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Abstract

In this article, we propose a deep neural network (DNN) architecture called
Input Output Deep Architecture (IODA) for solving the problem of image la-
beling. IODA directly links a whole image to a whole label map, assigning a
label to each pixel using a single neural network forward step. Instead of de-
signing a handcrafted a priori model on labels (such as an atlas in the medical
domain), we propose to automatically learn the dependencies between labels.
The originality of IODA is to transpose DNN input pre-training trick to the
output space, in order to learn a high level representation of labels. It allows a
fast image labeling inside a fully neural network framework, without the need
of any preprocessing such as feature designing or output coding.

In this article, IODA is applied on both a toy texture problem and a real-
world medical image dataset, showing promising results. We provide an open
source implementation of IODA12.

Keywords: Deep learning architectures, deep neural network, image labeling,
machine learning, medical imaging, sarcopenia

1. Introduction

When dealing with a huge amount of images, the classical computer vision
problems can be either i) assigning a class to an image, known as the image
classification problem; ii) partitioning an image into non-overlapping regions,
known as the image segmentation problem; or iii) assigning a class or a label to
each pixel of an image, known as the image labeling problem (sometimes called
semantic segmentation). This last problem have received a lot of attention
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during the last years, with important needs in the analysis of medical images,
natural scenes or document images.

Depending on the application domain, an image labeling problem can be very
challenging. It has to deal with a lot of variability, especially when tackling a
real-world domain such as medical images or natural scenes labeling. Other
difficulties may also include poor quality images or a large number of classes.

One can oppose two kinds of approaches for image labeling: dedicated ap-
proaches and learning-based approaches. Dedicated approaches often rely on a
priori models of the images and/or of the labels. These models can be either
handcrafted, unsupervisely learned, or statistically computed on a database. In
opposition, learning-based approaches directly estimate a decision function that
links pixels to their labels by exploiting a labeled image database. It makes the
system more versatile, at the expense of an offline supervised learning procedure.

In many difficult application domains, dedicated methods are still the state-
of-the-art methods, using strong priors on the data. It is the case in medical
imaging, where 2D models (atlas) are generally fitted on the new data in order
to label its pixels [1, 2, 3, 4]. However, recent advances in machine learning and
computer vision make the learning-based approaches more and more accurate,
and we believe that they will be able to outperform dedicated methods when
they are able to efficiently handle the a priori knowledge on the data.

The Input/Output Deep Architecture (IODA) is an original learning-based
approach for image labeling that relies on deep neural network architectures.
It directly links a whole image to a whole label map, assigning a label to each
pixel using a unique neural network forward. Instead of designing a handcrafted
a priori model on labels, we propose to automatically learn the dependencies
between labels. The originality of IODA is to transpose DNN pre-training input
trick to outputs, in order to learn a high level representation of labels. We apply
it on a medical imaging labeling problem on which we outperfom the state-of-
the-art method achieved by a dedicated approach based on an a registration on
an a priori model [5].

The article is organised as follows: section 2 is dedicated to a review of ex-
isting learning-based approaches for image labeling tasks. In section 3 we recall
the principles of neural networks and deep architectures, and we describe our
IODA approach for image segmentation and labeling. The method is evaluated
on a toy problem in section 4, and on a real-world medical image segmentation
problem in section 5.

2. Related works on image labeling methods

From a machine learning point of view, the image labeling process is seen as
a classification process, trying to find the best function f over a labeled image
dataset, that minimizes the criterion J = L(Y, f(X)), L being a loss function,
and the domain of f is given by



f : X = {x}n×m → Y = {y}n×m (1)

Xn×m → Yn×m

where n ×m is the image size, x ∈ X are features extracted from a pixel, and
y ∈ Y is the label of the corresponding pixel. For example, one can consider
the raw pixels of a greyscale image as input (X = R), the raw pixels of a color
image (X = R3), or a set of p features extracted from the neighbourhood of
the current pixel (X = Rp). For this latter example, the domain of f becomes
Rp×n×m → Yn×m.

In the literature, one can oppose two kinds of approach for learning-based
image labeling methods:

• performing a local, independent labeling of the pixels of an image, through
the distribution p(y|x)

• performing a global image labeling method at the image level, through
the distribution p(Y |X)

We now describe these two kinds of approaches.

2.1. Independent pixel labeling approaches

A first straightforward method for performing image labeling using a learning
approach is to perform pixel labeling using a suitable feature set (textures, color,
etc.) and a classifier [6, 7] that learns the local dependencies p(y|x). Features
are generally computed on the neighbourhood of the current pixel. Thus only
local decisions are taken and the global function f is not sought.

Moreover, as the pixel classification stage does not output homogeneous re-
gions, these methods are often followed by a post processing segmentation stage
whose aim is to reconstruct smoothed label map based on a local decision [8, 9]
Nevertheless, these sequential classification-then-segmentation approaches do
not modelize the whole input distribution p(X), nor the whole output distribu-
tion p(Y ).

As shape and label areas are strongly dependent, the pixel classification and
the area segmentation should be performed together. Therefore, local pixel
labeling approaches appear sub-optimal. This is related to the famous segmen-
tation/recognition issue (also known as Sayre’s paradox) saying that an object
cannot be recognized before being segmented, but cannot be segmented before
being recognized.

2.2. Global image labeling approaches

In the general pattern recognition domain, the segmentation/recognition is-
sue is classically circumvented using global approaches taking a whole segmen-
tation and recognition decision.

In this kind of approaches, the global function f is estimated. Unlike the
independent pixel labeling approaches, we expect from the learning process to



model the input and output distributions, p(X) and p(Y ). State-of-the-art
learning methods for image labeling are 2D-probabilistic approaches extended
from 1D method such as Hidden Markov Model (HMM) and Conditionnal Ran-
dom Field (CRF). Structured output SVM approaches has also been explored
for sequence labeling.

