·‖ is the completion of c00 in (R+)N equipped with the convergence in the
sequential norm ‖ · ‖.

For example, c‖·‖∞
= c0, the space of sequences whose limit is 0:

c0 :=

{

u = (u1, u2, . . .) ∈ (R+)N : lim
i→+∞

ui = 0

}

.

Furthermore, c‖·‖1
= ℓ1(R+), the space of sequences such that

∑

i≥0 ui < ∞. In the following, we
equip c‖·‖ with the canonical distance d generated by the norm such that for any sequence X,Y ∈ c‖·‖,
d(X,Y ) = ‖X − Y ‖ and we denote by 0 = (0, 0, . . .) the null element in c‖·‖. Besides, for all j ≥ 1,
we denote ej = (0, . . . , 0, 1, 0, . . .) ∈ c‖·‖ the canonical basis of c‖·‖ and we denote by S(∞), the unit
sphere over c‖·‖ defined as S(∞) = {X ∈ c‖·‖ : ‖X‖ = 1}. As c‖·‖ is a Banach space, the notion of
weak convergence holds on c‖·‖ and one can also define regular variation as in [17].

Definition 2. A sequence X = (X1, X2, . . .) ∈ c‖·‖ is regularly varying if there exists a non-degenerate
measure µ such that

µx(·) =
P(x−1X ∈ ·)

P(‖X‖ > x)

ν
−→
x→∞

µ(·),

where
ν

−→ refers to the vague convergence on the Borel σ−field of c‖·‖\{0}.

Here we want to avoid the approach using the vague convergence because it implies to find compact
sets which may be complicated in several cases, especially in our infinite-dimensional framework. We
use instead the ”M-convergence” as introduced by [20], which instead of working with compact sets
deals with special ”regions” that are bounded away (BA) from the cone C we choose to remove. These
BA sets will replace the ”relatively compact sets” generating vague convergence.

We use the same notation as in [20], consider the unit sphere S(∞) over c‖·‖ and we take S = c‖·‖.
We choose to remove C = {0} which is a closed space in c‖·‖ and in particular a cone. Then
SC = S\C = c‖·‖\ {0} is an open set and still a cone. Similarly, we take S′ = [0,∞]× S(∞) and we
removeC′ = {0}×S(∞) which is closed in [0,∞]×S(∞) too. Moreover, for anyX ∈ c‖·‖, we choose the
standard scaling function g : (λ,X) −→ λX := (λX1, λX2, . . .), λ > 0, which is well suited for polar
coordinate transformations. For S′, we choose the scaling function (λ, (r,W )) −→ (λr,W ) in order to
make {0}×S(∞) a cone. Let h be the polar transformation such that h : c‖·‖\ {0} −→ [0,∞]×S(∞)
and for all X ∈ c‖·‖\{0},

h : X −→ (||X ||, ||X ||−1X).

As c‖·‖ is a separable Banach space, we can apply [20] to define regular variation on this space from
the M-convergence. Precisely, condition (4.2) is satisfied and Corollary 4.4 in [20] holds. Combining
with Theorem 3.1 in [20] which ensures the homogeneity property of the limit measure µ such that
µ(λA) = λ−αµ(A), for some α > 0, λ > 0 and A ∈ c‖·‖\{0}, it leads to the following characterization
of regular variation in c‖·‖.



4 CHARLES TILLIER AND OLIVIER WINTENBERGER

Proposition 3. A sequence of random elements X = (X1, X2, . . .) ∈ c‖·‖\{0} is regularly varying iff
‖X‖ is regularly varying and

L
(

‖X‖−1X | ‖X‖ > x
)

−→
x→∞

L(Θ),

for some random element Θ ∈ S(∞) and L(Θ) = P(Θ ∈ ·) is the spectral measure of X.

It means that the regular variation of X is completely characterized by the tail index α of ‖X‖ and
the spectral measure of X .

2.2. Assumptions. In order to get the spectral measure of any random sequence C(N) of random
length N defined as in (3), we require the following conditions:

(H0) Length: N is a positive integer-valued r.v. such that E[N ] > 0 and admits moments of order
2 + α+ ǫ, ǫ > 0.

(H0’) Poisson counting process: N is an inhomogeneous Poisson Process with intensity function
λ(·) and cumulative intensity function m(·).

(H1) Regular variation: The (Xi)i≥0 are identically distributed (i.d.) with common mean γ and

cumulative distribution function (c.d.f.) FX , such that the survival function FX = 1− FX is
regularly varying with index α > 0, denoted by X ∈ RV−α.

(H2) Uniform asymptotic independence: We assume a uniform bivariate upper tail indepen-
dence condition: for all i, j ≥ 1,

sup
i6=j

∣

∣

∣

∣

P(Xi > x,Xj > x)

P(X1 > x)

∣

∣

∣

∣

−→
x→∞

0.

(H3) Regularity of the norm: The norm ‖ · ‖ satisfies ‖ · ‖∞ ≤ ‖ · ‖ ≤ ‖ · ‖1.
(H4) Tail condition on the matrix A(N): The random entries (ai,j) of A(N) are independent

of the (Xi). Moreover, there exists some ǫ > 0 such that

E[||A(N)||α+ǫN1+α+ǫ] <∞,

where ‖ · ‖ also denotes the corresponding induced norm on the space of N -by-N matrices.
(H5) The matrix A(N) is not null.

Let us discuss the assumptions. The condition (H1) implies that the regular variation of the
sequence C(N) = (C1, . . . , CN ) defined as in (3) comes from the regular variation of the sequence
X(N) and (H2) means in addition that the probability of two components of the sequence X(N)
exceeding a high threshold goes to 0. Combining (H1) and (H2), it appears that the regular variation
of the sequence C(N) is mostly due to the regular variation of one of the component of X(N). Note
that if the Xi’s are exchangeable and asymptotically independent, then (H2) holds. An example of
a time series satisfying (H2) is a stochastic volatility model defined by

Xt = σtǫt, t ∈ Z,

where the innovations ǫt are standardized positive i.i.d. r.v.’s such that P(ǫ0 6= 0) > 0 and E(ǫ1+δ
t )

holds for some δ > 0. The volatility σt satisfies the equation

log(σt) = φ log(σt−1) + ξt, t ∈ Z,

with φ ∈ (0, 1), the innovations (ξt)t∈Z are i.i.d. r.v.’s independent of (ǫt)t∈Z such that E(ξ20) <
∞ and P(ξt > x) ∼ Kx−αe−x when x → ∞ for some positive constants K and α 6= 1. This
is a particular case of stochastic volatility models with Gamma-Type Log-Volatility when the log-
volatility is a AR(1) model. One can check that σt and Xt are regularly varying with index α = 1.
Moreover, (log(σ0), log(σh)) is asymptotically independent as well as (σ0, σh) and (X0, Xh) for any
strictly positive h; see [11] for details.

Besides, (H3) implies ℓ1(R+) ⊆ c‖·‖ ⊆ c0 and holds for any ℓp norm for 1 ≤ p ≤ ∞. This condition
is always assumed in the paper, even if many conditions could be weakened if we only considered the
norm ‖ · ‖∞. But our aim is to develop a method which can be applied for a broad class of processes
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and norms. Finally, (H4) requires more finite moments on N than (H0). This condition can be
viewed as an extension of the moment condition of the Breiman’s lemma. It is required to estimate
the tail of ‖C(N)‖ = ‖A(N)X(N)‖ from the one of ‖X(N)‖ and it is not restrictive in practice when
N satisfies (H0’).

