
HAL Id: hal-01338012
https://hal.science/hal-01338012

Submitted on 28 Jun 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On Unique Decomposition of Processes in the Applied
π-Calculus

Jannik Dreier, Cristian Ene, Pascal Lafourcade, Yassine Lakhnech

To cite this version:
Jannik Dreier, Cristian Ene, Pascal Lafourcade, Yassine Lakhnech. On Unique Decomposition of
Processes in the Applied π-Calculus. [Technical Report] VERIMAG UMR 5104, Université Grenoble
Alpes, France. 2012. �hal-01338012�

https://hal.science/hal-01338012
https://hal.archives-ouvertes.fr

On Unique Decomposition of
Processes in the Applied π-Calculus

Jannik Dreier, Cristian Ene, Pascal Lafourcade, Yassine
Lakhnech

Verimag Research Report no TR-2012-3

April 4, 2012

Reports are downloadable at the following address
http://www-verimag.imag.fr

Unité Mixte de Recherche 5104 CNRS - INPG - UJF
Centre Equation
2, avenue de VIGNATE
F-38610 GIERES
tel : +33 456 52 03 40
fax : +33 456 52 03 50
http://www-verimag.imag.fr

http://www-verimag.imag.fr

On Unique Decomposition of Processes in the Applied π-Calculus

Jannik Dreier, Cristian Ene, Pascal Lafourcade, Yassine Lakhnech

April 4, 2012

Abstract

Unique decomposition has been a subject of interest in process algebra for a long time (for ex-
ample in BPP [2] or CCS [10, 12]), as it provides a normal form with useful cancellation prop-
erties. We provide two parallel decomposition results for subsets of the Applied π-Calculus:
We show that a closed finite process P can be decomposed uniquely into prime factors Pi with
respect to weak labeled bisimilarity, i.e. such that P ≈l P1| . . . |Pn. We also prove that closed
normed processes (i.e. processes with a finite shortest trace) can be decomposed uniquely with
respect to strong labeled bisimilarity.

Keywords: Applied Pi Calculus, Unique Decomposition, Factorization, Prime Process, Weak Labeled
Bisimilarity, Strong Labeled Bisimilarity, Cancellation

How to cite this report:

@techreport {TR-2012-3,
title = {On Unique Decomposition of Processes in the Applied π-Calculus},
author = {Jannik Dreier, Cristian Ene, Pascal Lafourcade, Yassine Lakhnech},
institution = {{Verimag} Research Report},
number = {TR-2012-3},
year = {2011}

}

1 Introduction

Process Algebras or Calculi allow one to formally model and analyze distributed systems. Famous exam-
ples include the Calculus of Communicating Systems (CCS) due to Milner [9], or Basic Parallel Processes
(BPP) [2]. These calculi contain basic operations such as emission and reception of messages as well as
parallel composition or interleaving. In an extension to CCS, Milner, Parrow and Walker developed the
π-Calculus [11], which also features channel passing and scope extrusion. Abadi and Fournet [1] sub-
sequently proposed the Applied π-Calculus, a variant of the π-Calculus designed for the verification of
cryptographic protocols. It additionally features equational theories and active substitutions.

In all of these process algebras the question of unique process decomposition naturally arises. Can we
rewrite a process P as P =1 P1|P2| . . . |Pn, where | is the parallel composition operator, and each Pi is
prime in the sense that it cannot be rewritten as the parallel composition of two non-zero processes?

Such a decomposition provides a maximally parallelized version of a given program P . Additionally,
it is useful as it provides a normal form, and a cancellation result in the sense that P |Q = P |R implies
Q = R. This is convenient in proofs, for example when proving the equivalence of different security
notions in electronic voting [3]: one can show that coercion of one voter and coercion of multiple voters
are (under some realistic hypotheses) equivalent. This simplifies the analysis of e-voting protocols, in
particular some proofs of observational equivalence.

If there is an efficient procedure to transform a process into its normal form, such a decomposition can
also be used to verify the equivalence of two processes [4]: once the processes are in normal form, one
only has to verify if the factors on both sides are identical.

However, existing results [2, 5, 10, 12] on the unique decomposition focus on “pure” calculi such
as CCS or BPP or variants thereof. The Applied π-Calculus, as an “impure” variant of the π-Calculus
designed for the verification of cryptographic protocols, has a more complex structure and semantics. For
example, it features an equational theory to model cryptographic primitives, and active substitutions, i.e.
substitutions that apply to all processes. This creates an element that is not zero, but still exhibits no
transitions.

Additionally, the Applied π-Calculus inherits the expressive power of the π-Calculus including chan-
nel or link passing (sometimes also called mobility) and scope extrusion. Consider three parallel processes
P , Q and R, where P and Q synchronize using an internal reduction τc, i.e. P |Q|R τc−→ P ′|Q′|R (see
Figure 1). Channel passing allows a process P to send a channel y he shares with R to process Q (Fig-
ure 1a). Scope extrusion arises for example when P sends a restricted channel y he shares with R to Q,
since the scope after the transition includes Q′ (Figure 1b). This is of particular importance for unique
decomposition since two parallel processes sharing a restricted channel might not be decomposable and
hence a simple reduction might “fuse” two prime factors.

1.1 Our Contributions

We provide two decomposition results for subsets of the Applied π-Calculus. In a first step, we prove
that closed normed (i.e. with a finite shortest complete trace) processes can be uniquely decomposed with
respect to strong labeled bisimilarity. In the second step we show that any closed finite (i.e. with a finite
longest complete trace) process can be uniquely decomposed with respect to (weak) labeled bisimilarity, the
standard bisimilarity notion in the Applied π-Calculus. Note that although we require the processes to be
finite or normed, no further hypothesis is needed, i.e. they may use the full power of the calculus including
channel passing and scope extrusion. As a direct consequence of the uniqueness of the decomposition, we
also obtain cancellation results for both cases.

1.2 Outline of the Paper

In the next section, we recall the Applied π-Calculus, and establish different subclasses of processes. In
Section 3 we provide our first unique decomposition result with respect to strong bisimilarity. In the next

1Here = does not designate syntactical identity, but rather some behavioral equivalence or bisimilarity relation.

