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We consider the wave equation on a closed Riemannian manifold. We observe the restriction of the solutions to a measurable subset ω along a time interval [0, T ] with T > 0. It is well known that, if ω is open and if the pair (ω, T ) satisfies the Geometric Control Condition then an observability inequality is satisfied, comparing the total energy of solutions to their energy localized in ω × (0, T ). The observability constant C T (ω) is then defined as the infimum over the set of all nontrivial solutions of the wave equation of the ratio of localized energy of solutions over their total energy.

In this paper, we provide estimates of the observability constant based on a low/high frequency splitting procedure allowing us to derive general geometric conditions guaranteeing that the wave equation is observable on a measurable subset ω. We also establish that, as T → +∞, the ratio C T (ω)/T converges to the minimum of two quantities: the first one is of a spectral nature and involves the Laplacian eigenfunctions; the second one is of a geometric nature and involves the average time spent in ω by Riemannian geodesics.

Let (Ω, g) be a compact connected Riemannian manifold of dimension n without boundary. The canonical Riemannian volume on Ω is denoted by v g , inducing the canonical measure dv g . Measurable sets are considered with respect to the measure dv g .

Consider the wave equation

∂ tt y -△ g y = 0 in (0, T ) × Ω (1) 
where △ g stands for the usual Laplace-Beltrami operator on Ω for the metric g. Recall that the Sobolev space H 1 (Ω) as the completion of the vector space of C ∞ functions having a bounded gradient (for the Riemannian metric) in L 2 (Ω) for the norm given by u 2 H 1 = u 2 L 2 + ∇u 2 L 2 and that H -1 (Ω) is the dual space of H 1 (Ω) with respect to the pivot space L 2 (Ω).

For every set of initial data (y(0, •), ∂ t y(0, •)) ∈ L 2 (Ω) × H -1 (Ω), there exists a unique solution y ∈ C 0 (0, T ; L 2 (Ω)) ∩ C 1 (0, T ; H -1 (Ω)) of [START_REF] Bardos | Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary[END_REF].

Let T > 0 and let ω be an arbitrary measurable subset of Ω of positive measure. The notation χ ω stands for the characteristic function of ω, in other words the function equal to 1 on ω and 0 elsewhere. The observability constant in time T associated to [START_REF] Bardos | Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary[END_REF] is defined by C T (ω) = inf J ω T (y 0 , y 1 ) | (y 0 , y 1 ) ∈ L 2 (Ω) × H -1 (Ω) \ {(0, 0)} [START_REF] Burq | Condition nécessaire et suffisante pour la contrôlabilité exacte des ondes (French) [A necessary and sufficient condition for the exact controllability of the wave equation[END_REF] where J ω T (y 0 , y 1 ) = T 0 ω |y(t, x)| 2 dv g dt (y 0 , y 1 ) 2

L 2 ×H -1 . (3) 
In other words, C T (ω) is the largest possible nonnegative constant C such that C (y 0 , y 1 ) 2

L 2 ×H -1 T 0 ω |y(t, x)| 2 dv g (x) dt
for all (y 0 , y 1 ) ∈ L 2 (Ω) × H -1 (Ω) such that (y(0, •), ∂ t y(0, •)) = (y 0 , y 1 ). The equation ( 1) is said to be observable on ω in time T if C T (ω) > 0. Note that, by conservation of energy, we always have 0 C T (ω) T . It is well known that if ω is an open set then observability holds when the pair (ω, T ) satisfies the Geometric Control Condition in Ω (see [START_REF] Bardos | Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary[END_REF][START_REF] Burq | Condition nécessaire et suffisante pour la contrôlabilité exacte des ondes (French) [A necessary and sufficient condition for the exact controllability of the wave equation[END_REF][START_REF] Rauch | Exponential decay of solutions to hyperbolic equations in bounded domains[END_REF]), according to which every ray of geometric optics that propagates in Ω intersects ω within time T . This classical result will be slightly generalized to more general subsets ω within this paper. Let us also mention the recent article [START_REF] Laurent | Uniform observability estimates for linear waves[END_REF] where the authors provide sharp estimates of the observability constant at the minimal time at which unique continuation holds for the wave equation.

This article is devoted to establishing various properties of the observability constant. Our main results are stated in Section 2. We first show that, under appropriate assumptions on the observation domain ω, the limit of C T (ω)/T as T → +∞ exists, is finite and is written as the minimum of two quantities: the first one is a spectral quantity involving the eigenfunctions of -△ g and the second one is a geometric quantity involving the geodesics of Ω. We then provide a characterization of observability (Corollary 1) based on a low/high frequency splitting procedure (Theorem 1) showing how observability can be characterized in terms of high-frequency eigenmodes. In turn, our approach gives a new proof of results of [START_REF] Bardos | Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary[END_REF][START_REF] Rauch | Exponential decay of solutions to hyperbolic equations in bounded domains[END_REF] on observability. Finally, we investigate the case where there is a spectral gap assumption on the spectrum of -△ g .

Statement of the results

Let T > 0 and let ω be a measurable subset of Ω.

Let (φ j ) j∈N * be an arbitrary Hilbert basis of L2 (Ω) consisting of eigenfunctions of -△ g , associated with the real eigenvalues (λ

2 j ) j∈N * such that 0 < λ 1 λ 2 • • • λ j → +∞.
For every N ∈ N, we define

C >N T (ω) = inf{J ω T (y 0 , y 1 ) | y i , φ j (H i ) ′ ,H i = 0, ∀i = 0, 1, ∀j = 1, . . . , N (y 0 , y 1 ) ∈ L 2 (Ω) × H -1 (Ω) \ {(0, 0)}} (4)
with the convention that

H 0 = L 2 . Noting that C T (ω) C >N T (ω) C >N +1
T (ω) for every N ∈ N, we define the "high-frequency" observability constant as follows.

Definition 1 (high-frequency observability constant). The high-frequency observability constant α T (ω) is defined by

α T (ω) = lim N →+∞ 1 T C >N T (ω).
This limit exists since the mapping N ∋ N → C >N T (ω) is nondecreasing and is bounded1 . Definition 2 (Spectral quantity g 1 (ω)). The spectral quantity g 1 (ω) is defined by

g 1 (ω) = inf φ∈E ω |φ(x)| 2 dv g Ω |φ(x)| 2 dv g ,
where the infimum runs over the set E of all nonconstant eigenfunctions φ of -△ g .

Main results on the observability constant C T (ω)

Theorem 1. Given any T > 0 and any measurable subset ω ⊂ Ω, we have

C T (ω) T min 1 2 g 1 (ω), α T (ω) . Moreover, if C T (ω) T < α T (ω) then the infimum in the definition of C T is reached: there exists (y 0 , y 1 ) ∈ L 2 (Ω) × H -1 (Ω) \ {(0, 0)} such that C T (ω) T = J ω T (y 0 , y 1 ) > 0.
In what follows we are going to provide explicit estimates of α T (ω), thus yielding observability properties.

Corollary 1. We have C T (ω) > 0 if and only if α T (ω) > 0.

Note that this result is valid for any Lebesgue measurable subset ω of Ω and for any T > 0. Corollary 1 says that observability is a high-frequencies property, which was already known when inspecting the proofs of GCC in [START_REF] Bardos | Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary[END_REF][START_REF] Rousseau | Geometric control condition for the wave equation with a time-dependent domain[END_REF], but the above equivalence with the notion of high-frequency observability constant, was never stated like that, up to our knowledge. Besides, our objective is also to investigate what happens for measurable subsets ω that are not open.

Remark 1. The results established in [START_REF] Bardos | Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary[END_REF] are valid for manifolds having a nonempty boundary. Corollary 1 above is still true in this context but extending the results hereafter to such geometries would require a deeper study of α T (ω) on manifolds with boundary, which are beyond the scope of this paper As a consequence of our techniques of proof, which are based on a concentration-compactness argument, we get the following large-time asymptotics of the observability constant C T (ω).