Lemma 4. Assume that (H3) holds and that A(N) = (ai,j)1≤i,j≤N has i.d components satisfying
E[|a1,1|

p] <∞ for some p > α ∨ 1. If E[N2p+1] <∞ then (H4) holds.

Proof. From (H3) and convexity, we have

E
[

‖A(N)‖pNp+1
]

≤

∞
∑

n=1

E
[

‖A(N)‖p1N
p+11{N=n}

]

≤

∞
∑

n=1

E

[(

sup
1≤j≤n

n
∑

i=1

|ai,j |

)p]

np+1
P(N = n)

≤

∞
∑

n=1

nE

[(

n
∑

i=1

|ai,1|

)p]

np+1
P(N = n)

≤

∞
∑

n=1

np−1
E [|a1,1|

p]np+2
P(N = n)

≤ E[|ai,j |
p]

∞
∑

n=1

n2p+1
P(N = n) <∞

and then (H4) holds. �

3. Regular variation of random sequences of random length

3.1. Regular variation properties in c‖·‖ under (H0). We focus in providing regular vari-
ation properties for a sequence X(N) = (X1, X2, . . . , XN , 0, . . .) under (H0), written X(N) =
(X1, X2, . . . , XN ) for short in the sequel. We write 0 the null element in c‖·‖. The sequence X(N) can
be seen as an element of c‖·‖ whose the number of non-null elements is driven by the random variable
N .

Proposition 5. A sequence of random elements X(N) = (X1, X2, . . . , XN ) ∈ c‖·‖\{0} for N satis-
fying (H0) is regularly varying if the random variable ‖X(N)‖ is regularly varying and

L
(

‖X(N)‖−1X(N) | ‖X(N)‖ > x
)

−→
x→∞

L(Θ(N)),

for some random element Θ(N) ∈ S(∞). The distribution of Θ(N) is the spectral measure of X(N).

Proof. The random variable N is necessarily not null thanks to (H0). Then the proof is straightfor-
ward from Proposition 3. �

Notice that Θ(N) ∈ S(∞) is an infinite sequence Θ(N) = (Θ1(N),Θ2(N), . . .). The following
proposition is relevant for the results of this paper. It is a first example of such regularly random
vectors of random length under (H3). Besides, it is an extension of Lemma A6 in [30].

Proposition 6. Let X(N) = (X1, . . . , XN ) ∈ c‖·‖ such that (H0)-(H3) hold. Then we have

lim
x→∞

P(‖X(N)‖ > x)

P(X1 > x)
= E[N ] > 0.

Proof. See Section 5. �
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Here the moment condition in (H0) is required to handle the ‖ · ‖1 case. Releasing the assumption
(H0), it is easy to draw an i.i.d. sequence of random length which is regularly varying in c‖·‖∞

but
not in c‖·‖1

. For instance, for the ‖ · ‖∞ case, the result is true under the integrability of N only but
this assumption is not sufficient to ensure the convergence for the ‖ · ‖1 case. Note also that (H3) is
required since the convergence might not hold for some norms that do not satisfy (H3). From this
proposition, a characterization of the spectral measure of X(N) is possible.

Proposition 7. If (H0)-(H3) hold then X(N) = (X1, . . . , XN ) ∈ c‖·‖\{0} is regularly varying in
the sense of Proposition 5 and its spectral measure is characterized by

P(Θ(N) = ej) =
P(N ≥ j)

E[N ]
, j ≥ 1.

Proof. See Section 5. �

The spectral measure Θ(N) of X(N) belongs to S(∞), the unit sphere on the infinite-dimensional
space c‖·‖. We cannot draw straightforwardly the parallel between regular variation in Rn and in c‖·‖
and Θ(N) needs to be handle carefully. We have not achieved to find a way to define properly the
distribution of Θ(N) given that N = n. Following arguments in [20] to handle regular variation of
the infinite-dimensional space R∞

+ from regular variation of the finite-dimensional space R
p
+, p > 0,

the natural choice would have been to consider the projection operator Projn : c‖·‖ → Rn defined as
Projn(X = (X1, X2, . . .)) = (X1, X2, . . . , Xn) and to define the distribution of Θ(N) given N = n as
L(Θ(N)|N = n) = L(Projn(Θ(N)). Then, for all j ≤ n, we would have had

P(Θ(N) = ej |N = n) =
P(Θ(N) = ej)
n
∑

j=1

P(Θ(N) = ej)
=

P(N ≥ j)
n
∑

j=1

P(N ≥ j)
,

which is not coherent with the distribution of Θ(N) provided in Proposition 7 and this represen-
tation does not work. This provides further evidence that Θ(N) cannot admit the representation
(Θ1(N), . . . ,ΘN(N)) and must be considered as an infinite-dimensional random element. Nonethe-
less, note that

∑∞
j=1 P(Θ(N) = ej) = 1 and then Θ(N) =

⋃∞
j=1 ej almost surely, thus we fully

characterized the spectral measure of X(N) in Proposition 7.

Remark 8. When N = n for a fixed n ≥ 1, it follows that for all 1 ≤ j ≤ n, P(Θ(n) = ej) = n−1.

3.2. Generalization to the matrix product. We generalize this approach to sequences in c‖·‖
defined from the product of X(N) by a random matrix A(N) = (ai,j)1≤i,j≤N of random size N ×N .
We denote this vector C(N) = A(N)X(N), which is of length N . We keep the previous notation and
we denote by Ak(N) the k-th column of the matrix A(N). Here and in what follows, we work under
the assumptions (H3) and (H4). Notice that (H3) implies that the canonical basis of c‖·‖ denoted
by (ei)i≥1 is standardized, i.e. for all i ≥ 1, ‖ei‖ = 1.

Note that on N = n, A(n) and X(n) are independent. Then we directly deduce from Remark 8
and the multivariate Breiman’s lemma (see Proposition 5.1 in [4]) the following useful proposition.

Proposition 9. Let A(N) and X(N) be defined as above and assume (H0)-(H3). Then, for any
n ≥ 1, we have

P(‖x−1C(n)‖ > x)/P(X1 > x) −→
x→∞

E

[

n
∑

k=1

‖Ak(n)‖
α

]

.

Moreover C(n) is regularly varying under (H5).

Proof. From Proposition 5.1 in [4], we have

P(x−1A(n)X(n) ∈ ·)/P(‖X(n)‖ > x) −→
x→∞

E[µ ◦A(n)−1(·)]



REGULAR VARIATION OF A RANDOM LENGTH SEQUENCE OF RANDOM VARIABLES AND APPLICATION TO RISK ASSESSMENT7

with µ a radon measure defined by

P(x−1X(n) ∈ ·)/P(‖X(n)‖ > x) −→
x→∞

µ(·).

Then,

P(‖x−1A(n)X(n)‖ ∈ ·)/P(‖X(n)‖ > x) −→
x→∞

E[µ ◦ ‖A(n)‖−1(·)].

By homogeneity of µ, it follows that

P(‖A(n)X(n)‖) > x)/P(‖X(n)‖ > x) −→
x→∞

E[µ{x : ‖A(n)x‖ > 1] = E[‖A(n)Θ(n)‖α].