1

P Q

R

x

y τc−→

P ′ Q′

R

x

y

(a) Channel/Link Passing

P Q

R

x

y

scope of y

τc−→

P ′ Q′

R

x

y

scope of y

(b) Scope extrusion

Figure 1: Features of the Applied π-Calculus

Section we show the second result w.r.t. weak bisimilarity. Then we discuss related work in Section 6 and
conclude in Section 7. All proofs can be found in the Appendix.

2 Preliminaries
In this section we recall briefly the Applied π-Calculus proposed by Abadi and Fournet [1] as an extension
of the π-Calculus [11].

2.1 Applied π-Calculus

The Applied π-Calculus is a formal language for describing concurrent processes. The calculus consists of
names (which typically correspond to data or channels), variables, and a signature Σ of function symbols
which can be used to build terms. Functions typically include encryption and decryption (for example
enc(message, key), dec(message, key)), hashing, signing etc. Terms are correct combinations of names
and functions, i.e. respecting arity and sorts. We distinguish the type “channel” from other base types.
Equalities are modeled using an equational theory E which defines a relation =E . A classical example,
which describes the correctness of symmetric encryption, is dec(enc(message, key), key) =E message.

Plain processes are constructed using the grammar depicted in Figure 2a. Active or extended processes
are plain processes or active substitutions as shown in Figure 2b. Note that we do not include the “+”-
operator which implements a nondeterministic choice, yet we can implement something similar using a
restricted channel (see Example 4). For more details on encoding the operator with respect to different
semantics, see [13, 14].

The substitution {M/x} replaces the variable x with a term M . Note that we do not allow two active
substitutions to define the same variable, as this might lead to situations with unclear semantics. We
denote by fv(A), bv(A), fn(A), bn(A) the free variables, bound variables, free names or bound names
respectively.

As an additional notation we write νS.A for νs1.νs2 . . . νsn.A where s1, . . . sn are the elements of a
set of variables and names S. By abuse of notation we sometimes leave out “.0” at the end of a process.
We will also write Ak for A| . . . |A (k times), in particular A0 = 0 as 0 is the neutral element of parallel
composition.

The frame Φ(A) of an active process A is obtained by replacing all plain processes in A by 0. This

2

P , Q := plain processes
0 null process
P |Q parallel composition
!P replication
νn.P name restriction (“new”)
ifM = N then P else Q conditional (M , N terms)
in(u, x).P message input
out(u,M).P message output

(a) Plain Processes

A, B, P , Q := active processes
P plain process
A|B parallel composition
νn.A name restriction
νx.A variable restriction
{M/x} active substitution

(b) Active/Extended Processes

Figure 2: Process Grammars

frame can be seen as a representation of what is statically known to the environment about a process.
The domain dom(Φ) of a frame Φ is the set of variables for which Φ defines a substitution. By abuse of
notation, we also write dom(A) to denote the domain of the frame Φ(A) of an active process A. Note that
dom(A) ⊆ fv(A), and that – as we cannot have two active substitutions for the same variable – P = Q|R
implies dom(P) = dom(Q) ∪ dom(R) and dom(Q) ∩ dom(R) = ∅. A frame or process is closed if
all variables are bound or defined by an active substitution. An evaluation context C[_] denotes an active
process with a hole for an active process that is not under replication, a conditional, an input or an output.

The semantics of the calculus presupposes a notion of Structural Equivalence (≡), which is defined
as the smallest equivalence relation on extended processes that is closed under application of evaluation
contexts, α-conversion on bound names and bound variables such that:

PAR-0 A|0 ≡ A
PAR-A A|(B|C) ≡ (A|B)|C
PAR-C A|B ≡ B|A
NEW-0 νn.0 ≡ 0
NEW-C νu.νv.A ≡ νv.νu.A
NEW-PAR A|νu.B ≡ νu.(A|B) if u /∈ fn(A) ∪ fv(A)
REPL !P ≡ P |!P
REWRITE {M/x} ≡ {N/x} if M =E N
ALIAS νx. {M/x} ≡ 0
SUBST {M/x} |A ≡ {M/x} |A {M/x}

Note the contagious nature of active substitutions: by rule SUBST they apply to any parallel process.

Example 1. Consider the following running example, where x and y are variables, and c, d, k, l, m and n
are names:

Pex = νk.νl.νm.νd. ({l/y} |out(c, enc(n, k))|out(d,m)|in(d, x).out(c, x))

We have dom(Pex) = {y}, fv(Pex) = {y}, bv(Pex) = {x}, fn(Pex) = {n, c}, bn(Pex) = {k, l,m, d}
and

Φ(Pex) = νk.νl.νm.νd. ({l/y} |0|0|0) ≡ νk.νl.νm.νd. ({l/y})

3

Internal Reduction (τ−→) is the smallest relation on extended processes closed by structural equivalence
and application of evaluation contexts such that:

COMM out(a, x).P | in(a, x).Q
τc−→ P | Q

THEN ifM = M then P else Q
τt−→ P

ELSE ifM = N then P else Q
τe−→ Q

for any ground terms such that M 6=E N

Note that in accordance with the original notations [1], we sometimes omit the labels τc, τt and τe, and
write P → P ′ for P

γ−→ P ′ with γ ∈ {τc, τt, τe}.
Interactions of extended processes are described using labeled operational semantics (α−→), where α can

be an input or an output of a channel name or variable of base type, e.g. out(a, u) where u is a variable or
a name.

IN in(a, x).P
in(a,M)−−−−−→ P {M/x}

OUT-ATOM out(a, u).P
out(a,u)−−−−−→ P

OPEN-ATOM
A

out(a,u)−−−−−→ A′ u 6= a

νu.A
νu.out(a,u)−−−−−−−→ A′

SCOPE
A

α−→ A′ u does not occur in α

νu.A
α−→ νu.A′

PAR
A

α−→ A′ bv(α) ∩ fv(B) = bn(α) ∩ fn(B) = ∅
A | B α−→ A′ | B

STRUCT
A ≡ B B

α−→ B′ B′ ≡ A′

A
α−→ A′

Labeled external transitions are not closed under evaluation contexts. Note that a term M (except for
channel names and variables of base type) cannot be output directly. Instead, we have to assign M to a
variable, which can then be output. This is to model that the output of enc(m, k) (message m encrypted
with key k) does not give the environment access to m.