Theorem 2 (Large-time observability). Given any T > 0 and any measurable subset ω ⊂ Ω, the limit

α ∞ (ω) = lim T →+∞ α T (ω)
exists and we have lim

T →+∞ C T (ω) T = min 1 2 g 1 (ω), α ∞ (ω) . (5) 
Moreover, if 1 2 g 1 (ω) < α ∞ (ω) then g 1 (ω) is reached, i.e., the infimum in the definition of g 1 (ω) is in fact a minimum.
Consequences of this result are given hereafter.

Characterization of the quantities α

T (ω) and α ∞ (ω)
In what follows, we say that γ is a ray if γ is a Riemannian geodesic traveling at speed one in Ω. We denote by Γ the set of all rays of Ω.

Definition 3 (Geometric quantity g 2 (ω)). We define

g T 2 (ω) = inf γ∈Γ 1 T T 0 χ ω (γ(t)) dt (6) 
and

g 2 (ω) = lim T →+∞ g T 2 (ω). ( 7 
)
The quantity g T 2 (ω) stands for the minimal average time spent by a geodesic γ in ω. Note that the mapping T → g T 2 (ω) is nonnegative, is bounded above by 1 and is subadditive. Hence the limit in the definition of g 2 (ω) is well defined.

In [START_REF] Hébrard | The geometric quantity in amortized wave equation on a square[END_REF], it has been shown how to compute the geometric quantity g 2 (ω) have been established in the case where Ω is a square, △ g the Dirichlet-Laplacian operator on Ω and ω ⊂ Ω is a finite union of squares.

Theorem 3 (Computation of α T (ω)). Given any T > 0 and any measurable subset ω ⊂ Ω, we have

1 2 g T 2 (ω) α T (ω) α T (ω) α T (ω) 1 2 g T 2 (ω).
Let γ be the support of a closed geodesic of Ω and set ω = Ω \ γ (open set). Then α T (ω) = 1 and g T 2 (ω) = 0. Hence, the estimate given by Theorem 3 is not sharp. Note however that, if ω is Jordan mesurable, i.e., if the Lebesgue measure of ∂ω = ω \ ω is zero, then it follows from the definition of C >N T that C >N T (ω) = C >N T (ω) for every N ∈ N. As a consequence, Theorem 3 can be improved in that case by noting that 1 2 g T 2 ( ω) α T (ω), under additional regularity assumptions on ω.

Corollary 2. If the measurable subset ω satisfies the regularity assumption

(H) g T 2 (Ω \ (ω \ ω)) = 1 then 2α T (ω) = g T 2 (ω) = g T 2 (ω) = g T 2 (ω).
Many measurable sets ω satisfy Assumption (H). Geometrically speaking, (H) stipulates that ω has no ray grazing2 ∂ω and sticking along it over a set of times of positive measure. As a consequence of Corollary 1, Corollary 2 and Theorem 3, one has the following simple characterization of observability.

Corollary 3. Let T > 0 and let ω ⊂ Ω be a Lebesgue measurable subset of Ω.

(i) If g T 2 (ω) > 0 then C T (ω) > 0. (ii) If C T (ω) > 0 then g T 2 (ω) > 0.
(iii) Assume that ω satisfies the regularity assumption (H). Then

g T 2 (ω) > 0 ⇔ C T (ω) > 0.
The first item above is already well known (see [START_REF] Bardos | Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary[END_REF][START_REF] Rauch | Exponential decay of solutions to hyperbolic equations in bounded domains[END_REF]): it says that, for ω open, GCC implies observability. Indeed, the condition g T 2 (ω) > 0 is exactly GCC for (ω, T ). As already mentioned, the article [START_REF] Bardos | Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary[END_REF] also deals with manifolds with boundary, which is not the case in this article. Recovering the boundary case by the method we present here would require a deeper study of the quantity α T (ω) that we do not perform here. We also mention [START_REF] Burq | Condition nécessaire et suffisante pour la contrôlabilité exacte des ondes (French) [A necessary and sufficient condition for the exact controllability of the wave equation[END_REF], where the authors prove that GCC is necessary and sufficient when replacing the characteristic function of ω by a continuous density function a in all quantities introduced above.

When there exist grazing rays sticking along ∂ω over a set of times of positive measure, the situation is more intricate. For instance, take Ω = S 2 , the unit sphere of R 3 , and take ω the open Northern hemisphere. Then, the equator is a trapped ray (i.e., it never meets ω) and is grazing ω. Therefore we have g T 2 (ω) = 0 for every T > 0, while C T (ω) = g 1 (ω) = g 1 (ω) = g T 2 (ω) = 1/2 for every T π (this follows immediately from computations done in [START_REF] Lebeau | Control for hyperbolic equations[END_REF]).

Note also that g 1 (ω) > 0 is not sufficient to guarantee that (1) is observable on ω. For instance, take Ω = T 2 , the 2D torus, in which we choose ω as being the union of four triangles, each of them being at an corner of the square and whose side length is 1/2. By construction, there are two trapped rays along x = 1/2 and y = 1/2 touching ω without crossing it over a positive duration. It follows that g T 2 (ω) = g 2 (ω) = C T (ω) = 0 for every T > 0. Moreover, simple computations show that g 1 (ω) > 0.

From Theorem 2 and Corollary 2, one gets the following asymptotic result.

Corollary 4. If the measurable subset ω satisfies (H) then lim

T →+∞ C T (ω) T = 1 2 min (g 1 (ω), g 2 (ω)) .
Remark 2. The above result echoes a result by G. Lebeau that we recall hereafter. In [START_REF] Lebeau | Equation des ondes amorties[END_REF], the author considers the damped wave equation

∂ tt y(t, x) -△ g y(t, x) + 2a(x)∂ t y(t, x) = 0 (8)
on a compact Riemannian manifold Ω with a C ∞ boundary, where the function a(•) is a smooth nonnegative function on Ω. Given any (y 0 , y 1 ) ∈ H 1 0 (Ω) × L 2 (Ω), for any t ∈ R we define

E (y 0 ,y 1 ) (t) = Ω (|∇y(t, x)| 2 + (∂ t y(t, x)) 2 ) dv g
the energy at time t of the unique solution y of (8) such that (y(0, •), ∂ t y(0, •)) = (y 0 , y 1 ). Let ω be any open set such that a χ ω almost everywhere in Ω. If (ω, T ) satisfies GCC then there exist τ > 0 and C > 0 such that E (y 0 ,y 1 ) (t) Ce -2τ t E (y 0 ,y 1 ) (0) [START_REF] Hébrard | The geometric quantity in amortized wave equation on a square[END_REF] for all (y 0 , y 1 ) ∈ H 1 0 (Ω)×L 2 (Ω) (see [START_REF] Bardos | Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary[END_REF][START_REF] Haraux | Une remarque sur la stabilisation de certains systèmes du deuxième ordre en temps[END_REF][START_REF] Lebeau | Equation des ondes amorties[END_REF]) and it is established in [START_REF] Lebeau | Equation des ondes amorties[END_REF]Theorem 2] that the smallest decay rate τ (a) such that ( 9) is satisfied is

τ (a) = min (-µ(A a ), g 2 (a))
where g 2 (a) is the geometric quantity defined by [START_REF] Haraux | Une remarque sur la stabilisation de certains systèmes du deuxième ordre en temps[END_REF] with χ ω replaced by a, and µ(A a ) is the spectral abscissa of the damped wave operator A a = 0 Id △ g -2a(•) Id .

Remark 3 (Probabilistic interpretation of the spectral quantity g 1 (ω)). The quantity g 1 (ω) can be interpreted as an averaged version of the observability constant C T (ω), where the infimum in ( 2) is now taken over random initial data. More precisely, let (β ν 1,j ) j∈N * and (β ν 2,j ) j∈N * be two sequences of Bernoulli random variables on a probability space (X , A, P) such that

• for m = 1, 2, β ν m,j = β ν m,k whenever λ j = λ k ,
• all random variables β ν m,j and β ν m ′ ,k , with (m, m ′ ) ∈ {1, 2} 2 , j and k such that λ j = λ k , are independent,

• there holds

P(β ν 1,j = ±1) = P(β ν 2,j = ±1) = 1 2 and E(β ν 1,j β ν 2,k ) = 0,
for every j and k in N * and every ν ∈ X .