From Remark 8, Θ(n) =
⋃

i≤n ei and P(Θ(n) = ei) = n−1 for all i ≤ n which leads to

E [‖A(n)Θ(n)‖α] = n−1
E

[

n
∑

k=1

‖Ak(n)‖
α

]

,

Then, from Lemma 27, we have

P(‖A(n)X(n)‖) > x)/P(X1 > x) −→
x→∞

E[

n
∑

k=1

‖Ak(n)‖
α],

which concludes the proof. �

This proposition plays a leading role in the proof of the following theorems, which generalize the
Breiman’s lemma to random length sequences of r.v.’s asymptotically independent and identically
distributed.

Theorem 10. Let (H0)-(H4) hold and C(N) = A(N)X(N), then we have

lim
x→∞

P(‖C(N)‖ > x)

P(X1 > x)
= E

[

N
∑

k=1

||Ak(N)||α

]

.

The proof is postponed to Section 5. Notice that Theorem 10 holds if A(N) does not necessarily
satisfy (H5) and then we allow that P(‖C(N)‖ > x)/P(X1 ≥ x) → 0 when x goes to infinity; see
Section 5 for details. Under the additional assumption (H5), we are now ready to prove that C(N)
is regularly varying.

Theorem 11. If (H0)-(H5) hold, C(N) = A(N)X(N) is regularly varying and its spectral measure
is given by

P
(

‖C(N)‖−1C(N) ∈ · | ‖C(N)‖ > x
)

−→
x→∞

E

[

∑N
k=1 ‖Ak(N)‖α11‖Ak(N)‖−1Ak(N)∈·

]

E

[

∑N
k=1 ‖Ak(N)‖α

]

The proof is postponed to Section 5. Although the characterization is common for any norm such
that (H3) holds, the result essentially depends on the choice of the norm. Despite this remark, it is
noteworthy that the spectral measure can be described in a unified way even if it belongs to different
spaces, regarding the choice of the norm.

In the sequel, we assume that (H0)-(H5) hold. Following [5], for all i ≤ N , we have

lim
ǫ→0

lim
x→∞

P(|Ci(N)| > xǫ | ||C(N)|| > x) = E [|Θi(N)|α] .

From Theorem 11, we have

E [|Θi|
α] =

E

[

∑

k ||Ak(N)||α ×
|ai,k|

α

||Ak(N)||α
11{i≤N}

]

E [
∑

k ||Ak(N)||α]
=

E
[
∑

k |ak,i|
α11{i≤N}

]

E [
∑

k ||Ak(N)||α]
.
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Let us consider the asymptotically independent case when ak,i = 11{i=k} then,

E [|Θi(N)|α] =

E

[

N
∑

k=1

11{i=k}

]

E[N ]
=

P(N ≥ i)

E(N)
.

It is a mean constraint on the spectral measure. To be precise, if the margins of the random vector
are identically distributed, then necessarily E [|Θi(N)|α] = P(N ≥ i)/E(N), i ≥ 1. We recover the
mean constraint E [|Θi(n)|

α] = n−1, 1 ≤ i ≤ n when n is fixed; see [15].

4. Applications

This section is devoted to calculating the constant
∑N

k=1 ||Ak(N)||α for various examples. To obtain
explicit results, we assume in this part that N is defined as in (H0’) which implies in particular that
the moment condition (H4) holds. The result is derived thanks to the order statistics property of

a Poisson process (see [22], Section 2.1.6). The computation of the constant
∑N

k=1 ||Ak(N)||α for
different norms and different matrices A(N) permits to develop various risk measures.

As mentioned before, C(N) covers a wide family of processes. We deal here with an example of a
Shot Noise Process (SNP). SNP were first introduced in the 20’s to study the fluctuations of current
in vacuum tubes and used in an insurance context from the second half of the twentieth century; see
[30] and [28] for more details on the SNP theory. We restrict ourselves to the study of particular
SNP’s defined by

(4) Y (t) =

N(t)
∑

i=1

Xi × hi(t, Ti), ∀ t ≥ 0,

where (hi)i≥0 are i.i.d. non-negative measurable random functions called ”shock functions”, which
are independent of the shocks (Xi)i≥0. The ”shock instants” (Ti)i≥0 are r.v.’s independent of (Xi)i≥0

such that for all i ≥ 0, Ti =
∑

0≤k≤i ∆Tk, where (∆Tk)k≥0 is an i.i.d. sequence of r.v.’s called ”inter-

arrivals”. Under (H0’), the inter-arrivals are exponentially distributed. In this context, N(t) =
{#i : Ti ≤ t} is a renewal process which counts the number of claims that occurred until time t; see
[22] for a survey on renewal theory. We assume that for all i ≥ 0, t > 0 and α > 0, there exists ǫ > 0
such that E[hα+ǫ

i (t, Ti)] <∞.

In the sequel, we denote by F I
X the integrated tail distribution associated to the r.v. X , which is

defined for all y > 0 by

F I
X(y) =

1

γ

+∞
∫

y

FX(x)dx,

with γ = E(X). We write N(t) instead of N to stress the fact we are dealing with counting processes
and therefore we study the process through time.

4.1. Asymptotic tail behavior of SNP’s. We first apply our method to determine the asymptotic
behavior of a SNP defined as (4) as a corollary of our main result.

Corollary 12. Under (H0’)-(H1)-(H2), assume that the random functions hj(T, ·)’s are i.i.d.,
independent of the Tj’s and integrable of order p > α, then

lim
x→∞

P(Y (T ) > x)

P(X1 > x)
= m(T )E[hα0 (T, V0)],

where V0 admits the density λ(t)/m(T ), 0 ≤ t ≤ T .

This corollary plays a leading role to determine the risk indicators in Section 4.3. Besides, we
recover the recent results of [30] and [19] on the tail of {Y (T )}T≥0.
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Proof. Let T be a strictly positive constant and let C(N(T )) = A(N(T ))X(N(T )) be a sequence of
random length N(T ) with A(N(T )), the diagonal matrix such that for all 1 ≤ j ≤ N(T ), ajj =

hj(T,Tj). Then, one can write Y (T ) =
∑N(T )

j=1 Xjhj(T, Tj) = ‖C(N(T ))‖1. Using similar arguments

than in the proof of Lemma 4, we check that (H4) holds and we apply Theorem 10 in order to obtain

lim
x→∞

P(Y (T ) > x)

P(X1 > x)
= E





N(T )
∑

k=1

‖Ak(N(T ))‖α1



 .

Note that for all k ≤ N(T ), ||Ak(N(T ))||α1 = hαk (T,Tk). Let V(k) be the k-th order statistic associated

to the i.i.d. sequence (V0, V1, . . .) distributed as V0. From [22], Section 2.1.6, (Tk | N(T ))
d
= V(k) and

it follows that

E





N(T )
∑

k=1

hαk (T,Tk)



 = E



E





N(T )
∑

k=1

hαk (T,Tk) | N(T )









= E



E





N(T )
∑

k=1

hαk (T,V(k)) | N(T )









= E



E





N(T )
∑

k=1

hαk (T,Vk) | N(T )









= E[N(T )]E[hα0 (T, V0)],

which is the desired result. �

Notice that the asymptotic behavior of Y (T ) as T → ∞ relies on the one of the shock function
h0. One case corresponds to E[N(T )]E[hα0 (T, V0)] → C for some constant, then Y (∞) may be well
defined. Thus, the SNP may admit a stationary distribution Y (∞) =

∑

i≥1Xi × hi(T, Ti) that is

regularly varying similarly than X1. Another case corresponds to E[N(T )]E[hα0 (T, V0)] → ∞ and then
it is very likely that Y (∞) = ∞ a.s.. In the latter case, we have explosive shot noise processes.