Example 2. Consider our running example process Pex. Using an internal reduction, we can execute the
following transition:

Pex = νk.νl.νm.νd. ({l/y} |out(c, enc(n, k)).0|out(d,m).0|in(d, x).out(c, x).0)
≡ νk.νl.νm.νd.({l/y} |out(c, enc(n, k))|νx.({m/x})|out(d,m)|

in(d, x).out(c, x)) by PAR-0, ALIAS
≡ νk.νl.νm.νd.({l/y} |out(c, enc(n, k))|νx.({m/x} |out(d,x)|

in(d, x).out(c, x))) by SUBST, NEW-PAR
τc−→ νk.νl.νm.νd. ({l/y} |out(c, enc(n, k))|νx. ({m/x} |out(c, x)))
≡ νk.νl.νm.νd. ({l/y} |out(c, enc(n, k))|out(c,m))

by SUBST, ALIAS, NEW-PAR, PAR-0

Similarly, we can also execute an external transition:

Pex ≡ νk.νl.νm.νd.({l/y} |νz. {enc(n,k)/z} |out(c, z)|out(d,m)|
in(d, x).out(c, x))

νz.out(c,z)−−−−−−−→ νk.νl.νm.νd. ({l/y} | {enc(n,k)/z} |out(m, d)|in(x, d).out(x, c))

The following two definitions allow us to reason about the messages exchanged with the environment.

Definition 1 (Equivalence in a Frame [1]). Two terms M and N are equal in the frame φ ≡ νñ.σ, written
(M = N)φ, if and only if Mσ =E Nσ, and {ñ} ∩ (fn(M) ∪ fn(N)) = ∅.

Note that any frame φ can be written as νñ.σ modulo structural equivalence, i.e. using rule NEW-PAR.

4

Definition 2 (Static Equivalence (≈s) [1]). Two closed frames φ and ψ are statically equivalent, written
φ ≈s ψ, when dom(φ) = dom(ψ) and when for all terms M and N we have (M = N)φ if and only if
(M = N)ψ. Two extended processes A and B are statically equivalent (A ≈s B) if their frames are
statically equivalent.

The intuition behind this definition is that two processes are statically equivalent if the messages ex-
changed previously with the environment cannot be distinguished, i.e. all operations on both sides gave the
same results.

2.2 Depth and Norm of Processes
We prove unique decomposition for different subsets of processes, namely finite and normed processes.
This requires to formally define the length of process traces. Let Int = {τc, τt, τe} denote the set of labels
corresponding to internal reductions or silent transitions, and Act = {in(a,M), out(a, u), νu.out(a, u)}
for any channel name n, term M and variable or name u, denote the set of labels of possible external or
visible transitions. By construction Act ∩ Int = ∅.

The visible depth is defined as the length of the longest complete trace of visible actions, i.e. labeled
transitions, excluding internal reductions. Note that this may be infinite for processes including replication.
We write P 6→ if P cannot execute any transition, and P

µ1µ2...µn−−−−−−→ P ′ for P
µ1−→ P1

µ2−→ P2
µ3−→ . . .

µn−−→
P ′.

Definition 3 (Visible Depth). Let lengthv : (Act ∪ Int)∗ 7→ N be a function where lengthv(ε) =

0 and lengthv(µw) =

{
1 + lengthv(w) if µ ∈ Act

lengthv(w) otherwise
Then the visible depth |P |v ∈ (N ∪ {∞}) of a closed process P is defined as follows:

|P |v = sup
{

lengthv(w) : P
w−→ P ′ 6→, w ∈ (Act ∪ Int)∗

}
The total depth is defined as the length of the longest complete trace of actions (including internal

reductions).

Definition 4 (Total Depth). Let lengtht : (Act ∪ Int)∗ 7→ N be a function where lengtht(ε) = 0 and
lengtht(µw) = 1 + lengtht(w). The total depth |P |t ∈ (N ∪ {∞}) of a closed process P is defined as
follows:

|P |t = sup
{

lengtht(w) : P
w−→ P ′ 6→, w ∈ (Act ∪ Int)∗

}
The norm of a process is defined as the length of the shortest complete trace, including internal reduc-

tions, where communications are counted as two. This is necessary to ensure that the norm of P |Q is the
sum of the norm of P and the norm of Q.

Definition 5 (Norm of a Process). Let lengthn : (Act ∪ Int)∗ 7→ N be a function where lengthn(ε) = 0

and lengthn(µw) =

{
1 + lengthn(w) if µ 6= τc

2 + lengthn(w) if µ = τc
The norm N (P) ∈ (N ∪ {∞}) of a closed process P is defined as follows:

N (P) = inf
{

lengthn(w) : P
w−→ P ′ 6→, w ∈ (Act ∪ Int)∗

}
Example 3. We have |Pex|v = 2, |Pex|t = 3 and N (Pex) = 4.

The above definitions admit some simple properties.

Property 1. For any closed extended processes P , Q and R we have

• P = Q|R implies |P |v = |Q|v + |R|v

• P = Q|R implies |P |t = |Q|t + |R|t

5

• P = Q|R implies N (P) = N (Q) +N (R)

• |P |v ≤ |P |t

Now we can define the two important subclass of processes: finite processes, i.e. processes with a finite
longest complete trace, and normed processes, i.e. processes with a finite shortest complete trace.

Definition 6 (Finite and normed processes). A closed process P is called finite, if |P |t is finite (which
implies |P |v is finite). A closed process P is called normed, if N (P) is finite.

It is easy to see that any finite process is normed, but not all normed processes are finite, as the following
example illustrates.

Example 4. Consider P = νa.(out(a,m)|(in(a, x).(!in(b, y)))|in(a, x)). Then we have P → P ′ ∼l 0,
hence P is normed. However we also have P → P ′′ ∼l!in(b, y), which has infinite traces. Hence P is not
finite.