Using the notation E for the expectation over the space X with respect to the probability measure P, we claim that T 2 g 1 (ω) is the largest nonnegative constant C for which

C (y 0 , y 1 ) 2 L 2 ×H -1 E T 0 Ω χ ω (x)|y ν (t, x)| 2 dv g dt for all (y 0 , y 1 ) ∈ L 2 (Ω) × H -1 (Ω)
, where y ν is defined by

y ν (t, x) = +∞ j=1 β ν 1,j a j e iλ j t + β ν 2,j b j e -iλ j t φ j (x),
where the coefficients a j and b j are defined by

a j = 1 2 Ω y 0 (x)φ j (x) dv g - i λ j Ω y 1 (x)φ j (x) dv g , b j = 1 2 Ω y 0 (x)φ j (x) dv g + i λ j Ω y 1 (x)φ j (x) dv g
for every j ∈ N * . In other words, y ν is the solution of the wave equation ( 1) associated with the random initial data y ν 0 (•) and y ν 1 (•) determined by their Fourier coefficients a ν j = β ν 1,j a j and b ν j = β ν 2,j b j . This largest constant is called randomized observability constant and has been defined in [START_REF] Privat | Optimal observability of the multi-dimensional wave and Schrödinger equations in quantum ergodic domains[END_REF]Section 2.3] and [START_REF] Privat | Optimal shape and location of sensors for parabolic equations with random initial data[END_REF]Section 2.1]. We also refer to [START_REF] Privat | Randomised observation, control and stabilisation of waves[END_REF] for another deterministic interpretation of T 2 g 1 (ω).

Remark 4 (Extension of Corollary 4 to manifolds with boundary.). One could expect that a similar asymptotic to the one stated in Corollary 4 holds for the Laplace-Beltrami operator on a manifold Ω such that ∂Ω = ∅, with homogeneous Dirichlet boundary conditions. For instance, in the 1D case Ω = (0, π), it is prove in [24, Lemma 1] by means of Fourier analysis that for every measurable set ω lim

T →+∞ C T (ω) T = inf j∈N * ω φ j (x) 2 dv g = g 1 (ω) with φ j (x) = 1 √ π sin(jx).
In higher dimension, the problem is more difficult because we are not able to compute explicitly α T (ω) (see the proof of Theorem 3 where we use the Egorov theorem).

Spectral gap and consequences

Theorem 4. Assume that the spectrum (λ j ) j∈N * satisfies the uniform gap property (UG) There exists γ > 0 such that if

λ j = λ k then |λ j -λ k | γ.
Then for every measurable subset ω of Ω we have

lim T →+∞ C T (ω) T = 1 2 g 1 (ω).
As a consequence, thanks with Theorems 2 and 3, under (U G) we have

g 1 (ω) g 2 (ω) (10) 
for every measurable subset ω of Ω. Note that, without spectral gap, such an inequality obviously does not hold true in general: take Ω the flat torus and ω a rectangle in the interior of Ω (see [START_REF] Privat | Optimal observability of the multi-dimensional wave and Schrödinger equations in quantum ergodic domains[END_REF][START_REF] Privat | Optimal shape and location of sensors for parabolic equations with random initial data[END_REF] for various examples).

Remark 5. Note that the spectral gap assumption (U G) is done for distinct eigenvalues: it does not preclude multiplicity. The assumption is satisfied for example for the sphere. Note that, under (U G), the geodesic flow must be periodic (see [START_REF] Guillemin | Lectures on spectral theory of elliptic operators[END_REF]), i.e., Ω is a Zoll manifold.

Remark 6 (Application of Theorem 4). Theorem 4 applies in particular to the following cases:

• The 1D torus T = R/(2π). The operator △ g = ∂ xx is defined on the subset of the functions of H 2 (T) having zero mean. All eigenvalues are of multiplicity 2 and are given by λ j = j for every j ∈ N * with eigenfunctions e 1 j (x) = 1 π sin(jx) and e 2 j (x) = 1 π cos(jx). The spectral gap is γ = 1 and we compute lim

T →+∞ C T (ω) T = 1 π inf j∈N * inf α∈[0,1] ω √ α sin(jx) + √ 1 -α cos(jx) 2 dx = 1 π   |ω| 2 -sup j∈N * ω sin(2jx) dx 2 + ω cos(2jx) dx 2  
• The unit sphere S n of R n+1 . The operator △ g is defined from the usual Laplacian operator on the Euclidean space R n+1 by the formula

△ g = r 2 △ R n+1 -∂ rr -n r ∂ r where r = x R n+1 for every x ∈ R n+1 . Its eigenvalues are λ k = k(k + n -1)
where k ∈ N. The multiplicity of λ k is k(k + n -1) and the space of eigenfunctions is the space of homogeneous harmonic polynomials3 of degree k. As a result, we compute lim

T →+∞ C T (ω) T = inf k∈N inf φ∈H k ω |φ(x)| 2 dx S n |φ(x)| 2 dx
, where H k is the space of homogeneous harmonic polynomials of degree k.

As a byproduct of Theorem 4, we recover a well known result on the existence of quantum limits supported by closed rays. Recall that a quantum limit for -△ g is a probability measure given as a weak limit (in the space of Radon measures) of the sequence of measures (φ j (x) 2 dx) j∈N * . Corollary 5. Under (U G), for any (closed) ray γ ∈ Γ there exists a quantum limit supported on γ. This is exactly one of the main results of [START_REF] Macià | Some remarks on quantum limits on Zoll manifolds[END_REF] which extends a result in [START_REF] Jakobson | Classical limits of eigenfunctions for some completely integrable systems[END_REF] on the sphere. As a consequence also noted in [START_REF] Macià | Some remarks on quantum limits on Zoll manifolds[END_REF], under the additional assumption that Ω is a Zoll manifold with maximally degenerate Laplacian, any measure invariant under the geodesic flow is a quantum limit. The converse is not true (see [START_REF] Macià | Concentration and non-concentration for the Schrödinger evolution on Zoll manifolds[END_REF]).

Proofs

This section is devoted to prove the results stated in the latter section. In the next paragraph, we establish many results which imply all the results stated in the Introduction. More precisely,

• Theorem 1 is a consequence of Lemma 1 and Theorem 2;

• Corollary 1 is proved in Section 3.9;

• Theorem 2 is proved in Section 3.7;

• Corollary 2 is a consequence of Proposition 1;

• Corollaries 3 and 4 follow from the above the results;

• Theorem 4 is proved in Section 3.8.

Preliminaries and notations

Let us set Λ = √ -△. Given any (y 0 , y 1 ) ∈ L 2 (Ω) × H -1 (Ω), standing for initial conditions for the wave equation, we set

y + = 1 2 (y 0 -iΛ -1 y 1 ) ∈ L 2 (Ω) and y -= 1 2 (y 0 + iΛ -1 y 1 ) ∈ L 2 (Ω). ( 11 
)
The mapping (y 0 , y

1 ) ∈ L 2 (Ω) × H -1 (Ω) → (y + , y -) ∈ L 2 (Ω) × L 2 (Ω) is an isomorphism, and (y 0 , y 1 ) 2 L 2 ×H -1 = 2( y + 2 L 2 + y -2 L 2
). The unique solution y of the wave equation ( 1) associated to the pair of initial data (y 0 , y 1 ) belongs to C 0 (0, T ; L 2 (Ω)) ∩ C 1 (0, T ; H -1 (Ω)) and writes y(t) = e itΛ y + + e -itΛ y -.