4.2. Ruin probability. We are interesting in determining the finite-time ruin probability ψ of a SNP
defined as in (4), which is the probability that Y (t) exceeds some given threshold x ∈ R+ on a period
[0, T ], i.e.

ψ(x, T ) = P

(

sup
0≤t≤T

Y (t) > x
)

, T > 0.

Corollary 13. Assume that the conditions of Corollary 12 hold. If hj(·, T ) is a non-increasing
function for any T > 0, then,

lim
x→∞

ψ(x, T )

P(X1 > x)
= m(T )E[hα0 (V0, V0)].

Notice that if hj(·, T ) is a non-decreasing function for any T > 0, then the maximum of the SNP
is achieved at time T and so the ruin probability can be computed thanks to Corollary 12. An
intermediate example is when the random shot function h0 can be either increasing and decreasing;
see Section 4.4.

Proof of Corollary 13. Let T be a strictly positive constant. Note that in this setup, the maximum of
the process {Y (T )}T≥0 is necessarily reached on its embedded chain {Y (Ti)}i≥0. Then, it is equivalent

to the study the tail of max1≤k≤N(T )

∑k
j=1Xjhj(Tk, Tj). To do so, let C(N(T )) = A(N(T ))X(N(T ))

with A(N(T )), the lower triangular matrix such that ak,j = hj(Tk, Tj) for 1 ≤ j ≤ k and ak,j = 0 for
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k + 1 ≤ j ≤ N . Now, observe that max1≤k≤N(T )

∑k
j=1Xjhj(Tk, Tj) = ‖C(N(T ))‖∞. We check that

(H4) holds thanks to Lemma 4 and from Theorem 10, we have

lim
x→∞

‖C(N(T ))‖∞
P(X1 > x)

= E





N(T )
∑

k=1

||Ak(N(T ))||α∞



 .

Conditionally on N(T ), we have Aj(N(T )) = (0, . . . , 0, hj(V(j), V(j))), . . . , hj(V(N(T )), V(j)))
′. Then,

‖Aj(N(T ))‖α∞ = hαj (V(j), V(j)) and with similar arguments than in the previous corollary, it follows
that

E





N(T )
∑

k=1

||Ak(N)||α∞



 = E [N(T )× E [hα0 (V0,V0)] ] ,

which concludes the proof. �

Remark 14. If for T > 0, h0(T, T ) = c with c > 0, then Corollary 13 extends to any counting
process N providing ψ(x, T ) ∼ cα E[N(T )]P(X1 > x) as x→ ∞. Besides, in such case where h0(T, T )
is constant, a sandwich argument yields also the desired result. Indeed, we have

P

(

c max
i=1,...,N(T )

Xi > x

)

≤ P

(

max
i=1,...,N(T )

{

i
∑

k=1

Xihi(T, Ti)

}

> x

)

≤ P



c

N(T )
∑

i=1

Xi > x



 .

So Proposition 6 can be directly used to find again that

ψ(x, T ) ∼
x→∞

cαE[N(T )]P(X1 > x).

Remark 15. We obtain an asymptotic relation between the tail behavior and the ruin probability of
a process defined as in (4). Precisely, we have

P (Y (T ) > x) ∼
x→∞

E [hα0 (T, V0)]

E[hα0 (V0, V0)]
ψ(x, T )

when hj(·, T ) is a non-increasing function for any T and

P (Y (T ) > x) ∼
x→∞

ψ(x, T )

when hj(·, T ) is an non-decreasing function.

4.3. Other risk indicators. We propose in this part three indicators to supplement the information
given by the ruin probability and the tail behavior. The ruin probability permits to know if the
process has exceeded the threshold but provides no information about the exceedences themselves or
about the duration of the exceedences.

To fill the gap, we first bear our interest on the Expected Severity. Then, we present an indicator
called Integrated Expected Severity, which provides information on the total of the exceedences. Finally,
we are interested in the Expected Time Over a Threshold which corresponds to the average time spent
by the process over a threshold. We keep the previous notation and features on the process defined
as (4).

4.3.1. The Expected Severity and the Integrated Expected Severity. Let us first begin with the Expected
Severity. By definition, the Expected Severity for a given threshold x, written ES(x), is the quantity
dealing with the mean of the excesses knowing that the process has already reached the reference
threshold x, defined for all T > 0 by E[[Y (T )− x]+], where [·]+ is the positive part function.

Proposition 16. Assume that the conditions of Corollary 12 hold. For any T > 0, the expected
severity of a process defined as (4) is given by

ES(x) ∼
x→∞

γm(T )E[hα0 (T, V0)]F
I
X(x).
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Proof. By definition,

E[Y (T )− x]+ = E





N(T )
∑

i=1

Xihi(T, Ti)− x





+

=

+∞
∫

x

P





N(T )
∑

i=1

Xihi(T, Ti) > y



 dy.

From Corollary 12, it follows that

ES(x) ∼
x→∞

+∞
∫

x

E[N(T )]E[hα0 (T, V0)]P (X > y)dy

∼
x→∞

γE[N(T )]F I
X(x)E[hα0 (T, V0)]

and the desired result follows. �

Now, we bear our interest on the Integrated Expected Severity, denoted by IES(x) for any x > 0,
which deals with the average of the cumulated exceedences when the process is over the threshold x
on a time window [0, T ].

Proposition 17. Assume that the conditions of Corollary 12 hold. The Integrated Expected Severity
for a process defined as (4) for large values of x is given by

IES(x) ∼
x→∞

γ

T
∫

0

E[N(t)]E [hα0 (t, V0)] dt F
I
X(x).

Proof. By definition,

IES(x) =

∫ T

0

E[Y (t)− x]+dt.

From the previous Proposition, we directly obtain the result. �

4.3.2. The Expected Time Over a Threshold. The Expected Time Over a reference threshold x, written
ETOT(x), provides information about how long does the process stay, in average, above a threshold
x, knowing that it has already reached it. It is defined for all x > 0 by

ETOT (x) = E





T
∫

0

11{Y (t)∈]x,∞[}dt | max
0≤t≤T

Y (t) > x



 .

Proposition 18. Assume that the conditions of Corollary 12 hold. For large values of x, the ETOT(x)
for the process defined as (4) is given by

ETOT (x) ∼
x→∞

T
∫

0

m(t)E[hα0 (t, V0)]dt

m(T )E[hα0 (V0, V0)]
.

Proof. By definition,

ETOT (x) =

E

[

T
∫

0

11{Y (t)∈]x,∞[}dt

]

ψ(x, T )
.

Let A(N(t)) be the diagonal matrix such that for all 1 ≤ j ≤ N(t), ajj = hj(t, Tj). Note that

T
∫

0

E[11{Y (t)>x}]dt =

T
∫

0

P(Y (t) > x)dt =

T
∫

0

P(‖C(N(t))‖1 > x)dt.