In the HMM framework, the joint probability p(X,Y ) is modeled, implying
the (false) assumption that observations X are independent [10]. The CRF over-
come this problem by modeling the conditional probability p(Y |X) instead of
p(X,Y ) [11]. Probabilistic methods have proven to be effective on 1D sequences
with numerous applications such as information extraction in text, handwrit-
ing and voice recognition, or even 1D-signal segmentation. These methods have
been adapted to 2D-signals through either Markov Random Field (MRF) [12, 13]
or 2D-CRF [14, 15, 9], but they both suffer from a time consuming and sub-
optimal decoding process such as HCF or ICM [16, 17]. Indeed, one has to search
for the best path among the huge number of possible paths in the observation
trellis which dramatically increases with the signal and output size.

In structured output SVM approaches [18] and kernel dependency estima-
tion [19], a kernel joint projection evaluates the co-occurrence probability of
an observation X and a label Y . Although these approaches can theoretically
handle complex output spaces, the inference problem of finding the best label
sequence knowing the model is a hard problem. It prevents the approach from
tackling problems where the dimension of the sequence is large, as it is the case
for image segmentation.

In this paper, we assume that other machine learning methods such as neural
network are able to perform a global image segmentation and labeling task,
modeling the underlying problem of estimating p(Y |X).

Estimating p(y|X), even if X has a great dimension, can be achieved through
Deep Neural Network (DNN) using unsupervised pre-training or regularized
learning process, through the modelization of p(X). The learning of p(X) can
be performed either independently [20, 21] or jointly [22, 23] to the learning
of p(y|X). These approaches have shown to be efficient on numerous problems
such as natural language processing [24], speech recognition [25] or handwriting
recognition [26].

In this work, we propose to address directly the image labeling problem,
that is the estimation of p(Y |X). Our key idea is to extend the DNN input pre-
training and adapt it to the output pre-training, providing the label distribution
p(Y ).

While input pre-training has given to neural networks the ability to deal
with high dimensional input space, we assume that output pre-training allows
neural networks to deal with high dimensional output space.

The next section is dedicated to a recall on neural networks, before presenting
our approach.



Figure 1: The IODA architecture. It directly links the pixel matrix to the label matrix. The
input layers (left, light) are pre-trained to provide a high level representation of the pixels,
while the output layers (right, dark) are pre-trained to learn the a priori knowledge of the
problem.

3. Input/Ouput Deep Architecture (IODA)

For the image labeling task, we choose a global approach where a Deep Neu-
ral Network (DNN), a kind of Feedforward Artificial Neural Network (FANN),
is used as the global decision function f .

The FANN architecture is a common artificial neural network topology used
for supervised learning. In this architecture, information is processed by a se-
quence of computational layers. At decision step, information always flows from
input to output, without any feedback. A FANN can be composed of 1, 2 or
many layers [27]. In order to model all continuous functions on compact sub-
sets of Rn or logical function like XOR, at least 2 computational layers must
be involved. A FANN with 2 or more layers is called a Multi-Layer Perceptron
(MLP). A MLP with more or far more than 2 layers can also be called a Deep
Neural Network (DNN). DNN are typically used in image problems like charac-
ter recognition [28]. A MLP is usually learned by an algorithm called gradient
back-propagation, that cleverly performs a gradient descent through the layers.

Nevertheless, the deepest layers of a DNN are hardly trained by this tech-
nique. To help the learning of a DNN, an unsupervised pre-training is performed
on deepest layers, through the use of auto-encoders (AE) which learn feature
distribution [20, 21, 29, 30, 31].

In Input Output Deep Architecture (IODA), we propose to use the pre-
training trick with AE not only for the input space but also for the output space,
in order to learn the labels distribution as well as the features distribution. The
global architecture of IODA is presented in Figure 1.



3.1. Notations and building blocks

In this section, we present the notations that will be used in this work. Then
we discuss how to build a DNN using the input pre-training trick with AE, and
eventually how to build a IODA with the same principle adapted to the output
space.

In the preceding section, the input was a two-dimensional image matrix X
and the output a label map Y . In this section, we will consider that input and
output are one-dimensional flatten versions of the data, respectively an input
vector x and a label vector y.

3.1.1. Baseline Multi Layer Perceptron

We denote :

• a layer, the unit of computational operations,

• a representation, the unit of data.

Within this framework, the smallest MLP with universal approximation
property has 2 layers (an input layer and an output layer), whereas this very
same MLP has 3 representations (an input, a hidden and an output represen-
tations).

Let us consider a MLP of N layers. Each of the N + 1 representations is
denoted rl with l ∈ [0 . . . N ]. r0 is the input representation, i.e. the features x,
and rN the output representation, i.e. the estimated labels ŷ.

Each layer l performs the following operation at forward step,

rl = fl(Wl × rl−1 + bl) (2)

where rl−1 and rl are respectively the input and the output of the layer l, Wl a
matrix representing a linear transformation corresponding to neuron weights, bl

a vector of offsets corresponding to neuron biases, and fl a non-linear differen-
tiable transformation corresponding to neuron activation function. If rl−1 ∈ Rm

and rl ∈ Rn, then Wl is in Rn×m and bl in Rn. The lower the index l of a
representation rl or of a layer (fl,Wl,bl) is, the deeper it is. At the opposite
the greater the index is, the higher the representation or the layer is. Figure 2
sums up the adopted notations on a 2-layer perceptron.

This is a gradient machine, i.e. the criterion (e.g. squared error, negative log
likelihood, cross entropy . . . ) that is used to train the machine is differentiable
according to its parameters. Thus the machine can be trained by gradient
descent. In MLP, parameters are modified layer by layer backward from the
output layer to the input layer. This is the so-called gradient back-propagation
algorithm.