By definition, we have

C T (ω) = 1 2 inf y + 2 L 2 + y -2 L 2 =1 T 0 Ω χ ω (x) (e itΛ y + )(x) + (e -itΛ y -)(x) 2 dv g (x) dt.
Let a : M → R be any measurable nonnegative function. We denote (with a slight abuse of notation) by C T (a) the quantity

C T (a) = 1 2 inf y + 2 L 2 + y -2 L 2 =1 T 0 Ω a(x) (e itΛ y + )(x) + (e -itΛ y -)(x) 2 dv g (x) dt.
This way, one has

C T (ω) = C T (χ ω ).
We have

1 T T 0 Ω a|e itΛ y + + e -itΛ y -| 2 dv g dt = 1 T T 0
ae itΛ y + , e itΛ y + + ae -itΛ y -, e itΛ y -+ ae itΛ y + , e -itΛ y -+ ae -itΛ y -, e itΛ y + dv g dt

= 1 T T 0 e -itΛ ae itΛ y + , y + + 1 T T 0 e itΛ ae -itΛ dt y -, y - + 1 T T 0 e itΛ ae itΛ dt y + , y -+ 1 T T 0 e -itΛ ae -itΛ dt y -, y + (12) 
where

•, • is the scalar product in L 2 (Ω, v g ).
Here, a is considered as an operator by multiplication. This formula suggests to introduce the operators ĀT and BT defined by

ĀT (a) = 1 T T 0 e -itΛ ae itΛ dt and BT (a) = 1 T T 0 e itΛ ae itΛ dt, so that C T (a) = inf y + 2 L 2 + y -2 L 2 =1 J a T (y + , y -) (13) 
with

J a T (y + , y -) = 1 2
ĀT (a)y + , y + + Ā-T (a)y -, y -+ BT (a)y + , y -+ B-T (a)y -, y + .

Given any N ∈ N, we extend similarly the definition of C >N T (ω) by defining

C >N T (a) = inf{J a T (y 0 , y 1 ) | y i , φ j (H i ) ′ ,H i = 0, ∀i = 0, 1, ∀j = 1, . . . , N (y 0 , y 1 ) ∈ L 2 (Ω) × H -1 (Ω) \ {(0, 0)}} and α T (a) = lim N →+∞ 1 T C >N T (a).
In what follows, the index N means that we consider initial conditions involving eigenmodes of index larger than N . More precisely, if y ∈ H -1 (Ω), y N , φ j H -1 ,H 1 = 0 for every j N . The same reasoning as above to obtain (13) yields

J a T (y 0 , y 1 ) = 1 2 J a T (y + N , y - N ). ( 14 
)

Comments on Assumption (H)

Proposition 1. Under (H) we have g 2 (ω) = g 2 (ω).

Proof. Let ε > 0. Without loss of generality we assume that ω is open. By definition of the infimum in the definition of g T 2 (ω), for every ε > 0 there exists a ray γ ∈ Γ such that

g T 2 (ω) + ε 1 T T 0 χ ω (γ(t)) dt = 1 T T 0 χ ω (γ(t)) dt - 1 T T 0 χ ω\ω (γ(t)) dt = 1 T T 0 χ ω (γ(t)) dt + 1 T T 0 χ Ω\(ω\ω) (γ(t)) dt -1 g T 2 (ω) + g T 2 (Ω \ (ω \ ω)) -1 g T 2 (ω)
and thus g T 2 (ω) g T 2 (ω). The converse inequality is obvious.

Upper bound for C T

Lemma 1. For every Lebesgue measurable subset ω of M , one has

C T (ω) T min 1 2 g 1 (ω), α T (ω) .
Proof. By considering particular solutions of the form e itΛ φ j for a given j ∈ N * , we obtain C T (ω) T 1 2 g 1 (ω). Besides, we have C T (ω) C >N T (ω) and letting N tend to +∞, we get C T (ω) α T (ω).

The high-frequency observability constant α T

The quantity g T 2 has been defined for measurable subsets ω, but similarly to what has been done in Section 3.1, we extend its definition to arbitrary measurable nonnegative bounded functions a : M → R, by setting

g T 2 (a) = inf γ∈Γ 1 T T 0 a(γ(t)) dt.
With this notation, we have g T 2 (χ ω ) = g T 2 (ω), with a slight abuse of notation. Theorem 5. For every continuous nonnegative function a : M → R, we have

α T (a) = 1 2 g T 2 (a).
Proof. We first assume that the function a : M → R is smooth and thus can be considered as the symbol of an pseudo-differential Op(a) of order 0 corresponding to the multiplication by a. We have According to the Egorov theorem (see [START_REF] Egorov | The canonical transformations of a pseudo-differential operator[END_REF][START_REF] Zworski | Semiclassical Analysis[END_REF]), the pseudo-differential operators ĀT and Ā-T are of order 0 and their principal symbols are respectively Defining y + by ( 11) and y + N as in ( 14), we compute (as in ( 12))

1 T T 0 Ω a|e itΛ y + N + e -itΛ y - N | 2 dv g dt = ĀT (a)y + N , y + N + Ā-T (a)y - N , y - N + BT (a)y - N , y + N + B-T (a)y + N , y - N .
Considering for instance the first term at the right-hand side, we have 

| K T y + N , y + N | K T y + N L 2 y + N H -1 . It follows from (14) that 1 T C >N T (a) = 1 2 inf y + N 2 L 2 + y - N 2 L 2 =1 Op(ā T )y + N , y + N + Op(ā -T )y - N , y - N + o(1) as N → +∞.
Let us first prove that α T (a)

1 2 g T 2 (a)
. Denote by S * Ω the unit cotangent bundle over Ω. By definition, we have āT (x, ξ) g T 2 (a) for every (x, ξ) ∈ S * Ω (and similarly, ā-T (x, ξ) g T 2 (a)), and since the symbol āT is real and of order 0, it follows from the Gårding inequality (see [START_REF] Zworski | Semiclassical Analysis[END_REF]) that for every ε > 0 there exists

C ε > 0 such that Op(ā T )y + N , y + N (g T 2 (a) -ε) y + N 2 L 2 -C ε y + N 2 H -1/2
for every y + N ∈ L 2 (Ω) (actually, one can even take ε = 0 by using a positive quantization, for instance Op + ). Since the spectral expansion of y + N involves only modes with indices larger than N , we have

y + N 2 H -1/2 1 λ N y + N 2
L 2 and it follows that, when considering the infimum over all possible y ± N of L 2 norm equal to 1, all remainder terms provide a remainder term o(1) as N → +∞, uniformly with respect to y ± N . We conclude that C >N T (a) 1 2 g T 2 (a) + o(1), and thus α T (a) 1 2 g T 2 (a). Let us now prove that α T (a) 1 2 g T 2 (a). The idea is to choose some appropriate y + N ∈ L 2 (Ω), and y - N = 0, and to write that 1 T C >N T (a)

1 2 Op(ā T )y + N , y + N + o(1)
. The choice of an appropriate y + N is guided by the following lemma on coherent states. Lemma 2. Let x 0 ∈ R n , ξ 0 ∈ R n , and k ∈ N * . We define the coherent state

u k (x) = k π n 4 e ik(x-x 0 ).ξ 0 -k 2 x-x 0 2 .
Then u k L 2 = 1, and for every symbol a on R n of order 0, we have

µ k (a) = Op(a)u k , u k L 2 = a(x 0 , ξ 0 ) + o(1),
as k → +∞. In other words, (µ k ) k∈N converges in the sense of measures to δ (x 0 ,ξ 0 ) .