It is also clear that not all processes are normed. Consider the following example.

Example 5. Consider P =!(νx.out(c, x)). It is easy to see that for no sequence of transitions s we have
P

s−→ P ′ 6→, i.e. P has no finite traces.

3 Decomposition w.r.t. Strong Labeled Bisimilarity
We begin with the simpler case of strong labeled bisimilarity, defined as follows.

Definition 7 (Strong Labeled Bisimilarity (∼l)). Strong labeled bisimilarity is the largest symmetric rela-
tionR on closed active processes, such that AR B implies:

1. A ≈s B,

2. if A→ A′, then B → B′ and A′ R B′ for some B′,

3. if A α−→ A′ and fv(α) ⊆ dom(A) and bn(α) ∩ fn(B) = ∅, then B α−→ B′ and A′ R B′ for some
B′.

Note that P ∼l Q implies |P |t = |Q|t and N (P) = N (Q) for any closed processes P and Q.
To ensure that labeled bisimilarity is a congruence w.r.t to parallel composition (“|”) and closed under
the application of contexts, we will require that active substitutions are only defined on variables of base
type [6].

We define strong parallel primeness as follows: A process is prime if it cannot be decomposed into
non-trivial subprocesses (w.r.t. strong labeled bisimilarity). We require the processes to be closed, which
is necessary as our bisimulation relation is only defined on closed processes.

Definition 8 (Strongly Parallel Prime). A closed process P is strongly parallel prime, if

• P 6∼l 0 and

• for any two closed processes Q and R such that P ∼l Q|R, we have Q ∼l 0 or R ∼l 0.

Example 6. Consider our running example:

Pex = νk.νl.νm.νd. ({l/y} |out(c, enc(n, k))|out(d,m)|in(d, x).out(c, x))

We can decompose Pex as follows:

Pex ∼l (νl. {l/y})|(νk.out(c, enc(n, k)))|(νd.(νm.out(d,m)|in(d, x).out(c, x)))

The first factor S1 = νl. {l/y} is prime since we cannot have two substitutions defining the same variable.
It is easy to see that the second factor S2 = νk.out(c, enc(n, k)) is prime, as it can only perform one

6

external transition. The third factor S3 = νd.(νm.out(d,m)|in(d, x).out(c, x)) is prime because its two
parts can synchronize using a shared restricted channel and then perform a visible external transition.
Since dom(S3) = ∅ and N (S3) = 2, the only possible decomposition would be into two factors of norm 1
each, i.e. such that S3 ∼l S′3|S′′3 . This would however mean that both transitions of S′3|S′′3 can be executed
in any order, whereas in S3 we have to start with the internal reduction. Hence no such decomposition
exists.

With respect to applications in protocol analysis, this illustrates that shared restricted names, for exam-
ple private channels or shared keys, can prohibit decomposition. This is unavoidable, since a decomposi-
tion should not change the behavior of the processes (up to∼l), yet it might appear to hinder the usefulness
of the decomposition on first view. However, a decomposition that does not preserve the behavioral equiva-
lence is probably not useful either, and note that – since our definition is solely based on the semantics and
the bisimilarity notion – it allows to decompose as far as possible without changing the observed behavior,
and thus any further decomposition will change the behavior. As a side-effect, the decomposition will show
where shared restricted names (modeling for example keys) are actually used in a noticeable (w.r.t. to ∼l)
way, and where they can be ignored and processes can be further decomposed.

Note also that within a prime factor we can recursively apply the decomposition as our bisimilarity
notion is closed under the application of contexts. For example if we have a prime factor P = νa.P ′, we
can bring P ′ into normal form, i.e. P ′ ∼l P ′1|...|P ′n, and rewrite P = νa.P ′ as P ∼l νa.(P ′1|...|P ′n).

It is clear that not all processes can be written as a unique decomposition of parallel primes according
to our definition.

Example 7. Consider !P for a process P 6∼l 0. By definition we have !P = P |!P , hence !P is not
prime. At the same time any such decomposition contains again !P , a non-prime factor, which needs to be
decomposed again. Thus there is no decomposition into prime factors.

However we can show that any closed normed process has a unique decomposition with respect to
strong labeled bisimilarity. In a first step, we prove the existence of a decomposition.

Theorem 1 (Existence of Factorization). Any closed normed process P can be expressed as the parallel
product of strong parallel primes, i.e. P ∼l P1| . . . |Pn where for all 1 ≤ i ≤ n Pi is strongly parallel
prime.
Proof. Sketch: The proof proceeds by induction on the norm of P , and inside each case by induction on
the size of the domain. The second induction is necessary to deal with active substitutions, which cannot
perform transitions. The main idea is simple: If a process is not prime, by definition it can be decomposed
into two “smaller” processes, where we can apply the induction hypothesis.

To show the uniqueness of the decomposition, we need some preliminary lemmas about transitions
and the domain of processes. The first lemma captures the fact that intuitively any process which cannot
perform any transition and has an empty domain, is bisimilar to 0 (the empty process).

Lemma 1. For any closed process A with dom(A) = ∅ and N (A) = 0, we have A ∼l 0.

We also need to show that if a normed process can execute a transition, it can also execute a norm-reducing
transition.

Lemma 2. Let A be a closed normed process with A
µ−→ A′ where µ is an internal reduction or visible

transition. Then A
µ′

−→ A′′ with N (A′′) < N (A).

These lemmas allow us to show the uniqueness of the decomposition.

Theorem 2 (Uniqueness of Factorization). The strong parallel factorization of a closed normed process P
is unique (up to ∼l).
Proof. Sketch: In the proof we have to deal with numerous cases due to the complex semantics of the
calculus. Here we focus on the main differences compared to existing proofs for simpler calculi (e.g. [12]).