3.1.2. Auto-Encoder

An Auto-Encoder (AE) consists in a 2-layer MLP (see Figure 3). It tries to
recover its input x at its output x̂ [32].



r0

r1

r2

y

r1 = f1(W1 × r0 + b1)

r2 = f2(W2 × r1 + b2)

r0 ⇐ x

ŷ⇐ r2

Figure 2: A 2-layer perceptron with adopted notation, input x, output ŷ and target y

The first layer applies a transformation from the input space Rm to a hid-
den space Rn, the second layer inverts this transformation, i.e. does a back-
projection in the original input space. When m < n the first layer performs a
compression of the data, and the second layer a decompression. The first layer
is called encoding layer, the last layer is called decoding layer.

We denote the linear transformations (U ∈ Rn×m, a ∈ Rn) and (V ∈ Rm×n,
c ∈ Rm), and the non-linear transformations g and h, for the encoding layer and
for the decoding layer respectively. The compressed or encoded representation
at the output of the encoding layer is noted e and conversely the decompressed
or decoded output representation of the decoding layer is noted d. Obviously,
the input representation x and the decoded representation d have the same
size m.

An AE is learned through the back-propagation algorithm with x as input
and as target, and V = Uᵀ at initialization. Noise or transformations can be
applied to x solely at the input to increase its generalization power.

At decision, when you give an example xk to an AE it estimates the example
itself x̂k. If xk and x̂k are similar, xk is likely to happen according to the
training set X ; if xk and x̂k are dissimilar, xk is not likely to come from the
same phenomenon that gives the training set X : that is the modeling of p(x).

x

e = g(U× x + a)

d = h(V × e + c)

x

x̂⇐ d

Figure 3: A 2-layer auto-encoder, input x, output x̂ and target x



3.2. DNN extension and Input/Ouput Deep Architecture (IODA)

In DNN, the deepest layers are used to transform the input space into a
simpler yet more suitable space for the supervised task. Nevertheless, back-
propagation is not efficient to train these deepest layers from random initialized
parameters.

To prevent the DNN to fall into a local minimum far from a good solution, a
smart initialization of the parameters is undertaken. This pre-training strategy
consists in learning auto-encoders in an unsupervised way and stacking only
their first layer to built a DNN with the desired architecture. Thereafter, the
DNN is trained with a standard back-propagation supervised learning. In this
way, the pre-training enables the first layers of the DNN to build a smarter
representation of the input space to simplify the supervised task.

In order to address high dimensional but correlated output space, such as
label map in image labeling problem, we propose to use the same AE trick as
for DNN this time not only on the input space but also on the output space.
AE are learned backward from the targets, in order to learn their distribution
over the output space p(y). The aim is to simplify the final supervised task
by reducing the output representation. We call this architecture Input/Ouput
Deep Architecture (IODA).

To sum up, the IODA training involves:

• an unsupervised pre-training of the input layers,

• an unsupervised pre-training of the output layers, which is specific to
IODA,

• a final standard back-propagation supervised learning.

Figure 4 displays the whole process on a 5-layer MLP.

3.2.1. Pre-training of input layers

Input pre-training with AEs occurs forward from the deepest layer. At each
step, the encoding part of AEs are kept aside to initialize the final IODA.

Figure 4(a) shows the pre-training of the two first (deepest) layers of a 5-
layer IODA. We note m the size of the input representation of the IODA, n the
size of the first hidden representation and o the size of the second one.

For the first step of the input pre-training (Figure 4(a) left), an auto-encoder
is trained with back-propagation on the input representation of the IODA. The
size of the input representation and of encoded representation in this AE should
be respectively m and n to mimics the final IODA. Thus if W1 of the IODA
is in Rn×m then U1 of the auto-encoder must be in Rn×m. Moreover, the non
linear transformation g1 of AE should be the same as f1 the first non-linear
transformation of the IODA.

After the training of the AE, the linear transformation (U1 ,a1) of the en-
coding layer is kept aside to initialize the first layer of the IODA. Furthermore,
the encoded representation e1 of all the training examples is also kept in order
to feed the second step.



For the second step of the pre-training (Figure 4(a) right), we repeat the
latter operation for the second layer of the IODA. An other auto-encoder is
trained with back-propagation on e1 the encoded representation from the first
auto-encoder. This time, the size of the input representation and of encoded
representation in the AE should be respectively n and o; and the non-linear
transformation g2 be the same as f2.

At the end of that step, the linear transformation (U2, a2) of the encoding
layer is kept aside to initialize the second layer of the IODA.

Stacking more AE can be repeated if more input layers than in the given
example are involved.

Eventually, input layers of desired final IODA is initialized by the weights
computed on this input pre-training step (Fig 4(c)),

• W1 ← U1, b1 ← a1, for the first layer,

• W2 ← U2, b2 ← a2, for the second layer.

3.2.2. Pre-training of output layers specific to IODA

Operations are the same than in the latter input pre-training with two excep-
tions: they are undertaken backward from the highest layer and the parameters
kept aside for the initialization of the final IODA are from the decoding part of
AEs.

Figure 4(b) shows the pre-training of the two last (highest) layers of a 5-layer
IODA.

A first pre-training step (Fig 4(b) left) is done with an auto-encoder on the
label vector y. The second linear transformation V5 of the AE should have the
same shape as W5, the last linear transformation of the IODA. Furthermore,
the second non-linear transformation h5 of the AE should be the same as f5 ,
the last non-linear transformation of the IODA.

Let’s be careful, this time it is the parameters of the second layer of the
AE, i.e. the decoding layer, which are kept contrary to the standard DNN pre-
training. Thus, after training the AE, the linear transformation (V5, c5) is saved
to initialize the last layer of the IODA. Moreover, e5 the encoded representation
for all the training examples is kept in order to feed the next step.