Admitting temporarily this (well known) lemma, we are going to define y + N as an approximation of u k , having only frequencies larger than N . Let (x 0 , ξ 0 ) ∈ S * M be a minimizer of āT , i.e., g T 2 (a) = min āT = āT (x 0 , ξ 0 ). We consider the above solution u k , defined on M in a local chart around (x 0 , ξ 0 ) (we multiply the above expression by a function of compact support taking the value 1 near (x 0 , ξ 0 ), and we adapt slightly the constant so that we still have

u k L 2 = 1). Note that Ω u k dv g = 2 n 2 π n 4 k n 4
. Now, we set

π N u k = N j=1 u k , φ j φ j = N j=1 Ω u k (x)φ j (x) dx φ j dv g (x).
By usual Sobolev estimates and by the Weyl law, there exists C > 0 such that φ j L ∞ (Ω) Cλ n 2 j and λ j ∼ j 2 n for every j ∈ N * , hence φ j L ∞ (Ω) Cj. We infer that

| u k , φ j | CN Ω |u k | C2 n 2 π n 4 N k n 4 dv g (x)
for every j N .

Let ε > 0 be arbitrary. Choosing k large enough so that C2

n 2 π n 4 N 2 k n 4 ε, we have π N u k L 2 ε.
We set

y + N = u k -π N u k . We have Op(ā T )y + N , y + N = Op(ā T )u k , u k ≃g T 2 (a) + Op(ā T )π N u k , π N u k ε 2 max āT -Op(ā T )π N u k , u k |•| ε max āT -Op(ā T )u k , π N u k |•| ε max āT
and the conclusion follows.

Proof of Lemma 2. This lemma can be found for instance in [30, Chapter 5, Example 1]. We include a proof for the sake of completeness. First of all, we compute 4 u k 2

L 2 = k π n 2 e -k 2 x-x 0 2 dx = 1. Now, by definition, we have Op(a)u k , u k L 2 = Op(a)u k (x)u k (x) dx = 1 (2π) n e i(x-y).ξ a(x, ξ)u k (y)u k (x) dx dy dξ = k n (2π) n
e ik(x-y).ξ a(x, ξ)u k (y)u k (x) dx dy dξ 4 Here, we use the fact that R n e -α x 2 dx = π by the change of variable ξ → kξ, and using the homogeneity of a. Then we get

Op(a)u k , u k L 2 = k 3n 2 2 n π 3n 2
a(x, ξ)e ik(x-y).ξ e ik(y-x).ξ 0 e -k 2 ( x-x 0 2 + y-x 0 2 ) dx dy dξ

= k 3n 2 2 n π 3n 2 a(x, ξ)e -k 2 x-x 0 2
e ik(x-y).ξ e ik(y-x).ξ 0 e -k 2 y-x 0 2 dy dx dξ.

Noting that F(e -α x 2 )(ξ) = π α n 2 e -ξ 2 4α
, we obtain e ik(x-y).ξ e ik(y-x).ξ 0 e -k 2 y-x 0 2 dy = e ik(x-x 0 ).(ξ-ξ 0 ) e -ik(y-x 0 ).(ξ-ξ 0 ) e -k 2 y-x 0 2 dy = e ik(x-x 0 ).(ξ-ξ 0 ) e -iky.(ξ-ξ 0 ) e -k 2 y 2 dy = e ik(x-x 0 ).(ξ-ξ 0 ) F(e

-k 2 y 2 )(k(ξ -ξ 0 )) = 2π k n 2 e ik(x-x 0 ).(ξ-ξ 0 ) e -k 2 ξ-ξ 0 2
and therefore,

Op(a)u k , u k L 2 = k n 2 n 2 π n a(x, ξ)e ik(x-x 0 ).(ξ-ξ 0 ) e -k 2 ( x-x 0 2 + ξ-ξ 0 2 ) dx dξ = k n 2 n 2 π n a(x 0 , ξ 0 ) e ik(x-x 0 ).(ξ-ξ 0 ) e -k 2 ( x-x 0 2 + ξ-ξ 0 2 ) dx dξ + o(1) = c n a(x 0 , ξ 0 ) + o(1)
as k → +∞. Moreover, taking a = 1 above, we see that c n = e ikx.ξ e -k 2 ( x 2 + ξ 2 ) dx dξ = 1. The lemma is proved.

It remains to extend the statement to the case where a is continuous only. It is obvious from the definitions of α T and g T 2 that if (a k ) k∈N is sequence of nonnegative smooth functions converging uniformly to a, then lim

k→+∞ α T (a k ) = α T (a) and lim k→+∞ g T 2 (a k ) = g 2 (a).
Indeed, this is a consequence of the two following facts:

• the supremum of 1 T T 0 Ω |a k -a|y 2 dv g dt over the set of all functions y satisfying y L 2 = 1 tends to 0 as k → +∞;

• the supremum of 1 T T 0 |a k -a|(γ(t))dt over the set of all rays γ tends to 0 as k → +∞.

The theorem is proved.

Remark 7. Note that e itΛ u k (or, accordingly, e itΛ (u kπ N u k )) is a half-wave Gaussian beam along the geodesic ϕ t (x 0 , ξ 0 ). Indeed, for any symbol of order 0, recalling that A t = e -itΛ Op(a)e itΛ has a t = a • ϕ t as principal symbol, we have Op(a)e itΛ u k , e itΛ u k = A t u k , u k = Op(a t )u k , u k + o(1) = a t (x 0 , ξ 0 )+o(1) (by Lemma 2), which means that e itΛ u k is microlocally concentrated around ϕ t (x 0 , ξ 0 ).

Proof of Theorem 3

Consider an increasing sequence (h k ) k∈N of continuous functions such that 0

h k 1 in Ω, h k (x) = 0 if dist(x, Ω \ ω) 1 k and h k (x) = 1 if dist(x, Ω \ ω) 2 k . Note that 0 h k h k+1 χ ω for every k ∈ N. Let us prove that g T 2 (ω) = lim k→+∞ g T 2 (h k ). ( 15 
)
The fact that g T 2 (ω) lim sup k→+∞ g T 2 (h k ) is obvious since χ ω h k for all k ∈ N. Consider a sequence of rays γ k : [0, T ] → Ω such that

g T 2 (h k ) 1 T T 0 h k (γ k (t)) dt + o(1) as k → +∞. ( 16 
)
The set of rays is compact since each ray is determined by it position x ∈ Ω at time 0 and its derivative at time 0 which lies on the unit cotangent bundle of Ω. Hence there exists γ : [0, T ] → Ω such that

γ k → γ uniformly on [0, T ]. For any t ∈ [0, T ], one has lim inf k→+∞ h k (γ k (t)) χ ω(γ(t)). Indeed, if γ(t) ∈ ω, then since ω is open, h k (γ k (t)) = 1 = χ ω(γ(t))
as soon as k is large enough. If γ(t) ∈ ω, the inequality is obvious since χ ω(γ(t)) = 0. By dominated convergence, we infer from ( 16) that

g T 2 (h k ) 1 T T 0 h k (γ k (t)) dt + o(1) 1 T 0 χ ω(γ(t)) dt + o(1) g T 2 (ω) + o(1) as k → +∞,
which proves [START_REF] Rousseau | Geometric control condition for the wave equation with a time-dependent domain[END_REF]. Using that the sequence (h k ) k∈N is increasing and since each h k is continuous, we obtain

1 2 g T 2 (ω) = lim k→+∞ 1 2 g T 2 (h k ) = lim k→+∞ α T (h k ) α T (ω) α T (ω) α T (ω).
To conclude the proof of Theorem 3, it remains to prove that

α T (ω) 1 2 g T 2 (ω). ( 17 
)
The proof of this inequality uses exactly the same reasoning as the one used to prove 1 2 g T 2 (ω) α T (ω). Indeed, we consider a decreasing sequence of continuous functions (h k ) k∈N converging pointwisely to χ ω, and therefore, we have α

T (ω) α T (h k ) = 1 2 g T 2 (h k ) and lim k→∞ g T 2 (h k ) = g T 2 (ω).
We conclude as previously that ( 17) is true.

Low frequencies compactness property

According to Lemma 1, one has 1 T C T (ω) min 1 2 g 1 (ω), α T (ω) .