The proof proceeds by induction on the norm of P , and inside each case by induction on the size of the
domain. By Lemma 1, each prime factor can either perform a transition, or has a non-empty domain. A

7

transition may not always be norm-reducing since processes can be infinite, but in this case Lemma 2 gives
us that if a normed process can execute a transition, it can also execute a norm-reducing one - which we
can then consider. We suppose the existence of two different factorizations, and show that this leads to a
contradiction. Consider the following four cases:

• If we have a process that cannot do any transition and has an empty domain, by Lemma 1 we have
the unique factorization 0.

• If the process cannot perform a transition but has a non-empty domain, we can apply a restriction on
part of the domain to hide all factors but one (since we cannot have two substitutions defining the
same variable). We can then use the fact that labeled bisimilarity is closed under the application of
contexts to exploit the induction hypothesis, which eventually leads to a contradiction to the primality
of the factors.

• In the case of a process with empty domain, but that can perform a transition, we can execute a
transition and then apply the induction hypothesis. However, we have to be careful since in case
of an internal reduction factors could fuse using scope extrusion (see Figure 1b). Hence, whenever
possible, we choose a visible transition. If no such transition exists, processes cannot fuse using
an internal reduction either, since this would mean they synchronized on a public channel, which
implies the existence of visible transitions. Thus we can safely execute the invisible transition.

• In the last case (non-empty domain and visible transitions) we have to combine the above two tech-
niques.

As a direct consequence, we have the following cancellation result.

Lemma 3 (Cancellation Lemma). For any closed normed processes A, B and C, we have

A|C ∼l B|C ⇒ A ∼l B
Proof. Sketch: All processes have a unique factorization and can be rewritten accordingly. As both sides
are bisimilar, they have the same unique factorization, hence A and B must be composed of the same
factors, thus they are bisimilar.

4 Decomposition w.r.t. Weak Labeled Bisimilarity
In this part, we discuss unique decomposition with respect to (weak) labeled bisimilarity. This is the
standard bisimilarity notion in the Applied π-Calculus as defined by Abadi and Fournet in their original
paper [1].

Definition 9 ((Weak) Labeled Bisimilarity (≈l) [1]). (Weak) Labeled Bisimilarity is the largest symmetric
relationR on closed active processes, such that AR B implies:

1. A ≈s B,

2. if A→ A′, then B →∗ B′ and A′ R B′ for some B′,

3. if A α−→ A′ and fv(α) ⊆ dom(A) and bn(α) ∩ fn(B) = ∅, then B →∗ α−→→∗ B′ and A′ R B′ for
some B′.

The resulting bisimilarity notion is weak in the sense that only visible external transitions have to be
matched exactly, and there may be a number of silent internal reductions in the background which are not
taken into account. Note that P ≈l Q implies |P |v = |Q|v for any closed processes P and Q.

Again we will assume that active substitutions can only be defined on variables of base type to ensure
that labeled bisimilarity is a congruence w.r.t. to parallel composition (“|”) and closed under the application
of contexts. Under this condition, it also coincides with observational equivalence [6]. This was claimed
in the original paper [1] without requiring the additional condition, but turned out to be untrue when a
counterexample was found (see [6] for more details).

8

To obtain our unique decomposition result for weak labeled bisimilarity, we need to define parallel
prime with respect to weak labeled bisimilarity.

Definition 10 (Weakly Parallel Prime). A closed extended process P is weakly parallel prime, if

• P 6≈l 0 and

• for any two closed processes Q and R such that P ≈l Q|R, we have Q ≈l 0 or R ≈l 0.

This definition is analogous to strongly parallel prime. However, as the following example shows,
in contrast to strong bisimilarity, not all normed processes have a unique decomposition w.r.t. to weak
bisimilarity.

Example 8. Consider P = νa.(out(a,m)|(in(a, x).(!in(b, y)))|in(a, x)). Then we have P ≈l P |P ,
hence we have no unique decomposition. Note that this example does not contradict our previous result,
as we have P 6∼l P |P , as P → P ′ ∼l 0, but P |P → P ′′ ∼l P and P |P 6→ P ′′′ for any P ′′′ ∼l 0. Hence,
w.r.t. strong labeled bisimilarity, P is prime.

If however we consider normed processes that contain neither restriction (“ν”) nor conditionals, we
have that any normed process is finite (and hence has a unique decomposition, as we show below).

Lemma 4. For any process P that does not contain restriction (“ν”) or conditionals (“if then else”),
we have that P is finite if and only if P is normed.

Similarly any process that does not contain replication is finite.
In the following we show that all finite processes have a unique decomposition w.r.t. to (weak) labeled

bisimilarity. Again, in a first step, we show that a decomposition into prime factors exists.

Theorem 3 (Existence of Factorization). Any closed finite active process P can be expressed as the parallel
product of parallel primes, i.e. P ≈l P1| . . . |Pn where for all 1 ≤ i ≤ n Pi is weakly parallel prime.

The proof is analogous to the proof of Theorem 1, but we have to proceed by induction on the visible depth
instead of the norm, as two weakly bisimilar processes may have a different norm.

To prove uniqueness, we again need some preliminary lemmas about transitions and the domain of
processes. This first lemma captures the fact that intuitively any process that cannot perform any visible
transition and has an empty domain, is weakly bisimilar to 0 (the empty process).

Lemma 5. If for a closed process A with dom(A) = ∅ there does not exist a sequence of transitions
A→∗ α−→ A′, then we have A ≈l 0.

Now we can show the uniqueness of the decomposition.

Theorem 4 (Uniqueness of Factorization). The parallel factorization of a closed finite process P is unique
(up to ≈l).
Proof. Sketch: In the proof we show the following statement: Any closed finite processes P and Q with
P ≈l Q have the same factorization (up to ≈l). The proof proceeds by induction on the sum of the total
depth of both factorizations, and in each case on the size of the domain. We show that if we suppose the
existence of two different factorizations, this leads to a contradiction.