A second pre-training step (Fig 4(b) right) is done with an other auto-
encoder on e5. The second non-linear transformation h4 of this AE should be
the same as the penultimate non-linear transformation f4 of the IODA, as well
as the shape of its second linear transformation V4 should be the same shape
as W4 the penultimate linear transformation of the IODA.

At the end of that step, the linear transformation (V4, c4) of the decoding
layer is kept aside to initialize the penultimate layer of the DNN.

As for the input pre-training, these operations can be repeated and more
AEs stacked if the architecture consists in more output layers.



Eventually output layers of the desired IODA are initialized by the weights
computed on precedent pre-training steps:

• W4 ← V4, b4 ← c4, for the penultimate layer,

• W5 ← V5, b5 ← c5, for the last layer.

3.2.3. Final supervised training

After pre-trainings of input layers and output layers, a standard back-propagation
is undertaken with target y (Fig 4(c)) on the whole MLP.

Let note that in the 5-layer architecture given as an example it exists a
link layer, the layer number 3, between the input layers and output layers. It
is not pre-trained and thus it has randomized parameters before the last back-
propagation. A slightly different approach may supervisedly train this link layer
before doing a last full back-propagation at a risk of over-fitting.

3.2.4. IODA training algorithm

The algorithm 1 describes the whole learning procedure for training a IODA.
We assume the existence of these two functions:

• X ′ ←MLPForward([W1, ..,WK ],X) that propagates X through layers
[W1, ..,WK ],

• [W′
1, ..,W

′
K ]←MLPTrain([W1, ..,WK ],X,Y ) that trains layers [W1, ..,WK ]

using back-propagation algorithm according to a labeled dataset (X,Y ).

With this notation an AE is trained by [U,V]←MLPTrain([W,Wᵀ],X,Y )
where .ᵀ denotes the transposition. Then we can drop V if we want to keep the
encoding part only, or drop U if we want to keep the decoding part.

For the sake of clarity, hyperparameters such as non-linear function of each
layer does not appear in the algorithm, and all the parameters of a layer i (the
linear transformation W and the bias b) are gathered into the generic variable
Wi.



Algorithm 1 Simplified IODA training algorithm

Input: X, a training feature set of size Nbexamples ×Nbfeatures
Input: Y , a corresponding training label set of size Nbexamples ×Nblabels
Input: Ninput, the number of input layers to be pre-trained
Input: Noutput, the number of output layers to be pre-trained
Input: N , the number of layers in the IODA, Ninput +Noutput < N
Output: [W1,W2, . . . ,WN ], the parameters for all the layers

Randomly initialize [W1,W2, . . . ,WN ]

Input pre-training

R← X
for i← 1..Ninput do
{Training an AE on R and keeps its encoding parameters}
[Wi,Wdummy]←MLPTrain([Wi,W

ᵀ
i ], R,R)

Drop Wdummy

R←MLPForward([Wi], R)
end for

Output pre-training

R← Y
for i← N..N −Noutput + 1 step − 1 do
{Training an AE on R and keeps its decoding parameters}
[U,Wi]←MLPTrain([Wᵀ

i ,Wi], R,R)
R←MLPForward([U], R)
Drop U

end for

Final supervised learning

[W1,W2, . . . ,WN ]←MLPTrain([W1,W2, . . . ,WN ], X, Y )



x

e1 = g1(U1 × x + a1)

d1 = h1(V1 × e1 + c1)

x

x̂⇐ d2

U1, a1, e1

e1

e2 = g2(U2 × e1 + a2)

d2 = h2(V2 × e2 + c2)

e1

ê1 ⇐ d2

U2, a2

(a) Input pre-training. Left : Learning of the first AE, input x, output x̂, target x and
g1 ← f1. Right : Learning of the second AE, input e1 which is the encoded representation
the first AE, output ê1, target e1 and g2 ← f2.

y

e5 = g5(U5 × y + a5)

d5 = h5(V5 × e5 + c5)

y

ŷ⇐ d5

V5, c5

e5

e5

e4 = g4(U4 × e5 + a4)

d4 = h4(V4 × e4 + c4)

e5

ê5 ⇐ d4

V4, c4

(b) Output pre-training Left : Learning of the first AE, input y, output ŷ, target y and
h5 ← f5. Right : Learning of the second AE, input e5 which is encoded representation of
the first AE, output ê5, target e5 and h4 ← f4.

y

r1 = f1(W1 × r0 + b1)

r2 = f2(W2 × r1 + b2)

r3 = f3(W3 × r2 + b3)

r4 = f4(W4 × r3 + b4)

r5 = f5(W5 × r4 + b5)

r0 ⇐ x

ŷ⇐ r5

U1 →W1, a1 → b1

U2 →W2, a2 → b2

V4 →W4, c4 → b4

V5 →W5, c5 → b5

(c) Final IODA, with pre-computed initial weights, input x,
output ŷ and target y

Figure 4: Pre-trainings and training of a 5-layer IODA



4. Texture recognition experiments

We developed a Python library, named Crino, based on the Theano library[33].
It allows to build and train neural networks with a modular architecture, in-
cluding IODA. Crino is available online34 and is free to use for further research.

To demonstrate the validity of our proposition, we have performed experi-
ments on a toy image dataset. We first describe the dataset, then the different
experimental setups. We finally present and discuss the results we have ob-
tained.

4.1. Toy dataset

We have generated a toy image dataset for a texture recognition task. The
input examples are artificial images composed of two textures, taken from the
Brodatz texture archive 5. The background is taken from Texture 77, on top
of which is drawn the foreground with Texture 17. The foreground consists in
the portion of a disk included between two concentric circles whose center and
radii are variable (randomly chosen for each sample). The labels are binary
images denoting the class of the pixels, 0’s are for the background pixels and 1’s
are for the foreground pixels. All images are 128 × 128 pixels, and inputs are
normalized between 0 and 1. Our training and validation sets are composed of
500 images each. Two examples of the validation set are shown on Figure 5.