Proposition 2. If 1 T C T (ω) < α T (ω) then C T (ω) is reached, i.e., the infimum defining C T (ω) is in fact a minimum. Proof. Let (Y k ) k∈N = (y + k , y - k ) k∈N ∈ (L 2 (Ω) × L 2 (Ω)) N be such that lim k→+∞ J χω T (Y k ) = C T (ω) T
where J χω T (y) is defined in Section 3.1 (see ( 13)) with y + k 2

L 2 + y + k 2
L 2 = 1 for every k ∈ N. Since the sequences (y ± k ) k∈N are bounded in L 2 , they converge weakly to an element y ± ∞ ∈ L 2 up to a subsequence. Therefore, we write

Y k = Y ∞ + Z k with Y ∞ = (y + ∞ , y - ∞ ) and Z k = (z + k , z - k ) such that Z k ⇀ 0 in L 2 (Ω) × L 2 (Ω). Note that we use the norm in L 2 × L 2 defined by (y, z) 2 = y 2 L 2 + z 2 L 2 .
With this notations, the weak convergence of Z k to 0 yields

1 = Y k 2 = Y ∞ 2 + Z k 2 + o(1) (18) 
and

J χω T (Y k ) = J χω T (Y ∞ ) + J χω T (Z k ) + o(1) (19) 
as k → +∞. To obtain [START_REF] Lin | Nodal sets of solutions of elliptic and parabolic equations[END_REF] we have used the fact that

A T (χ ω )z + k , y ∞ = z + k , A -T (χ ω )y ∞ converges to to 0 by weak convergence of z + k to 0 in L 2 .
All other crossed terms converge to 0 by using a similar argument.

Let N ∈ N * . We write

Z k = Z N k + Z >N k where Z N k
is the projection on eigenmodes j N . Since N is fixed, the weak convergence of Z k to 0 implies the strong convergence of Z N k to 0. Hence, using the same reasoning as above, we obtain 18) and ( 19), we get

Z k 2 = Z >N k 2 + o(1) and J χω T (Z k ) = J χω T (Z >N k ) + o(1) as k → +∞. Using (
C T (ω) T = lim k→+∞ J χω T (Y k ) = lim k→+∞ J χω T (Y ∞ ) + J χω T (Z >N k ) + o(1) Y ∞ 2 + Z >N k 2 + o(1)
.

Assume first that Y ∞ > 0. Then, by definition of C >N T (ω), and C T (ω), we obtain 5

J χω T (Y ∞ ) + J χω T (Z >N k ) + o(1) Y ∞ 2 + Z >N k 2 + o(1) J χω T (Y∞) Y∞ 2 Y ∞ 2 + C >N T (ω) T Z >N k 2 + o(1) Y ∞ 2 + Z >N k 2 + o(1) min J χω T (Y ∞ ) Y ∞ 2 , C >N T (ω) T + o(1).
and therefore C T (ω)

T min J χω T (Y∞) Y∞ 2 , C >N T (ω) T . Since N is arbitrary, it follows that C T (ω) T min J χω T (Y ∞ ) Y ∞ 2 , α T (ω) . Since C T (ω) T < α T (ω)
by assumption, we obtain

C T (ω) T J χω T (Y ∞ ) Y ∞ 2
and therefore C T (ω) T is reached. Assuming now that Y ∞ = 0, one necessarily has lim inf k→+∞ Z k > 0 according to [START_REF] Lebeau | Equation des ondes amorties[END_REF].

The same reasoning as above yields C T (ω)

T C >N T (ω) T
whenever N is large enough. It follows that

C T (ω) T α T (ω)
which is in contradiction with the assumptions. The conclusion follows. 

Large time asymptotics: proof of Theorem 2

According to Lemma 1, we have 1 T C T (ω) min 1 2 g 1 (ω), α T (ω) , and hence lim sup

T →+∞ C T (ω) T min 1 2 g 1 (ω), α ∞ (ω) .
Let us prove the converse inequality. Using the same notations as in the proof of Proposition 2, we consider a sequence (T k ) k∈N tending to +∞ and (Y k

) k∈N = (y + k , y - k ) k∈N ∈ (L 2 (Ω) × L 2 (Ω)) N a minimizing sequence for lim inf k→+∞ C T k (ω) T k i.e., a sequence such that lim k→+∞ J χω T k (Y k ) = lim inf k→+∞ C T k (ω) T k (20) 
and

Y k L 2 = 1. (21) 
We write

Y k = Y ∞ + Z k with Y ∞ = (y + ∞ , y - ∞ ) and Z k = (z + k , z - k ) such that Z k converges weakly to 0 in L 2 (Ω) × L 2 (Ω). Then 1 = Y k 2 = Y ∞ 2 + Z k 2 + o(1) (22) 
and

J ω T k (Y k ) = J ω T k (Y ∞ ) + J ω T k (Z k ) + o(1) (23) 
as k → +∞. To obtain [START_REF] Montgomery | Hilbert's inequality[END_REF] we have used the facts that Lemma 4. All crossed terms converge to 0 by using a similar argument.

A T k (χ ω )z + k , y ∞ = z + k , A -T k (χ ω )y ∞ converges to 0 by weak convergence of z + k to 0 in L 2 and that A -T k (χ ω ) converges in L 2 to A ∞ (χ ω ) according to
By Lemma 4 (see Section 3.10) and by definition of J ω T k , we get that

lim k→+∞ J ω T k (Y ∞ ) = Ā∞ y + ∞ , y + ∞ + Ā∞ y - ∞ , y - ∞ g 1 (ω) y + ∞ 2 L 2 + y - ∞ 2 L 2 g 1 (ω) Y ∞ 2 . ( 24 
)
Writing z k = e itΛ z + k + e -itΛ z - k , we have

J ω T k (Z k ) = 1 T k T k 0 ω |z k | 2 dv g dt. Let s > 0 and write [0, T ] = [0, s] ∪ [s, 2s] ∪ • • • ∪ [(m k -1)s, m k s] ∪ [m k s, T k ]
where m k is the integer part of T k /s. By using several times the inequality of Footnote 5, we obtain

J ω T k (Z k ) = m k -1 j=0 (j+1)s js ω |z k | 2 dv g dt + T k m k s ω |z k | 2 dv g dt T k m k -1 j=0 (j+1)s js ω |z k | 2 dv g dt T k = m k -1 j=0 (j+1)s js ω |z k | 2 dv g dt m k s + 1 T k - 1 m k s m k s 0 ω |z k | 2 dv g dt min 1 j m k (j+1)s js ω |z k | 2 dv g dt s + 1 T k - 1 m k s m k s 0 ω |z k | 2 dv g dt.
Using that 0 m k s -T k < s, that T k → +∞ and that

m k s 0 ω |z k | 2 dv g dt m k s 0 Ω |z k | 2 dv g dt = m k s Z k 2 (1 + Y ∞ 2 )m k s,
we get

J ω T k (Z k ) min 1 j m k J ω,s (z + k,j , z- k,j ) + o(1) with J ω,s (z + k,j , z- k,j ) = 1 s s 0 ω |z k,j | 2 dv g dt
where (z + k,j , zk,j ) is the initial condition associated to the solution z k,j : (t, x) → z k (t + js, x). Proceeding as in the proof of Proposition 2 and decomposing Zk,j = (z + k,j , zk,j ) in low/high frequencies as before, we get that, for any nonzero integer N ,

J ω,s (z + k,j , z- k,j ) C N s (ω) s Zk,j 2 + o(1).
Since the wave group is unitary, one has Zk,j 2 = Z k 2 and hence

J ω,s (z + k,j , z- k,j ) C N s (ω) s Z k 2 + o(1).
Combining these last facts with ( 21), ( 22), ( 23) and ( 24), we obtain

lim inf k→+∞ C T k (ω) T k g 1 (ω) Y ∞ 2 + C N s (ω) s Z k 2 + o(1) Y ∞ 2 + Z k 2 + o(1) min g 1 (ω), C N s (ω) s + o(1).
Since N is arbitrary, we obtain lim inf k→+∞ C T k (ω) T k min(g 1 (ω), α s (ω)), and since s is arbitrary, we conclude that

lim inf k→+∞ C T k (ω) T k min(g 1 (ω), α ∞ (ω)).
It remains to show the last claim of the theorem. Let us assume that g 1 (ω) < α ∞ (ω). Let us assume by contradiction that 1 2 g 1 (ω) is not reached. Then, there exists a subsequence (φ j k ) k∈N of eigenfunctions of -△ g normalized in L 2 (Ω) such that j k → +∞ and 1 2 g 1 (ω) = ω φ j k (x) 2 dv g + o(1) as k → +∞. Now, by definition of α ∞ (ω), by taking Y k = (φ j k , 0) as initial condition in the infimum defining C >N T (ω), we infer that 1 T C >N T (ω) J ω T (Y k ) provided that k be large enough. Passing to the limit with respect to N and T yields α ∞ (ω) 1 2 g 1 (ω), which is a contradiction.