The proof follows the same structure as the one for strong bisimilarity. In the case of processes with
non-empty domain and no visible transition, we use the same idea and apply restrictions to use the induction
hypothesis. In the other cases, when executing a transition to apply the induction hypothesis, we have to
be more careful since each transition can be simulated using additionally several internal reductions. This
can affect several factors, and prime factors could fuse using an internal reduction and scope extrusion
(see Figure 1b). We can circumvent this problem by choosing transitions that decrease the visible depth by
exactly one (such a transition must always exist). A synchronization of two factors in the other factorization
would use at least two visible actions and the resulting processes cannot be bisimilar any more, since
bisimilar processes have the same depth. Using Lemma 5 we know that each prime factor has either a
non-empty domain or can execute a visible transition, which allows us to conclude.

9

Type of Process Strong Bisimilarity (∼l) Weak Bisimilarity (≈l)
finite Theorem 1 Theorem 3

normed Theorem 1 Counterexample 4
general Counterexample 7 Counterexample 7

Table 1: Summary of unique factorization results for the Applied π-Calculus

Again we have a cancellation result using the same proof as above.

Lemma 6 (Cancellation Lemma). For any closed finite processes A, B and C, we have

A|C ≈l B|C ⇒ A ≈l B

5 Conclusion

6 Related Work
Unique decomposition (or factorization) has been a field of interest in process algebra for a long time.
The first results for a subset of CCS were published by Moller and Milner [10, 12]. They showed that
finite processes with interleaving can be uniquely decomposed with respect to strong bisimilarity. The
same is true for finite processes with parallel composition, where – in contrast to interleaving – the parallel
processes can synchronize. They also proved that finite processes with parallel composition can be uniquely
decomposed w.r.t. weak bisimilarity. Compared to the Applied π-Calculus, BPP and CCS do not feature
channel passing, scope extrusion and active substitutions.

Later on Christensen [2] proved a unique decomposition result for normed processes (i.e. processes
with a finite shortest complete trace) in BPP with interleaving or parallel composition w.r.t. strong bisimi-
larity.

Luttik and van Oostrom [8] provided a generalization of the unique decomposition results for ordered
monoids. They show that if the calculus satisfies certain properties, the unique decomposition result follows
directly. Recently Luttik also extended this technique for weak bisimilarity [7]. Unfortunately this result
cannot be employed in the Applied π-Calculus as active substitutions are minimal elements (with respect
to the transition relation) different from 0.

7 Conclusion and Future Work
We presented two unique decomposition results for subsets of the Applied π-Calculus. We showed that
any closed finite process can be decomposed uniquely with respect to weak labeled bisimilarity, and that
any normed process can be decomposed uniquely with respect to strong labeled bisimilarity. Table 1 sums
up our results.

As the concept of parallel prime decomposition has its inherent limitations with respect to replication
(“!”, see Example 7), a natural question is to find an extension to provide a normal form even in cases
with infinite behavior. A first result in this direction has been obtained by Hirschkoff and Pous [5] for a
subset of CCS with top-level replication. They define the seed of a process P as the process Q, Q bisimilar
to P , of least size (in terms of prefixes) whose number of replicated components is maximal (among the
processes of least size), and show that this representation is unique. They also provide a result for the
Restriction-Free-π-Calculus (i.e. no “ν”). It remains however open if a similar result can be obtained for
the full calculus.

Another interesting question is to find an efficient algorithm that converts a process into its unique
decomposition. It is unclear if such an algorithm exists and can be efficient, as simply deciding if a process
is finite can be non-trivial.

10

References
[1] Martín Abadi and Cédric Fournet. Mobile values, new names, and secure communication. In Pro-

ceedings of the 28th ACM SIGPLAN-SIGACT symposium on Principles of programming languages,
POPL ’01, pages 104–115, New York, 2001. ACM. 1, 2, 2.1, 1, 2, 4, 9, 4

[2] Søren Christensen. Decidability and Decompostion in Process Algebras. PhD thesis, School of
Computer Science, University of Edinburgh, 1993. (document), 1, 6

[3] Jannik Dreier, Pascal Lafourcade, and Yassine Lakhnech. Defining privacy for weighted votes, single
and multi-voter coercion. In Proceedings of the 17th European Symposium on Research in Computer
Security (ESORICS), Pisa, Italy, September 10-12, 2012, volume 7459 of LNCS, pages 451–468.
Springer, 2012. 1

[4] Jan Friso Groote and Faron Moller. Verification of parallel systems via decomposition. In CON-
CUR ’92: Proceedings of the Third International Conference on Concurrency Theory, pages 62–76,
London, UK, UK, 1992. Springer-Verlag. 1

[5] Daniel Hirschkoff and Damien Pous. On bisimilarity and substitution in presence of replication. In
37th International Colloquium on Automata, Languages and Programming (ICALP), volume 6199 of
LNCS, pages 454–465. Springer, 2010. 1, 7

[6] Jia Liu. A proof of coincidence of labeled bisimilarity and observational equivalence in applied pi
calculus. Technical Report ISCAS-SKLCS-11-05, 2011. Available at http://lcs.ios.ac.cn/
~jliu/. 3, 4

[7] Bas Luttik. Unique parallel decomposition in branching and weak bisimulation semantics. Technical
report, 2012. Available at http://arxiv.org/abs/1205.2117v1. 6

[8] Bas Luttik and Vincent van Oostrom. Decomposition orders – another generalisation of the funda-
mental theorem of arithmetic. Theoretical Computer Science, 335(2-3):147–186, 2005. 6

[9] Robin Milner. Communication and Concurrency. International Series in Computer Science. Prentice
Hall, 1989. 1

[10] Robin Milner and Faron Moller. Unique decomposition of processes. Theoretical Computer Science,
107(2):357–363, 1993. (document), 1, 6

[11] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes. Information and
Computation, 100(1):1–40, 1992. 1, 2

[12] Faron Moller. Axioms for Concurrency. PhD thesis, School of Computer Science, University of
Edinburgh, 1989. (document), 1, 3, 6

[13] Uwe Nestmann and Benjamin C. Pierce. Decoding choice encodings. Information and Computation,
163(1):1–59, 2000. 2.1

[14] Catuscia Palamidessi and Oltea Mihaela Herescu. A randomized encoding of the pi-calculus with
mixed choice. Theoretical Computer Science, 335(2–3):373 – 404, 2005. 2.1

A Proof of Lemma 1

Lemma 1. For any closed process A with dom(A) = ∅ and N (A) = 0, we have A ∼l 0.