On this kind of images, the internal dependencies among the label structures
are very high, and therefore constitutes a suitable problem for evaluating the
IODA abilities. A better representation of the output space should be available
and pre-training on output should improve the results of this supervised task.

4.2. Experimental setup

For this toy problem, we have built using Crino a 3-layer, 4-layer and 5-layer
neural networks with a MSE criterion. For all of them, the size of the input and
output representations is 128× 128.

For 3-layer architectures, we have tested four hidden representation geome-
tries: (256,256), (512,512), (1024,1024) and (2048,2048) neurons. Input pre-
training has been performed from 0 to 2 layers, and output pre-training from
0 to 2 layers also. Let us emphasise that the total number of pre-trainings can
not exceed 2 since at least one layer must be free of autoencoding pre-training.
Finally, 4 × 6 setups have been trained and evaluated. Setups that share the
same number of hidden neurons starts with the same initialisation weights. The
results are gathered in Table 1.

For 4-layer architectures, the same procedure has been applied. Four hidden
representation geometries have been evaluated: (256,128,256), (512,256,512),
(1024,512,1024) and (2048,1024,2048) neurons. Input and output pre-trainings

3http://mloss.org/software/view/562/
4https://github.com/jlerouge/crino
5http://www.ux.uis.no/~tranden/brodatz.html

http://mloss.org/software/view/562/
https://github.com/jlerouge/crino
http://www.ux.uis.no/~tranden/brodatz.html
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vary each from 0 to 3 layers, with a total number of 3 pre-trainings. The 4× 10
setups results are presented in table 2.

For 5-layer architectures, four hidden representation geometries have been
evaluated: (256,128,128,256), (512,256,256,512), (1024,512,512,1024) and (2048,-
1024,1024,2048). Only some pre-training configurations have been tested, in-
cluding the most successful strategies within 3 and 4 layers architectures (please
refer to the next subsection).

If the setup contains at least one input pre-trained layer and one output
pre-trained layer, it falls into our proposed IODA framework.

4.3. Parameterization

For each autoencoder, the weights are randomly initialized according to the
work of [34] in order to perform a faster convergence of the gradient backprop-

agation algorithm. It uses a uniform distribution U(−l, l), where l =
√

6
mn and

where m and n are respectively the input and the output sizes of the autoen-
coder. The biases are initially null.

For input and output pre-trainings, auto-encoders are trained with a batch
gradient descent of 100 images, controlled by a validation set in order to min-
imize error while avoiding overfitting. Input pre-training has therefore been
stopped after 300 iterations, while only 100 iterations were enough for output
pre-training since a strong overfit appeared around 200 iterations. The final su-
pervised learning is also performed with a batch gradient descent. As we have
500 training examples, it means that the parameters are updated five times per
iteration.

We have chosen an adaptive learning rate, i.e. that is varying at each it-
eration. Our strategy consists in increasing the learning rate after some fixed
number of consecutive iterations that improves the learning criterion. In case
of a degradation, we keep decreasing the learning rate until it provides a better



value of the criterion in comparison to the previous iteration. The initial value
of the learning rate is 10 (same value for all the architectures).

4.4. First qualitative results

For a first qualitative result, we propose to focus on a given geometry with
three different pre-training strategies. The considered geometry has 3 layers
and 256 units in each hidden representations. We call these three strategies are
NDA, IDA and IODA :

NDA - DNN without pre-training : No pre-training is done at all, solely
a supervised learning with standard back-propagation is achieved.

IDA - DNN with input pre-training : The input layer is pre-trained using
an auto-encoder on the input data. Then a supervised fine tuning is
achieved.

IODA - DNN with input and output pre-training : The input and out-
put layers are pre-trained using respectively an auto-encoder on the input
data and an auto-encoder on the output data. A supervised fine tuning is
then achieved.

Figure 6 shows the output of each architecture for the first example shown
in Figure 5, after an increasing number of supervised iterations (pre-training
has already been performed). As one can see, the best results are achieved with
the input and output pre-trained architecture (IODA), while input pre-trained
architecture (IDA) outperforms the non pre-trained architecture (NDA). One
can also observe that the global output structure has already been learned by
IODA after only 10 supervised learning iterations. It shows that the IODA
strategy is much more efficient than the IDA strategy, as it speeds up the su-
pervised learning. Finally, after a significant number of iterations, IODA is able
to locate more accurately the texture change.

4.5. Quantitative results

Tables 1 and 2 shows a quantitative evaluation over the whole test dataset
(500 images), using all the setups defined above. Several comments can be made
out of these experiments.

First, one can observe that the results are strongly dependent from the setup.
The pre-training strategies seems to have more influence on the results than the
number of layer and the number of hidden units. One can notice that 3-layer
or 4-layer architectures lead to very close performance. Globally, input pre-
trained setups are ranked first. Among them, IODA setups, i.e. with at least
one pre-trained input layer and one pre-trained output layer, achieve the best
results. This demonstrates the interest of our approach. Moreover, setups with
pre-trained output layers only do not guarantee good results.

The results of 5 layer architectures are globally worse than those of 3 and
4 layer architectures and for this reason not entirely reported in this article.
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Figure 6: Evolution of the output image of the architecture according to the number of batch
gradient descent iterations for the three learning strategies, using the validation example #10.

Among them, the best result is achieved using 3 pre-trained input and 1 pre-
trained output, with the (2048,1024,1024,2048) geometry. It leads to a MSE of
4.42e− 2 over the test dataset (vs. 3.48e− 02 for the best 3-layer architecture).
The behaviour with respect to the geometry and the pre-training configurations
follows those of the 3 and 4 layer architecture.

In the next section, we propose the application of IODA to a real-world
problem.

5. Application to a medical imaging problem

In this section, we apply the IODA architecture to a real-world problem
which consists of labeling each pixel of scanner images into 2 classes. We com-
pare the results of our approach with the state-of-the-art method for this chal-
lenging task.