Plug-in Corollary 12 in the previous expression concludes the proof. �
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Remark 19 (The extremal index for shot noise processes). Under the previous assumptions, we define
the extremal index θ ∈ [0,∞] as the inverse of lim

T→∞
lim
x→∞

ETOT (x) if it exists, i.e.

T
∫

0

m(t)E[hα0 (t, V0)]dt

m(T )E[hα0 (V0, V0)]
−→
T→∞

1

θ
.

It can be seen as a continuous version of the extremal index for discrete time-series; see [27]. To
be precise, it measures the clustering tendency of high threshold exceedences and how the extreme
values cluster together. In this context, θ does not still belong to [0, 1] but to [0,∞]. Notwithstanding,
the inverse of the extremal index θ−1 indicates somehow, how long (in mean) an extremal event will
occur, due to the dependency structure of the data. For instance θ = 0 for a random walk such that
hi = 1 and extremal events may long forever. At the opposite, in the asymptotic independent case
hi(t, v) = 11{t=v}, then θ = +∞ and extremal events occur instantaneous only.

4.4. Application in dietary risk assessment and in non-life insurance mathematics. The
shot noise process defined as in (4) intervenes in many applications in which sudden jumps occur such
as in insurance to model the amount of aggregate claims that an insurer has to cope with; see [2] and
[12] and [22].

In dietary risk assessment and non-life insurance, we typically consider deterministic shock functions
defined for all 0 ≤ x ≤ t by h(t, x) = e−ω(t−x), with a shape parameter ω > 0; see [6], [7] and [22] for
more details. We call this model Exp-SNP for Exponential Shot Noise Process.

In [6], authors suggested a model, called Kinetic Dietary Exposure Model (KDEM ), to represent
the evolution of a contaminant in the human body. Their model is a discrete-time risk process which
can be expressed from a Exp-SNP on the shock intants; see Remark 21. In this context, shocks are
regularly varying distributed intakes which arise according to N(T ) and ω is an elimination parameter.

We consider below an extension of the KDEM process. The main novelty is as follows: we are
interested in the case when the ω = ωi ∈ Ω are i.i.d. r.v.’s and may take negative values satisfying
the Cramer’s condition E[exp(pω−T )] < ∞ for some p > α and ω− = max(−ω, 0). Then, the model
is defined by

(5) Y (t) =

N(t)
∑

i=1

Xie
−ωi(t−Ti), ∀ t ≥ 0.

Here again, we can assume the the (Xi)i≥1 are asymptotically independent and identically regularly
varying random variables. In dietary risk assessment, it makes sense to consider such random elimi-
nation parameter to take into account interactions between different human organs. Thus, ω can be
seen as a ”inhibitor factor”, for positive values of ω, or contrariwise, a ”catalytic factor” for negative
values of ω. In insurance, these Exp-SNP are often used and the parameter ωi = ω can be seen as an
accumulation (resp. discount) factor when ω is a strictly negative (resp. positive) constant. Here the
model is such that usually a discount factor applies on the risk except in some cases when it is the
opposite and there is accumulation of the risk.

Assuming an homogeneous Poisson process on the distribution of claims instants such that λ(s) = λ
for all 0 < s ≤ t, we obtain explicit formula for all the risk measures. Precisely,

Corollary 20. Let Y (t) follow the KDEM defined in (5) with random elimination parameter ω such

that (H0’)-(H1)-(H2) hold. Then we have θ = α
E[ω2]

E[ω]
for ω > 0 a.s., θ = αω− if P(ω < 0) > 0
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and ω− constant, and for each risk indicator

P (Y (T ) > x) ∼
x→∞

λEΩ

[

(1− e−αωT )

ωα

]

FX(x),

ψ(x, T ) ∼
x→∞

λ

(

T P(ω > 0) + E

[

1− e−αωT

ωα
11{ω≤0}

])

FX(x),

ETOT (x) ∼
x→∞

EΩ

[

(ωαT+e−ωTα−1)
(ωα)2

]

T P(ω > 0) + E

[

1−e−αωT

ωα 11{ω≤0}

] ,

IES(x) ∼
x→∞

λγ EΩ

[

(

ωαT + e−ωTα − 1
)

(ωα)2

]

F I
X(x).

Note that we obtained an explicit and understandable formulae for the extremal index. In dietary
risk assessment, the elimination parameter ω is most of the time chosen as a positive constant. Then,
when x is large, θ = αω and one can estimate the tail index α with usual statistical methods like the
Hill estimator. As mentioned before, it could make sense that the elimination parameter may vary
beeing random and may take negative values. Nonetheless, estimate its first and second moments
seems to be a more difficult task and is left for further investigations.

Proof. Note that the only difficulty is the computation of the ruin probability. Indeed, it is enough to
take the expectation regarding ω and to apply formula given above to get the others risk indicators.

Remind that the ruin probability deals with the maxima of S which necessarily arise either on the
skeleton, i.e. on the claims instants Ti’s or between T and the last intake instant TN(T ). Then, we
have

ψ(x, T ) = max







max
1≤k≤N(T )

k
∑

i=1

e−ωi(Tk−Ti)Xi,

N(T )
∑

i=1

e−ωi(T−Ti)Xi







.

Note that,
N(T )
∑

k=1

||Ak(N(T ))||α∞ =

N(T )
∑

k=1

max
j

{

e−ωk(T−Tk), e−ωk(Tk−Tj)
}α

.

We obtain

E





N(T )
∑

k=1

||Ak(N(T ))||α∞



 = E





N(T )
∑

k=1

(

11{ωk>0} + e−ωk(T−Tk)11{ω1≤0}

)α





= E





N(T )
∑

k=1

P(ω1 > 0) + E

[

e−αω1(T−V0)11{ω1≤0}

]





= E [N(T )]



P(ω1 > 0) + E



e−αω1T





T
∫

0

e−αω1tdt



 11{ω1≤0}









= E [N(T )]

(

P(ω1 > 0) + E

[

1− e−αω1T

αω1T
11{ω1≤0}

])

.

The desired result follows. �

Note that we can also deal with strictly concave functions hj(·, T ) by considering the new arrival
times corresponding to the delayed maxima. However, the associated counting process is no longer a
Poisson process and the constants are in general less explicit.
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Remark 21. Note that for the Exp-SNP with constant ω, the asymptotic ruin equivalent ψ∗(x, T ) ∼
λTFX(x) does not depend on the distribution of ω. We have

lim
x→∞

ψ(x, T )

ψ∗(x, T )
= P(ω > 0) + E

[

1− e−αωT

Tωα
11{ω≤0}

]

≥
1 + E[e−αω−T ]

2
.

Notice that the original KDEM with r.v. ω has been defined in [6] by the recursive equation

YTj+1
= exp(−ωj+1∆Tj+1)YTj

+XTj+1
, j ≥ 0,

with ∆Tj+1 = Tj+1 − Tj. This model is equivalent to KDEM with rate 1 and with inter-arrivals
ωj+1∆Tj+1. This process converges to a stationary solution under E[ω] > 0 that is assumed from
now, see [9]. Applying Remark 14 we obtain the ruin probability for that model

lim
x→∞

ψ̃(x, t)

P(X1 > x)
= λTE[ω].