Proof. Consider the relation R = {(A, 0)}. We will show that it fulfills the conditions of strong labeled
bisimilarity:

11

http://lcs.ios.ac.cn/~jliu/
http://lcs.ios.ac.cn/~jliu/

1. We have dom(A) = ∅ = dom(0), hence A ≈s 0.

2. Let (A, 0) ∈ R. Obviously 0 cannot do any transition. SinceN (A) = 0, there exists a trace of length
0 with A ω−→ A′ = A 6→, hence A cannot do any transition either and the remaining conditions are
trivially satisfied.

As we have (A, 0) ∈ R, this gives A ∼l 0, which we wanted to show.

B Proof of Lemma 2

Lemma 2. Let A be a closed normed process with A
µ−→ A′ where µ is an internal reduction or visible

transition. Then A
µ′

−→ A′′ with N (A′′) < N (A).

Proof. By Lemma 1A
µ−→ A′ implies∞ > N (A) > 0. Hence the shortest tracew has∞ > lengthn(w) >

0. Hence there is a transition µ′ with w = µ′w′ which reduces norm, i.e. A
µ′

−→ A′′ with N (A′′) <
N (A).

C Proof of Theorem 1

Theorem 1 (Existence of Factorization). Any closed normed process P can be expressed as the parallel
product of strong parallel primes, i.e. P ∼l P1| . . . |Pn where for all 1 ≤ i ≤ n Pi is strongly parallel
prime.

Proof. By induction on the norm of P , and on the size of the domain dom(P).

• If N (P) = 0:

– If |dom(P)| = 0, then P ∼l 0 (by Lemma 1), hence the factorization is the empty product.

– If |dom(P)| > 0, then P 6∼l 0, hence P is either strongly parallel prime itself (in which
case we are done), or can be written as P ∼l Q|R (by the definition of strongly parallel
prime). As we have dom(P) = dom(Q) ∪ dom(R) with dom(Q) ∩ dom(R) = ∅ and
|dom(Q)|, |dom(R)| > 0 (since Q,R 6∼l 0), we have |dom(Q)|, |dom(R)| < |dom(P)|,
hence we can use the induction hypothesis to conclude.

• If N (P) > 0:

– If |dom(P)| = 0: P is either strongly parallel prime itself, or can be written as P ∼l
Q|R. Then we have dom(P) = dom(Q) = dom(R) = ∅, and N (Q),N (R)t > 0, hence
N (Q),N (R) < N (P) and we can apply the induction hypothesis.

– If |dom(P)| > 0, then P 6∼l 0, hence P is either strongly parallel prime itself, or can be written
as P ∼l Q|R. Suppose N (Q),N (R) > 0, hence N (Q),N (R) < N (P) and we can apply
the induction hypothesis. Suppose w.l.o.g. N (Q) = 0 < N (P), then N (R) = N (P). Since
Q 6∼l 0 this implies |dom(Q)| > 0 (by Lemma 1), hence |dom(R)| < |dom(P)|, and we can
use the induction hypothesis to conclude.

12

D Proof of Theorem 2

Theorem 2 (Uniqueness of Factorization). The strong parallel factorization of a closed normed process P
is unique (up to ∼l).

Proof. By induction on N (P), and on the size of the domain dom(P).

• If N (P) = 0:

– If |dom(P)| = 0, then P ∼l 0 (by Lemma 1), hence the factorization is the unique empty
product.

– If |dom(P)| > 0, P 6∼l 0. Suppose P ∼l Q, but P and Q have different factorizations:

P ∼l Ak11 |A
k2
2 | . . . |Aknn

Q ∼l Al11 |A
l2
2 | . . . |Alnn

where the Ai’s are distinct (i.e. for i 6= j we have Ai 6∼l Aj) and ki, li ≥ 0.
Note that since ∀i Ai 6∼l 0 andN (P) = 0, we have dom(Ai) 6= ∅ by Lemma 1, which implies
ki, li ≤ 1 as we cannot have two substitutions defining the same variable.
Let m be such that km 6= lm. Without loss of generality we assume 1 = km > lm = 0.
Obviously we have dom(P) = dom(Q). Let ṽ = dom(P) \ dom(Am). Then we have (by
Lemma 1 and rules ALIAS and NEW-PAR):

νṽ.P ≡ Am|νṽ.P ′ ∼l Am

where P ′ is P without the factor Am. Similarly

νṽ.Q ≡ |i∈I νṽi.Ai|i/∈I νṽi.Alii ∼l |i∈I νṽi.Ai

where I = {i|dom(Ai) ∩ dom(Am) 6= ∅ and li = 1} and ṽi = dom(Ai) ∩ ṽ.
By νṽ.P ∼l νṽ.Qwe haveAm ∼l |i∈I νṽi.Ai. If |I| = 0, we haveAm ∼l 0 which contradicts
the hypothesis that Am is prime. Similarly for |I| > 1, we have a factorization for Am into
several processes, which also contradicts Am prime.
For |I| = 1 we have the following cases: Let i denote the only index in I . If ṽi = ∅, we
have a contradiction to the distinctness hypothesis of the Aj’s since Am ∼l Ai with m 6= i as
lm = 0 6= li = 1.
If ṽi 6= ∅ we have dom(Am) ⊂ dom(Ai). Now consider ṽ′ = dom(Q) \ dom(Ai). Then - as
above - we have:

νṽ′.Q ≡ Ai|νṽ′.Q′ ∼l Ai
where Q′ is Q without the factor Ai. Similarly

νṽ′.P ≡ |j∈I′ νṽ′j .Aj |j /∈I′ νṽ′j .A
lj
j ∼l |j∈I′ νṽ

′
j .Aj

where I ′ = {j|dom(Aj) ∩ dom(Ai) 6= ∅ and lj = 1} and ṽ′j = dom(Aj) ∩ ṽ′. Since
dom(Am) ⊂ dom(Ai) and dom(P) = dom(Q) we have |I ′| > 1, hence Ai ∼l |j∈I′ νṽ′j .Aj
gives a factorization of Ai, which contradicts the hypothesis that it is prime.