5.1. Medical image segmentation task

The real-world problem addressed in this section consists in estimating the
sarcopenia level, based on the scanner image labeling which is usually manu-
ally performed. Sarcopenia (loss of skeletal muscle mass) is of interest in the
medical research field because this data could predict the prognosis of multi-
ple cancers[35, 36]. Sarcopenia is assessed by manually segmenting the skeletal
muscles on Computer Tomography (CT) scan slices taken at the third lumbar
vertebra (L3) level.

This task is very time-consuming since the overall segmentation process take
in average 4 minutes per patient for an experimented physician. Therefore, there



Table 1: Experiments on toy data set for a 3-layer architecture with different hidden sizes and
pre-training setups, sorted by ascending test error. Test errors provided by IODA are in bold.

Architecture Train error Test error

X r1 r2 Ŷ
1282 2048 2048 1282 2.64e-02 3.48e-02
1282 1024 1024 1282 3.11e-02 3.91e-02
1282 512 512 1282 3.26e-02 4.10e-02
1282 2048 2048 1282 3.86e-02 4.59e-02
1282 256 256 1282 4.05e-02 4.85e-02
1282 1024 1024 1282 4.44e-02 5.13e-02
1282 512 512 1282 4.81e-02 5.50e-02
1282 2048 2048 1282 5.20e-02 5.75e-02
1282 256 256 1282 6.16e-02 6.75e-02
1282 1024 1024 1282 6.29e-02 6.77e-02
1282 2048 2048 1282 6.30e-02 6.79e-02
1282 1024 1024 1282 7.09e-02 7.55e-02
1282 512 512 1282 7.13e-02 7.60e-02
1282 256 256 1282 7.52e-02 7.98e-02
1282 512 512 1282 8.03e-02 8.48e-02
1282 256 256 1282 8.31e-02 8.75e-02
1282 2048 2048 1282 8.86e-02 9.37e-02
1282 2048 2048 1282 9.03e-02 9.40e-02
1282 1024 1024 1282 9.60e-02 1.01e-01
1282 1024 1024 1282 1.03e-01 1.06e-01
1282 512 512 1282 1.06e-01 1.10e-01
1282 256 256 1282 1.25e-01 1.28e-01
1282 512 512 1282 1.26e-01 1.28e-01
1282 256 256 1282 1.41e-01 1.41e-01

: input pre-training, : no pre-training, : output pre-training.



Table 2: Experiments on toy data set for a 4-layer architecture with different hidden sizes and
pre-training setups, sorted by ascending test error. Test errors provided by IODA are in bold.

Architecture Train criterion Test criterion

X r1 r2 r3 Ŷ
1282 2048 1024 2048 1282 2.74e-02 3.62e-02
1282 2048 1024 2048 1282 2.95e-02 3.75e-02
1282 1024 512 1024 1282 3.59e-02 4.44e-02
1282 1024 512 1024 1282 3.70e-02 4.47e-02
1282 512 256 512 1282 3.45e-02 4.52e-02
1282 1024 512 1024 1282 3.52e-02 4.53e-02
1282 2048 1024 2048 1282 3.91e-02 4.85e-02
1282 512 256 512 1282 4.24e-02 5.00e-02
1282 512 256 512 1282 4.36e-02 5.21e-02
1282 256 128 256 1282 4.18e-02 5.23e-02
1282 2048 1024 2048 1282 4.64e-02 5.33e-02
1282 256 128 256 1282 4.59e-02 5.36e-02
1282 256 128 256 1282 4.76e-02 5.68e-02
1282 1024 512 1024 1282 5.07e-02 5.75e-02
1282 512 256 512 1282 5.34e-02 6.02e-02
1282 2048 1024 2048 1282 6.01e-02 6.50e-02
1282 2048 1024 2048 1282 6.37e-02 6.85e-02
1282 2048 1024 2048 1282 6.23e-02 6.96e-02
1282 1024 512 1024 1282 6.82e-02 7.28e-02
1282 512 256 512 1282 6.60e-02 7.39e-02
1282 256 128 256 1282 6.95e-02 7.50e-02
1282 1024 512 1024 1282 7.10e-02 7.74e-02
1282 2048 1024 2048 1282 7.72e-02 8.14e-02
1282 512 256 512 1282 7.84e-02 8.27e-02
1282 1024 512 1024 1282 7.94e-02 8.37e-02
1282 256 128 256 1282 8.02e-02 8.48e-02
1282 512 256 512 1282 8.37e-02 8.80e-02
1282 256 128 256 1282 8.52e-02 8.98e-02
1282 2048 1024 2048 1282 8.70e-02 9.23e-02
1282 1024 512 1024 1282 9.08e-02 9.42e-02
1282 512 256 512 1282 9.28e-02 9.63e-02
1282 256 128 256 1282 1.07e-01 1.10e-01
1282 1024 512 1024 1282 1.06e-01 1.12e-01
1282 2048 1024 2048 1282 1.12e-01 1.15e-01
1282 256 128 256 1282 1.11e-01 1.15e-01
1282 512 256 512 1282 1.16e-01 1.20e-01
1282 256 128 256 1282 1.33e-01 1.37e-01
1282 1024 512 1024 1282 1.41e-01 1.41e-01
1282 512 256 512 1282 1.41e-01 1.41e-01
1282 256 128 256 1282 1.41e-01 1.41e-01

: input pre-training, : no pre-training, : output pre-training.



is a real need in automating the pixel labeling into two classes: skeletal muscle
or not.

It is particularly challenging owing to numerous difficulties. More precisely,
the method has to handle :

• The variability in the patients population:

– the intrinsic variability in the anatomy of the patients, due to their
variable genders, ages, morphologies (thin/fat) and medical states
(healthy/ill) which modify significantly the shapes and the textures
of the muscular, organic and fat tissues;

– the variable organ positions : for example, kidney and liver can be
present, partially or totally absent of the L3 slice;

– the greyscale distribution overlap between muscle and internal or-
gans.