Large time asymptotics under the condition (UG): proof of Theorem 4

The proof follows the same lines as the one of Theorem 3.7. Using the same notations, we have

lim k→+∞ J χω T k (Y k ) = lim inf k→+∞ C T k (ω) T k and 1 = Y k 2 = Y ∞ 2 + Z k 2 + o(1), J ω T k (Y k ) = J ω T k (Y ∞ ) + J ω T k (Z k ) + o(1)
, and moreover,

lim k→+∞ J ω T k (Y ∞ ) = Ā∞ y + ∞ , y + ∞ + Ā∞ y - ∞ , y - ∞ g 1 (ω) y + ∞ 2 L 2 + y - ∞ 2 L 2 g 1 (ω) Y ∞ 2 .
Using Lemma 5 (see Section 3.10), we infer that

lim k→+∞ J ω T k (Z k ) = Ā∞ z + k , z + k + Ā∞ z - k , z - k g 1 (ω) z + k 2 L 2 + z - k 2 L 2 g 1 (ω) Z k 2 ,
and thus

lim inf k→+∞ C T k (ω) T k g 1 (ω) Y ∞ 2 + g 1 (ω) Z k 2 + o(1) Y ∞ 2 + Z k 2 + o(1)
.

The conclusion follows.

Characterization of observability: proof of Corollary 1

We first observe that C T (ω) > 0 implies that α T (ω) > 0. Indeed, since C T (ω) C >N T (ω) for every N ∈ N * , it follows from the definition of α T that α T (ω) = 0 ⇒ C T (ω) = 0.

Let us prove the converse. Assume by contradiction that

α T (ω) > 0 and C T (ω) = 0. ( 25 
)
For any s > 0, let us denote by E s the vector space (sometimes called "space of invisible solutions") of initial data Y = (y + , y -) in L 2 (Ω) × L 2 (Ω) such that e y + e -itΛ y -vanishes identically on [0, s] × ω.

We claim that the following property holds true for every k ∈ N:

(H k ) For every ε > 0 there exists a non trivial Y k,ε = (y + kε , y - kε ) ∈ E T -ε involving only frequencies of index greater than k, i.e., such that Ω y ± k,ε (x)φ j (x) dv g (x) = 0, i = 0, 1, j = 1, . . . , k.

If k = 0 this property writes: there exists a non trivial solution Y 0,ε ∈ E T -ε .

Admitting this fact temporarily, if ε > 0 and N are fixed, Property (H N ) yields the existence of Y T,ε = (y + T ε , y - T ε ) ∈ E T -ε involving only frequencies of index higher than N such that e itΛ y + T,ε +e -itΛ y - T,ε vanishes identically on [0, Tε] × ω. Using Y T,ε as test functions in the functional J χω T , one infers that C >N T -ε (ω) = 0. Note that, without loss of generality, we may assume that Y T,ε = 1. Letting N tend to +∞ yields that α T -ε (ω) = 0. Finally, noting that for all (y + , y -) of norm 1, one has

J χω T -ε (y + , y -) -J χω T (y + , y -) ε T -ε ,
we infer that α T (ω) α T -ε (ω) + ε T -ε and thus α T (ω) = 0, whence the contradiction. Let us now prove by recurrence that Property (H k ) holds true for every k ∈ N under the assumption [START_REF] Privat | Optimal shape and location of sensors for parabolic equations with random initial data[END_REF]. Let us first prove that (H 0 ) is true. According to Theorem 1, the infimum defining C T (ω) in Definition ( 13) is reached by some Y = (y + , y -) such that e itΛ y + T,ε + e -itΛ y - T,ε vanishes identically on [0, T ] × ω. In other words, the dimension of E T is at least equal to 1, and this is also true for E T -ε for any ε since E T ⊂ E T -ε .

Assume now that (H k ) is true for some k ∈ N and let us show that (H k+1 ) is also true. Let ε > 0 and let Y = (y + , y -) ∈ E T -ε/2 satisfying Ω y ± (x)φ j (x) dv g (x) = 0, for all i = 0, 1, j = 1, . . . , k.

Define y(t, •) = e itΛ y + + e -itΛ y -. The crucial point is that for every s ∈ [0, ε/2], the function τ s (y) : (t, x) → y(t + s, x) belongs to E T -ε 2 -s which is contained in E T -ε . We now show the existence a Z = (z + , z -) such that the function z : (t, x) → e itΛ z + (x) + e -itΛ z -(x) [START_REF] Privat | Optimal observability of the multi-dimensional wave and Schrödinger equations in quantum ergodic domains[END_REF] which is a nonzero linear combination of functions (τ s (y)) s∈[0,ε/2] , satisfies the orthogonality condition

Ω z ± (x)φ j (x) dv g (x) = 0, i = 0, 1, j = 1, . . . k + 1.
expand the solution τ s (y) as

τ s (y)(t, •) = +∞ j=k+1 a j (s)e iλ j t + b j (s)e -iλ j t φ j (•)
where (a j (s)) j∈N * and (b j (s)) j∈N * belong to ℓ 2 (R). In particular, we have a j (s) = e isλ j a j (0) and b j (s) = e -isλ j b j (0).

If a k+1 (0) = b k+1 (0) = 0 then y belongs to E T -ε and involves only frequencies of index higher than k + 1 which shows that (H k+1 ) holds true. For this reason, we assume that a k+1 (s) = 0 or b k+1 (s) = 0. Hence, there exists j such that λ j > λ k+1 , and a j (0) = 0 or b j (0) = 0. Otherwise, the function y would be a nonzero multiple of an eigenfunction belonging to the eigenspace associated to the eigenvalue λ k and would vanish on ω: but this is impossible as soon as ω has a positive Lebesgue measure (see [START_REF] Donnelly | Nodal sets of eigenfunctions on Riemannian manifolds[END_REF][START_REF] Hardt | Nodal sets for solutions of elliptic equations[END_REF][START_REF] Lin | Nodal sets of solutions of elliptic and parabolic equations[END_REF]), which is the case since α T (ω) > 0. Hence, let us consider j > k such that λ j > λ k and a j (0) = 0 or b j (0) = 0. Since λ j > λ k , one can find 0 < s < s ′ ε/2 such that the vectors (1, e iλ k s , e iλ k s ′ ) and (1, e iλ j s , e iλ j s ′ ) are linearly independent. In other words, there exist real numbers c 0 , c s , c s ′ such that

c 0 + c s e iλ k s + c s ′ e iλ k s ′ = 0 (27) 
and c 0 + c s e iλ j s + c s ′ e iλ j s ′ = 0.

Then z = c 0 y + c s y s + c s ′ y s ′ is the desired solution. Indeed, writing it as in [START_REF] Privat | Optimal observability of the multi-dimensional wave and Schrödinger equations in quantum ergodic domains[END_REF], we obtain Z ∈ E T -ε and moreover z = 0 by [START_REF] Rauch | Exponential decay of solutions to hyperbolic equations in bounded domains[END_REF]. Finally, z involves only frequencies of index larger than k + 1 by [START_REF] Privat | Randomised observation, control and stabilisation of waves[END_REF]. This shows (H k+1 ).