Remark 22. Let us denote for all n ∈ N, YTn+1
= Yn+1, the chain on jump instants. Then, the

embedded chain of the KDEM process with a constant elimination parameter is defined by

Yn+1 = e−ω∆Tn+1Yn +Xn+1.

Then, thanks to [24], it follows that

θ = 1− E[e−αω∆T ].

If ∆T is exponentially distributed with rate λ,

E[e−αω∆T ] =
λ

λ+ αω
,

and we have

θ =
αω

λ+ αω
.

Remark that the result differs from ours. A coefficient 1/(λ + αω) appears and no interpretation
or comparison between the extremal index for discrete-time series and its continuous equivalent is
possible. However, the inverse of extremal index for discrete-time series gives, in average, the number
of extremes by cluster. Then, the cluster are rougly of size (1 + λ−1αω)/αω. When λ → ∞, which
corresponds to expand time to move from discrete to continuous setting, it converges to αω and we
recover our result regarding the continuous version.

To conclude, in many configurations, under (H0’), we can explicitly derive the constant
∑N

k=1 ‖Ak(N)‖α,
especially with respect to ‖ · ‖1 and ‖ · ‖∞ which provide interesting equivalents to obtain risk indi-
cators. We used it to compute the tail process, the ruin probability, the ETOT and the IES but our
result can be applied on many other risk measures like Gerber-Shiu measures. In this paper, we have
proposed to focus on SNP because it plays a leading role in risk theory but note that modifying the
matrix A(N), our method can be applied on several others stochastic processes. Finally, note that we
can extend the previous results when N is not a Poisson process but admits some finite moments so
that Lemma 4 holds.

5. Proofs of the main results

5.1. Preliminaries. We begin by providing some useful properties to prove Propositions 6 and 7 and
Theorems 10 and 11.

Remark 23. Results presented throughout the paper remain valid for any norm ‖ · ‖ such that (H3)
holds. For any n ∈ N, and x > 0, we have

P(‖X(n)‖∞ > x) ≤ P(‖X(n)‖ > x) ≤ P(‖X(n)‖1 > x).

We will use several times the following result known as Potter’s bound.
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Proposition 24. Let F ∈ RV−α. Under (H0), there exists ǫ > 0 such that E[Nα+ǫ+1] < ∞ and
there exist x0 > 0, c > 1 such that for all y ≥ x ≥ x0, we have

c−1(y/x)−α−ǫ ≤
F (y)

F (x)
≤ c(y/x)−α+ǫ.

Proof. See [29]. �

Let us provide a technical lemma useful in the proofs:

Lemma 25. Let X(n) = (X1, X2, . . . , Xn) be a sequence such that (H1)-(H2) hold. Let f and g be
strictly positive functions such that for all n ∈ N∗, f(n) ≤ g(n) ≤ 1. Then, for any fixed n ≥ 1 and
ǫ > 0, there exists b(x) →

x→∞
0 such that

n
∑

i=1,i6=j

P (Xi > f(n)x ,Xj > g(n)x)

P (Xj > x)
≤ f(n)−α+ǫn2b(x).

Proof. Let 1 ≤ i 6= j ≤ n, with j ≥ 1 and n ∈ N
∗. Then, using Potter’s bound, for x sufficiently large

n
∑

i=1,i6=j

P (Xi > f(n)x ,Xj > g(n)x)

P (Xj > x)
≤

n
∑

i=16=j

P (Xi > f(n)x ,Xj > f(n)x)

P (Xj > x)

≤

n
∑

i=1,i6=j

P (Xi > f(n)x ,Xj > f(n)x) /P (Xj > f(n)x)

P (Xj > x) /P (Xj > f(n)x)

≤ c

n
∑

i=1,i6=j

f(n)−α+ǫP (Xi > f(n)x ,Xj > f(n)x)

P (Xj > f(n)x)

≤ cf(n)−α+ǫ
n
∑

i=1,i6=j

sup
i,j

P (Xi > f(n)x ,Xj > f(n)x)

P (Xj > f(n)x)

≤ cf(n)−α+ǫn(n− 1)

(

sup
i,j

P (Xi > f(n)x ,Xj > f(n)x)

P (Xj > f(n)x)

)

,

which combined with (H2) concludes the proof. �

The following lemma plays a leading role in the sequel. It can be seen as an uniform integrability
condition which allows in the main body of Propositions 6 and 7 to integrate with respect to N ; see
[8], Section 3.

Lemma 26. Let N be a random length satisfying (H0). Let X = (X1, X2, . . .) ∈ R∞
+ be a sequence

such that (H1)-(H2) hold. Let A = (ai,j)i,j≥1 be the double indexed sequence of the coefficients
satisfying (H4) and define EA[·] (respectively PX [·]) the expectation (resp. the probability) with respect
to A (resp. X). Then, for any fixed n0 ∈ N∗ and for any norm ‖ · ‖ such that (H3) holds, we have
the following statement:

lim
n0→∞

sup
x>0

(

EA

[

∞
∑

n=n0+1

P(N = n)
P(‖A(n)X(n)‖ > x)

P(X1 > x)

])

= 0.

Proof. Note first that

I(x) = sup
x>0

(

EA

[

∞
∑

n=n0+1

P(N = n)
P(‖A(n)‖‖X(n)‖ > x)

P(X1 > x)

])

≤ EA

[

sup
x>0

(

∞
∑

n=n0+1

P(N = n)
P((‖A(n)‖ ∨ 1)‖X(n)‖ > x)

P(X1 > x)

)]
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where (a∨ b) = max(a, b) for any a, b ∈ R+. For a fixed x0 > 0 defined as in Proposition 24, denoting
y = x0(‖A(n)‖ ∨ 1), we have

I(x) ≤ EA



sup
x>0





(x/y∨n0)
∑

n=n0+1

P(N = n)
P((‖A(n)‖ ∨ 1)‖X(n)‖ > x)

P(X1 > x)









+ EA



sup
x>0





∞
∑

n>(x/y∨n0)

P(N = n)
P((‖A(n)‖ ∨ 1)‖X(n)‖ > x)

P(X1 > x)









≤ EA

[

sup
x>ny

(

∞
∑

n=n0+1

P(N = n)
P((‖A(n)‖ ∨ 1)‖X(n)‖ > x)

P(X1 > x)

)]

+ EA



sup
x>0





∞
∑

n>(x/y∨n0)

P(N = n)
P((‖A(n)‖ ∨ 1)‖X(n)‖ > x)

P(X1 > x)









≤ EA

[

sup
x>ny

(

∞
∑

n=n0+1

P(N = n)
P((‖A(n)‖ ∨ 1)‖X(n)‖ > x)

P(X1 > x)

)]

+ EA

[

sup
x>0

(

P(N > (x/y ∨ n0)

P(X1 > x)

)]

≤ I1(x) + I2(x).

Let us first investigate I1(x). For every fixed x > 0 and n > 0, we have

EA [P ((‖A(n)‖ ∨ 1)‖X(n)‖ > x)] ≤ EA [P (‖X(n)‖1 > x/(‖A(n)‖ ∨ 1))]

≤ EA

[

n
∑

i=1

PX1
(Xi > x/n(‖A(n)‖ ∨ 1))

]

= nEA [PX1
(X1 > x/n(‖A(n)‖ ∨ 1))] .