• The variability of the images:

– the variable quality of reconstructed CT images, due to the variable
dose of radiations received by the patients during the CT acquisition
(low dose / high dose);

– the variable quantity of contrast agent that enhances the perfused
tissues appearance;

– the variable slice thickness (from submillimetric to 5mm);

– the variable reconstruction filter used to reconstruct the images;

Figure 7 shows several images and their label. We believe that a machine
learning approach could efficiently learn the intrinsic variability of this image
labeling problem. For that, we dispose of a labeled dataset described thereafter.

5.2. Dataset and evaluation metrics

Our dataset consisted of 128 512×512 CT 16bit gray-level images. Each im-
age has been manually labeled at the pixel level by a senior radiologist. Among
them, 40 images come from lymphoma patients, the 88 others from breast can-
cer patients. As said previously, the database is composed of a wide variability
of morphology, contrast and SNR between images.

We evaluated the proposed IODA automatic segmentation in comparison
with the manual segmentation, and also with a referenced method[5] proposed
by Chung et al briefly described below. In order to evaluate and compare their
performance, the Jaccard index was used to measure the overlap between IODA
(respectively Chung’s) segmentation and the manual segmentation. We also
provide the area relative difference (denoted as Diff.) metric which measures
the rate of over/under-segmentation.

We now describe the Chung’s dedicated method for skeletal muscle segmen-
tation.



Figure 7: Examples of scanner images with their labeling below. Let us emphasize the mor-
phology and image quality variability.

5.3. Reference automatic method

To the best of our knowledge, the only automated method for skeletal muscle
segmentation at L3 was proposed by Chung et al. [5]. The method is based
on standard shape prior coupled with an appearance model. The shape prior
consists in computing the mean muscle shape on a labeled dataset, while the
appearance model consists in estimating the probability distributions of both
classes with a kernel density estimation method (Parzen window). In the de-
cision process, the image is first filtered by thresholding the appearance model
probability density. The final muscle segmentation is performed by an affine
registration followed by a Free Form Deformation (FFD) based on a non-rigid
registration. We reimplemented this method, since the original code is not avail-
able. The MATLAB toolbox MIRT6 has been used for the non-rigid registration
performed by FFD.

The next subsection describes the application of IODA to the L3 skeleton
muscle image labeling.

5.4. Application and setting of IODA for CT image labeling

The IODA architecture maps the 512 × 512 input greyscale images into a
512× 512 label matrix. We have ignored the large parts of the CT images that
are non informative (black areas) for every image of the dataset. It leads to

6https://sites.google.com/site/myronenko/research/mirt



smaller 311 × 457-sized images around the patient body. This crop allows to
reduce significantly the size of the architecture. Moreover, each training and
test images are rigidly registered to a CT slice reference in order to reduce their
size, shape and position variabilities.

For the task of learning the input and output dependencies, we have turned
toward the use of 3-layer network with a MSE criterion, leading to 4 represen-
tations :

• one 311× 457-sized input representation,

• two 1500-sized hidden representations,

• one 311× 457-sized output representation.

The dimension of the hidden representations were empirically chosen, i.e. sev-
eral geometry have been tried, and the best one have been chosen w.r.t. their
performance obtained in validation. The whole resulting network is made of
145K hidden and output representation values, and contains 428M parameters.
The first layer (between input and first hidden representations) and the mid-
layer (between first hidden and second hidden representations) classicaly use
tanh activation function; whereas the last layer (between second hidden and
output representations) uses a sigmoid activation function. The first layer is
pre-trained on the images, while the last layer is pre-trained on the groundtruth
labels. Once pre-trained, a standard back-propagation has been performed on
the whole network so as to fine tune the architecture. Since the medical imaging
dataset is rather small, we have performed a gradient descent without batches,
i.e. the parameters are updated at each iteration using the gradient computed
on the whole training dataset. As the last layer gives a probability-like image
output for the muscle tissue. This probability image must be thresholded in
order to perform the final decision. This threshold has been chosen using a
validation procedure in order to maximize the Jaccard index. It leads to an
optimal value of 0.5. This value is the center of the output interval, but further
experiments are needed to know if this value is a coincidence, or if it can be
generalized.

As for the toy problem, we used our neural-network Python library, Crino,
based on Theano which has not only a CPU backend, but also a GPU backend
compatible with NVidia’s CUDA technology. Thanks to this, we were able to
run our tests on a range of different systems :

• A desktop computer featuring a NVidia Tesla C1060 GPU card with 4GB
of onboard GDDR3 RAM;

• A laptop computer featuring an Intel Core i7-2760QM CPU (quad-core,
2.4GHz) and 8GB of DDR3 RAM.

Using the latter hardware setup, the overall training process of the IODA
took about 35 minutes, split as follows :

• 15 minutes for pre-training of the first layer,



• 13 minutes for pre-training of the last layer,

• 7 minutes for fine-tuning the whole network.

With the same setup, the IODA forward step of the muscle tissue segmenta-
tion process takes in average 201.2 ± 8.6 milliseconds per image, in comparison
to 4 minutes (± 2 min) needed by a senior radiologist on a homemade software
[36]. However, the loading in memory of the network takes approximately 10
seconds, therefore it is better to process the images in batch mode.

5.5. Results

In this section we present qualitative and quantitative comparison between
our neural network and state of the art approaches.

(a) CT image (b) Ground truth

(c) Chung (d) IODA

Figure 8: Non-sarcopenic patient



(a) CT image (b) Ground truth

(c) Chung (d) IODA

Figure 9: Sarcopenic patient

For a first experiment, 100 images have been used for learning the system
parameters, and two images have been selected for displaying qualitative results.
The first one has been considered as clean and ”easy to segment” by a medical
expert (See Figure 8), while the second is noisy and considered as ”hard to
segment” (see Figure 9). On each figure the raw image is represented in (a),
ground truth labeling in (b), Chung labeling in (c) and IODA labeling in (d).