Convergence properties for ĀT and BT

In this section, we establish some convergence properties as T → ∞ for the operators ĀT (a) and BT (a) introduced in Section 3.1. We recall that (λ j ) j 1 denotes the sequence of eigenvalues of Λ = -△ g counted with multiplicity and that (φ j ) j 1 is an orthonormal L 2 -basis of eigenfunctions of -△ g such that φ j is associated to λ 2 j . Now, let P j be the L 2 -projector defined by P j y = y, φ j φ j . Throughout this section, let a be a bounded nonnegative measurable function, considered as an operator by multiplication. Lemma 3. We have ĀT (a) = j,l 0 f T (λ jλ l )P j aP l and BT (a) = j,l 0 f T (λ jλ l )P j aP l where f T (x) =

e iT x -1 iT x if x = 0; 1 if x = 0. . Proof. Let y ∈ L 2 (Ω).
We set y j = y, φ j so that y = j y j φ j . We have

ĀT (ω)y = j ĀT (a)y, φ j φ j = j l 1 T T 0 e it(λ j -λ l ) dty j Ω aφ j φ l dv g φ l and 1 
T T 0 e it(λ j -λ l ) dt = T (λ jλ l ). A similar reasoning is done for BT (a). f T (λ jλ l )y j Ω a(x)φ j φ l dv g (x) + r N .

If λ j = λ l then f T (λ jλ l ) → 0 as T → ±∞, and if λ j = λ l then f T (λ jλ l ) = 1. Therefore the limit of the finite sum above is equal to y l Ω a(x)φ 2 l dv g (x). Let us prove that r N is arbitrarily small if N is large enough.

Setting y N = j>N y j φ j (high-frequency truncature) and considering C > 0 such that a C a.e. in Ω, we have since e itΛ is an isometry in L 2 (Ω). Therefore r N = o(1) as N → +∞.

We have proved that ĀT (a)y, φ l → y l Ω φ 2 l dv g (x) as T → ±∞ and then (29) is true. It follows that ĀT (a)y ⇀ Ā∞ (a)y for the weak topology of L 2 (Ω).

Let us now write y = y N + y N with y N = j N y j φ j and y N = j>N y j φ j . By compactness for lower than or equal to N , we have ĀT (a)y N → Ā∞ (a)y N for the strong topology of L 2 (Ω). Besides, noting that ĀT (a)

1, we have ĀT (a)y N y N , and since y N can be made arbitrarily small by taking N large, the result follows.

The same argument allows to prove that BT (a)y tends to 0 when T → ±∞. The same statement holds true with jk replaced with j + k. A generalization by Montgomery and Vaughan in [START_REF] Montgomery | Hilbert's inequality[END_REF] states that, given λ 1 < • • • < λ j < • • • with λ j+1λ j δ > 0 for every j (uniform gap), one has

j =k a j bk λ j -λ k 2 π 2 δ 2 +∞ j=1 |a j | 2 +∞ j=1 |b j | 2
∀(a j ) j∈N , (b j ) j∈N ∈ ℓ 2 (C).

Concluding remarks and perspectives

We provide here a list of open problems and issues.

Manifolds with boundary. The introduction of the so-called high-frequency observability constant α T (ω) is of interest because of the equivalence C T (ω) > 0 ⇔ α T (ω) > 0 stated in Corollary 1. It is still true on a manifold with boundary. But then extending Theorem 3 and Corollary 3 to manifolds with boundary raises difficulties.

Schrödinger equation. It is known that GCC implies internal observability of the Schrödinger equation (see [START_REF] Lebeau | Contrôle de l'equation de Schrödinger[END_REF]), but this sufficient condition is not sharp (see [START_REF] Jaffard | Contrôle interne exact des vibrations d'une plaque rectangulaire[END_REF]). Until now a necessary and sufficient condition for observability is still not known (see [START_REF] Laurent | Internal control of the Schrödinger equation[END_REF]). We think that some of the approaches developed in this paper, combined with microlocal issues, may serve to address this problem.

Shape optimization. A challenging problem is to maximize the functional ω → C T (ω) over the set of all possible measurable subsets of Ω of measure |ω| = L|Ω| for some fixed L ∈ (0, 1). In [START_REF] Privat | Optimal observation of the one-dimensional wave equation[END_REF][START_REF] Privat | Optimal observability of the multi-dimensional wave and Schrödinger equations in quantum ergodic domains[END_REF], the maximization of the randomized observability constant has been considered, that is, the functional ω → g 1 (om). Maximizing the functional ω → g 2 (ω) is an interesting open problem which, thanks to Corollary 4, would be a step towards the maximization of the deterministic observability constant.
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ĀTeT 0 e

 0 -itΛ Op(a)e itΛ dt and BT (a) = 1 T itΛ Op(a)e itΛ dt.

aeT 0 e

 0 • ϕ -t dt, where (ϕ t ) t∈R is the Riemannian geodesic flow. Besides, itΛ Op(a)e itΛ dt and B-T (a) = 1 T -itΛ Op(a)e -itΛ dt are pseudo-differential operators of order -1 and hence are compact (see [3, Section 3.1]).

ĀTe

  -itΛ Op(a)e itΛ dt y + N , y + N = Op(ā T )y + N , y + N + K T y + N , y + N where K T is a pseudo-differential operator of order -1 (depending on a) and thus

α n 2 .

 2 

5

  Here, we use ththe inequality a+b c+d min a c , b d for any positive real numbers a, b, c and d.

Lemma 4 .

 4 For every y = j P j y = j y j φ j ∈ L 2 (Ω), we have ĀT (a)y = 1 T T 0 e -itΛ ae itΛ dt y -→ In other words, the operator ĀT (a) (resp. BT (a)) converges pointwisely to a diagonal operator (resp. 0) in L 2 (Ω) as T → ±∞.Proof. Let l be a fixed integer. We first show that limT →±∞ A T (a)y, φ l = A ∞ (a)y, φ l(29)Let N ∈ N. Settingr N = j>N y j T T 0 e it(λ j -λ l ) dt Ω aφ j φ l dv g ∈ C,we have ĀT (a)y, φ l = j N

eT 0 e itΛ y N 2 L 2 dt 1 / 2 = y N 2 L 2

 01222 itλ j y j φ j (x)e -itλ l φ l (x) dv g (x) dt = 1 T T 0 Ω a(x)(e itΛ y N )(x)e -itl φ l (x) dv g (x) dt C T T 0 Ω |(e itΛ y N )(x)||φ l (x)| dv g (x) dt 1 T

Lemma 5 . 2 T|b j | 2 ∀

 522 Under (U G), ĀT (a) converges uniformly (i.e., in operator norm) to Ā∞ (a) as T → ±∞.Proof. It suffices to prove that limT →+∞ sup j |y j | 2 = l |z l | 2 =1 j =l f T (λ jλ l ) aφ j , φ l y l z l = 0. Since |f T (λ jλ l )| |λ j -λ l | , we have j =l f T (λ jλ j ) aφ j , φ l y j z l | 2 T j =l |y j ||z l | |λ jλ l | C T ,as a consequence of Montgomery-Vaughan's inequality (recalled below) and where C > 0 is independent of (y j ) j∈N , (z l ) l∈N , (φ j ) j∈N , (φ l ) l∈N . The result follows.The well known Hilbert inequality states that (a j ) j∈N , (b j ) j∈N ∈ ℓ 2 (C).

This follows by conservation of the energy [0, T ] ∋ t → ∂ty(t, •)

L 2 (Ω) + ∇y(t, •) 2 L 2 (Ω)for any solution y of (1).

Recall that a ray γ ∈ Γ is grazing ∂ω at time t if γ(t) is tangent to ∂ω.

It is standard that an orthogonal basis of spherical harmonics can be explicitly constructed in terms of Legendre function of the first kind, the Euler's Gamma function and the hypergeometric function (see e.g.[START_REF] Higuchi | Symmetric tensor spherical harmonics on the N-sphere and their application to the de Sitter group SO(N, 1)[END_REF]).