Then,

I1(x) ≤ EA

[

sup
x>ny

(

∞
∑

n=n0+1

nP(N = n)
PX1

(X1 > x/n(‖A(n)‖ ∨ 1))

P(X1 > x)

)]

.

Using the Potter’s bound, there exists c > 1 independent of y ≥ 1 such that

sup
x≥ny

PX1
(X1 > x/n(‖A(n)‖ ∨ 1))

P(X1 > x)
≤ cnα+ǫ(‖A(n)‖α+ǫ ∨ 1).

It follows from (H4) that

I1(x) ≤ c
∞
∑

n=n0+1

P(N = n)nα+1+ǫ
E
[

(‖A(N)‖α+ǫ ∨ 1)|N = n
]

−→
n0→∞

0.

We focus now on I2(x). From Markov inequality, for any x > 0 and for any ǫ > 0, under (H0), there
exists a constant c > 0 such that

EA[P(N > (x/y ∨ n0))] ≤ EA

[

E[Nα+ǫ]

(x/y ∨ n0)α+ǫ

]

≤ cEA

[

1

(x/y ∨ n0)α+ǫ

]

.
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Moreover, we have

EA

[

sup
x≤n0y

P(N > (x/y ∨ n0))

P(X1 > x)

]

≤ c

(

EA

[

sup
x≤n0y

(x/y ∨ n0)
−α−ǫ

P(X1 > x)

]

+ EA

[

sup
x≥n0y

(x/y ∨ n0)
−α−ǫ

P(X1 > x)

])

≤ c

(

EA

[

n−α−ǫ
0

P(X1 > n0y)

]

+ EA

[

sup
x≥n0y

(y/x)α+ǫ

P(X1 > x)

])

Notice that that from (H4) the moments of order α + ǫ of ‖A‖ are finite and so E[yα+ǫ] < ∞. We
use again the Potter’s bound and, for a possibly different constant c > 0 (independent of y > 1) and
n0 sufficiently large, we obtain

I2(x) ≤ cEA

[

yα+ǫ
]

(

n−α−ǫ
0

P(X1 > n0)
+ sup

x≥n0

x−α−ǫ

P(X1 > x)

)

−→
n0→∞

0.

We finally obtain

lim
n0→∞

I(x) = 0

which concludes the proof. �

5.2. Proof of Proposition 6. We first state a lemma which can be seen as a generalization of a
well-known property for i.i.d. regularly varying r.v.’s with respect to the infinite norm ‖ · ‖∞, which
means that the maximum of a sequence satisfying (H1) is reached just by one coordinate. Note the
crucial role of the uniform asymptotic independence condition (H2) in the sequel.

Lemma 27. Let X(n) = (X1, X2, . . . , Xn) be a sequence of r.v.’s such that (H1)-(H2) hold and ‖ · ‖
satisfies (H3). Then,

lim
x→∞

P(||X(n)|| > x)

nP(X1 > x)
= 1,

for any fixed n ≥ 1.

Proof. We proceed by upper and lower bounding the quantity

A(x) =
P(||X(n)|| > x)− nP(X1 > x)

nP(X1 > x)
.

From Remark 23, under (H3), it is enough to investigate the lower (respectively the upper) bound
with respect to ‖ · ‖∞ (resp. ‖ · ‖1). For the lower bound, using the Bonferroni bound, for any fixed
n ≥ 1 and x > 0, we have

P(‖X(n)‖∞ > x) = P

(

n
⋃

i=1

Xi > x

)

≥ nP (Xi > x) −

n
∑

i=1,i6=j

P(Xi > x,Xj > x).

Then, from Lemma 25 and Remark 23, it follows that

A(x) ≥ −

n
∑

i=1,i6=j

P(Xi > x,Xj > x)

P(Xj > x)
−→
x→∞

0.

For the upper bound, let us consider ε such that 1
2 < ε < 1. Then, for all x > 0 and n ≥ 1,

P(‖X(n)‖1 > x) = P

(

n
∑

i=1

Xi > x

)

≤ P

(

n
⋃

i=1

Xi > εx

)

+ P





n
∑

i=1

Xi > x,

n
⋂

j=1

(Xj ≤ εx)





= A1(ε, x) +A2(ε, x).
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Using an union bound again and (H1), we obtain

lim sup
x→∞

A1(ε, x)
n
∑

i=1

P (Xi > x)
≤ lim sup

x→∞

n
∑

i=1

P (Xi > εx)

n
∑

i=1

P (Xi > x)
= ε−α.

Letting ε→ 1−, we obtain

lim sup
x→∞

A1(ε, x)
n
∑

i=1

P (Xi > x)
≤ 1

which implies that

lim sup
x→∞

P (‖X(n)‖1 > x) −

n
∑

i=1

P (Xi > x) ≤ lim sup
ε→1−

lim sup
x→∞

A2(ε, x).

On the other hand, we have

A2(ε, x) = P





n
∑

i=1

Xi > x,

n
⋂

j=1

(Xj ≤ εx), max
1≤k≤n

Xk >
x

n





≤

n
∑

k=1

P

(

n
∑

i=1

Xi > x, Xk ≤ εx, Xk >
x

n

)

≤
n
∑

k=1

P





n
∑

i=1,i6=k

Xi > (1− ε)x, Xk >
x

n





≤
n
∑

k=1

n
∑

i=1,i6=k

P

(

Xi >
(1− ε)x

n− 1
, Xk >

x

n

)

.

Besides, applying Lemma 25 with f(n) =
1− ε

n− 1
and g(n) =

x

n
, we obtain

lim sup
x→∞

A(x) ≤ lim sup
x→∞

A2(ε, x)
n
∑

i=1

P (Xi > x)
≤ lim sup

x→∞

n
∑

k=1

n
∑

i=1,i6=k

P

(

Xi >
(1−ε)x
n−1 , Xk >

x
n

)

n
∑

i=1

P (Xi > x)

≤ lim sup
x→∞

n
∑

k=1

n
∑

i=1,i6=k

P

(

Xi >
(1−ε)x
n−1 , Xk >

x
n

)

P (Xk > x)

= 0.

Collecting the bounds and using a sandwich argument leads to

lim
x→∞

A(x) = 0

for any fixed n ∈ N∗, which concludes the proof. �

Proof of Proposition 6. From Lemma 27, for every fixed n0 > 0, we have

n0
∑

n=1

P(N = n)
P(‖X(n)‖ > x)

P(X1 > x)
−→
x→∞

n0
∑

n=1

nP(N = n).
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Besides, under (H0)-(H3), takingA(n) = In, with In the identity matrix of size n×n, the assumptions
of Lemma 26 hold. Then, from Remark 23,

lim
n0→∞

sup
x>0

∞
∑

n=n0+1

P(N = n)
P(‖X(n)‖ > x)

P(X1 > x)
= 0,

for any norm ‖ · ‖ such that (H3) holds which insures the uniform integrability with respect to N .
Letting n0 → ∞ in the first expression concludes the proof. �

5.3. Proof of Proposition 7. Let X(n) = (X1, . . . , Xn) be a sequence such that (H1)-(H2) hold
and let ‖ · ‖ satisfying (H3). We need the following characterization.