In the first case (see Figure 8), skeletal muscles, organs and fat are well de-
limited. Both approaches perform well : the state of the art method (Chung)
achieves a Jaccard index of 97.2% whereas our proposed method (IODA) achieves
90.4%.

In the second case (see Figure 9), patient morphology is complex, and the
image shows acquisition and reconstruction noise. Here, the Chung’s method
fails to correctly label the image with a Jaccard Index of 27.5% whereas the



IODA framework provides a much more accurate labeling leading to a Jaccard
index of 64.0%.

We interpret these qualitative result by making the hypothesis that Chung
method is not able to cope with strong variability of patient morphologies as it
is based on a single average model, that is to say a single atlas. In opposition,
our model embeds the variability of the patient morphologies through a learning
process over the training set.

In order to confirm this hypothesis, we tested both methods on a large
dataset, with significant variability in image contrast and in skeletal muscle
shapes as suggested in Figure 7.

The regularization parameter for the FFD (λ) of Chung’s method and the
output muscle probability threshold of our method have been subjected to a sys-
tematic search through a 4-fold cross validation procedure, in order to maximize
the Jaccard Index of these methods in validation.

We have randomly split our 128 L3 images in cross-validation and test sets
as follows :

• the cross-validation set contains 100 images, itself split in 4 subsets of 25
images each,

• the test set contains the remaining 28 images.

During the cross-validation step, and for each fold, 3 subsets (= 75 images)
are used for training and the remaining subset (= 25 images) is used for vali-
dation. During the test step, the entire cross-validation set is used for training
and the test set is used to compute the test performance.

Method Diff. (%) Jaccard (%)
Chung -10.6±40.7 60.3±32.5
NDA 0.12±9.78 85.88±5.44
IDA 0.15±9.79 85.91±5.45

IODA 3.37±9.69 88.47±4.76

Table 3: Test performance of the automatic segmentation methods. All values are reported
as mean ± standard deviation.

Table 3 presents the test performance of this setup of IODA and Chung’s
methods. For the sake of comparison, we have also reported the results achieved
by NDA and IDA strategies, as defined in 4.4, using the same setup as IODA.
Chung’s state of the art method gives worse results than one can expect. It
confirms the hypothesis that shape and appearance prior of this method are not
able to deal with too much variability. Moreover, the Diff. metric emphasizes
an underestimation of the muscle tissue areas by Chung’s method.

On the other hand, IODA clearly outperforms Chung’s method according to
both metrics. The Diff. metric suggests that IODA approach gives an average
area close to the manual segmentation area. The Jaccard metric shows that
IODA proposes a much better overlap of the skeletal muscles areas, and the
behaviour of IODA is more stable than Chung’s method since the standard



deviations are significantly lower. Let us remark that NDA and IDA approaches
perform much better than Chung’s method, but significantly worse than IODA.
It is also of interest that NDA and IDA approaches give extremely similar results
on this experiment. This is certainly due to the noisy texture of reconstructed
scanner images which prevents from learning the features of the data.

6. Conclusion

In this article, we have presented a new method for image labeling that
allows to learn prior knowledge on input images and output labels. The novelty
lies in the automatically modelization of the output dependencies through a
learning machine, whereas it usually relies on a static model like an atlas in
medical applications.

As a feedforward neural network, IODA has a static architecture which im-
plies that the input and output sizes cannot vary from an example to another.
Therefore, IODA cannot be considered as a dynamic method: the processing
of variable input size problems would require an image resampling preprocess-
ing stage. Moreover, as the efficiency of IODA relies on embedding the output
space, it is designed for dataset where outputs are correlated.

From a computational point of view, our approach does not require a huge
amount of ressources, that makes it affordable for standard desktop computers.
Nevertheless, as a lot of parameters are tuned during learning, a significant
amount of memory is needed ( 3GB for our medical application).

Unlike other 2D-approach (CRF or HMM), our neural-based approach does
not require a time consuming and suboptimal decoding process as the decision
is performed using a light forward propagation through the network. Another
advantage is that high order output dependencies can be modelized, while 2D
approaches are generally limited to the first order dependency due to computa-
tional complexity. Indeed, IODA allows each label to depend on all other labels
from the image.

From an applicative point of view, IODA could be applied on other image
labeling problems. One can expect significant improvements on problems where
dependencies between the output labels can be observed. This condition is often
verified in medical imaging, or by instance in document image structure analysis
[37, 38] or natural scene processing such as road sign detection [39, 40].
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Ferreras, An optimization on pictogram identification for the road-sign
recognition task using SVMs, Computer Vision and Image Understanding
114 (3) (2010) 373–383.

[40] A. Ruta, Y. Li, X. Liu, Real-time traffic sign recognition from video by
class-specific discriminative features, Pattern Recognition 43 (1) (2010)
416–430.


	Introduction
	 Related works on image labeling methods
	Independent pixel labeling approaches
	Global image labeling approaches

	Input/Ouput Deep Architecture (IODA)
	Notations and building blocks
	Baseline Multi Layer Perceptron
	Auto-Encoder

	DNN extension and Input/Ouput Deep Architecture (IODA)
	Pre-training of input layers
	Pre-training of output layers specific to IODA
	Final supervised training
	IODA training algorithm


	Texture recognition experiments
	Toy dataset
	Experimental setup
	Parameterization
	First qualitative results
	Quantitative results

	Application to a medical imaging problem
	Medical image segmentation task
	Dataset and evaluation metrics
	Reference automatic method
	Application and setting of IODA for CT image labeling
	Results

	Conclusion
	Acknowledgement