(6) L

(

X(n)

‖X(n)‖
| ‖X(n)‖ > x

)

−→
x→∞

L(Θ(n)),

with Θ(n) which does not depend on the choice of the norm ‖ · ‖. Specifically P(Θ(n) = ej) = n−1

which is consistent with Remark 8. We did not find a proper reference of this simple result and
its proof follows: by asymptotical independence, the support of the spectral measure is concen-
trated on the canonical basis ∪n

j=1{ej} and the measure is fully characterized by the probability

pj = P(Θ(n) = ej) = P(Yj(n) ≥ 1) where Yj(n) = Θj(n)Y (n), 1 ≤ j ≤ n. By definition of Θ(n), we
also have P(Yj(n) ≥ 1) = limx→∞ P(Xj(n) ≥ x | ‖X(n)‖ ≥ x) = n−1 from Lemma 27.

Now, let X(N) = (X1, . . . , XN ) be a a sequence such that (H0-(H2) hold. We first need to prove
that for any norm || · || satisfying (H3),

lim
x→∞

P

(∣

∣

∣

∣

∣

∣

∣

∣

X(N)

||X(N)||
−Θ(N)

∣

∣

∣

∣

∣

∣

∣

∣

> ǫ | ||X(N)|| > x

)

= 0.

From (6), the Skorohod’s representation theorem and Lemma 27, it follows that for any fixed n ∈ N∗,
for any norm ‖ · ‖ such that (H3) holds and for any ǫ > 0, we have

lim
x→∞

P

(∣

∣

∣

∣

∣

∣

X(n)
||X(n)|| −Θ(n)

∣

∣

∣

∣

∣

∣ > ǫ , ||X(n)|| > x
)

nP(X1 > x)
= 0.

Then,

lim
x→∞

P

(∣

∣

∣

∣

∣

∣

X(n)
||X(n)|| −Θ(n)

∣

∣

∣

∣

∣

∣ > ǫ , ||X(n)|| > x
)

P(X1 > x)
= 0.

Moreover,

P

(∣

∣

∣

∣

∣

∣

X(n)
||X(n)|| −Θ(n)

∣

∣

∣

∣

∣

∣ > ǫ , ||X(n)|| > x
)

P(X1 > x)
≤

P(‖X(n)‖ > x)

P(X1 > x)
,

and the uniform integrability criteria holds, which leads to

lim
x→∞

∞
∑

n=1

P

(∣

∣

∣

∣

∣

∣

X(n)
||X(n)|| −Θ(n)

∣

∣

∣

∣

∣

∣ > ǫ , ||X(n)|| > x
)

P(X1 > x)
P(N = n) = 0.

Finally, thanks to Proposition 6 we know that ‖X(N)‖ is regularly varying, and for any ǫ > 0 we have

P

(∣

∣

∣

∣

∣

∣

∣

∣

X(N)

||X(N)||
−Θ(N)

∣

∣

∣

∣

∣

∣

∣

∣

> ǫ | ||X(N)|| > x

)

−→
x→∞

0.
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We can now proceed to the characterization of the spectral measure. For allX(N) = (X1, X2, · · · , XN) ∈
c‖·‖\{0}, we have

P
(

‖X(N)‖−1X(N) ∈ · | ‖X(N)‖ > x
)

=

∞
∑

n=1
P
(

‖X(N)‖−1X(N) ∈ · , ‖X(N)‖ > x | N = n
)

P(N = n)

∞
∑

n=1
P (‖X(N)‖ > x | N = n)P(N = n)

=

∞
∑

n=1
P
(

‖X(n)‖−1X(n) ∈ · , ‖X(n)‖ > x
)

P(N = n)

∞
∑

n=1
P (‖X(n)‖ > x)P(N = n)

=

∞
∑

n=1
P
(

‖X(n)‖−1X(n) ∈ · , ‖X(n)‖ > x
)

P(N = n) / P(X1 > x)

∞
∑

n=1
P (‖X(n)‖ > x)P(N = n) / P(X1 > x)

.

Then, from what preceeds and Lemma 27, we get for all j ≥ 1

P
(

‖X(N)‖−1X(N) = ej | ‖X(N)‖ > x
)

∼
x→∞

∞
∑

n=j

P(N = n)

∞
∑

n=1
nP(N = n)

∼
x→∞

P(N ≥ j)

E[N ]
,

and the desired result follows.

5.4. Proof of Theorem 10. From Proposition 9, for any fixed n0, we have

n0
∑

n=1

P(‖C(n)‖ > x)

P(X1 > x)
P(N = n) −→

x→∞

n0
∑

n=1

E

[

n
∑

k=1

‖Ak(n)‖
α
]

P(N = n).

From Lemma 26, the uniform integrability of P(‖C(n)‖ > x)/P(X1 > x) with respect to N holds, one
can let n0 tends to +∞ above which concludes the proof.

5.5. Proof of Theorem 11. Let us use a similar but slightly but more evolved reasoning to prove
Theorem 11. From Theorem 10, if we assume (H5), as the ai,j are not all identically null we have

(7) lim
x→∞

P(‖C(N)‖ > x)

P(X1 > x)
= E





N
∑

j=1

‖Aj(N)‖α



 > 0,

and then ‖C(N)‖ is regularly varying. It remains to prove the existence of the spectral measure. From
Proposition 6, we have

Px,n(·) = P(‖C(N)‖−1C(N) ∈ · | ‖C(N)‖ > x,N = n)

=
P(‖C(N)‖−1C(N) ∈ ·, ‖C(N)‖ > x,N = n)

P(‖C(N)‖ > x,N = n)

=
P(‖C(n)‖−1C(n) ∈ ·, ‖C(n)‖ > x)

P(X1 > x)

P(X1 > x)

P(‖C(n)‖ > x)
.

Consider n sufficiently large such that E[‖A(n)Θ(n)‖α] > 0. Applying the regular varying properties
stated in Proposition 9, we have

lim
x→∞

P(X1 > x)

P(‖C(n)‖ > x)
=

1

E[‖A(n)Θ(n)‖αn]
.
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Then,

lim
x→∞

Px,n(·) = lim
x→∞

P(‖A(n)X(n)‖−1A(n)X(n) ∈ ·, ‖A(n)X(n)‖ > x)

E[‖A(n)Θ(n)‖αn]P(X1 > x)

and, as X(n) is regularly varying we can apply the multivariate Breiman’s lemma to obtain

lim
x→∞

Px,n(·) =
E[‖A(n)Θ(n)‖αn11‖A(n)Θ(n)‖−1A(n)Θ(n)∈·]

E[‖A(n)Θ(n)‖αn]
=

E
[
∑n

k=1 ‖Ak(n)‖
α11‖Ak(n)‖−1Ak(n)∈·

]

E [
∑n

k=1 ‖Ak(N)‖α]
.

Now, for any norm ‖ · ‖ such that (H3) holds, we have

P
(

‖C(n)‖−1C(n) ∈ · | ‖C(n)‖ > x
)

≤
P(‖C(n)‖1 > x)

P(X1 > x)

and the uniform integrability condition of Lemma 26 is fulfilled which, combined with (7), leads to

P
(

‖C(N)‖−1C(N) ∈ · | ‖C(N)‖ > x
)

−→
x→∞

E

[

∑N
k=1 ‖Ak(N)‖α11‖Ak(N)‖−1Ak(N)∈·

]

E

[

∑N
k=1 ‖Ak(N)‖α

] .
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