• If N (P) > 0:

– If |dom(P)| = 0: Suppose P ∼l Q, but P and Q have different factorizations:

P ∼l Ak11 |A
k2
2 | . . . |Aknn

Q ∼l Al11 |A
l2
2 | . . . |Alnn

where the Ai’s are distinct (i.e. for i 6= j we have Ai 6∼l Aj) and ki, li ≥ 0.

13

By induction hypothesis we have that for every processRwithN (R) < N (P) the factorization
is unique.
Let m be such that km 6= lm, and that N (Aj) > N (Am) implies kj = lj (i.e. Am has
the maximal size among the factors in which P and Q differ). Without loss of generality we
assume km > lm.
In the following we will use the fact that P ∼l Q and hence Q can simulate each transition of
P and vice versa.
We now analyze different cases:

∗ If P = Akmm , i.e. P is the power of a prime:
Note that Q cannot contain any prime factor Ar, r 6= m withN (Ar) > N (Am): Suppose
lr > 0. By assumption, Am is the maximal (w.r.t. norm) prime factor in which P and Q
differ, hence kr = lr > 0. This contradicts P = Akmm .
If km = 1 (i.e. P is prime), then Q is prime as well, and since 1 = km > lm we have
Q ∼l Aj for some j 6= m, which gives Am ∼l Aj , which contradicts the distinctness of
the prime factors.
If km > 1:
Assume lm = 0. Then - since dom(Am) = ∅ - for some µ Am

µ−→ R, P
µ−→ P ′ with

exp(Am, P
′) = km − 1 > 0 and N (P ′) < N (P). Since P ∼l Q, there exists a Q′

with Q
µ−→ Q′. For any such Q′ we have exp(Am, Q

′) = 0 since Am has maximal
norm, li = 0 for all Ai with N (Ai) > N (Am). If µ = τc two smaller factors in Q
could fuse using scope extrusion, however this would imply the existence of a µ 6= τc
with the desired properties since Q ∼l P , which we can choose instead. As P ′ and Q′

have a unique prime factorization by induction hypothesis, we have a contradiction with
exp(Am, P

′) = km − 1 > 0 = exp(Am, Q
′).

Hence assume lm > 0: If Am
µ−→ R with N (R) < N (Am) for µ 6= τc, we have Q

µ−→ Q′

and since P ∼l Q there exists P ′ with P
µ−→ P ′. Obviously we have exp(Am, P

′) =
km−1 > lm−1 = exp(Am, Q

′) which contradictsP ∼l Q using the induction hypothesis.
If no such transition µ exists, we have Am

τc−→ R, hence Q τc−→ Q′ and since P ∼l Q
there exists P ′ with P τc−→ P ′. We know that P cannot simulate this transition using
synchronization between the different copies of Am as this would imply the existence of
a visible norm-reducing transition µ. Hence we have again exp(Am, P

′) = km − 1 >
lm − 1 = exp(Am, Q

′) which contradicts P ∼l Q using the induction hypothesis.
∗ If there exists j 6= m such that kj > 0:

Let µ, T be such that P
µ−→ T and N (T) < N (P) and for all ν such that P ν−→ P ′ with

N (P ′) < N (P) we have exp(Am, P
′) ≤ exp(Am, T). Then exp(Am, T) ≥ km. We will

now show that such µ, T exist.
Note because of Lemma 1 andN (P) <∞ we haveN (Ai) <∞. This gives that ifAi

µ−→
A′i then Ai

µ′

−→ A′′i with N (A′′i) < N (Ai) by Lemma 2. Suppose no such µ, T exist.
Hence for no Ai with ki > 0, i 6= m we have Ai

µ−→ A′i, otherwise this allows a transition
that would fulfill the above conditions. Hence (by Lemma 1) we have dom(Ai) 6= ∅ for
any i with ki > 0, i 6= m, which contradicts |dom(P)| = 0.
If we have a µ 6= τc, then - as P ∼l Q - there exists Q′ with Q

µ−→ Q′ and Q′ ∼l T . Hence
N (Q′) < N (Q) and ∃At with At

µ−→ R.
If N (At) ≤ N (Am) then exp(Am, Q

′) ≤ lm < km ≤ exp(Am, T), which gives the
contradiction to the induction hypothesis,
If N (At) > N (Am) then exp(Am, Q

′) = lm + exp(Am, R) , and t 6= m, and kt =

lt > 0 (as Am is maximal). Consider P
µ−→ P ′ = Ak11 | . . . |A

kt−1
t | . . . |Aknn |R with

exp(Am, P
′) = km + exp(Am, R). Hence exp(Am, Q

′) = lm + exp(Am, R) < km +
exp(Am, R) = exp(Am, P

′), which contradicts Q′ ∼l P ′. Hence the only option for Q
to match this transition would be to use a ever bigger As, in which case we can however
apply the same argument (ks = ls). As the number of prime factors is finite, we have that

14

Q 6∼l P which gives the contradiction.
If no µ 6= τc exists, choose a µ = τc. We distinguish two different cases: If the transition
is matched by only one factor, we can argue as above. If the transition is matched by the
synchronization of two factors (Ar

α−→ A′r and As
ᾱ−→ A′s), this implies that we have two

visible actions on two different factors. As all transitions that do not reduce the number
of Am’s are τc-transitions, these actions can only be matched by Am, thus Am

α−→ A′m.
HenceQ α−→ Q′ with exp(Am, Q

′) = lm−1 and for any P α−→ P ′ we have exp(Am, P
′) =

km − 1 > lm − 1 = exp(Am, Q
′), which contradicts P ′ ∼l Q′.

– If |dom(P)| > 0: This is essentially the same proof as above. In the first case (P is a power of
a prime), we only have to consider the case km = 1 as dom(Am) 6= ∅. Hence P is prime, and
then Q is prime as well, and since 1 = km > lm we have Q ∼l Aj for some j 6= m, which
gives Am ∼l Aj , which contradicts the distinctness of the prime factors.
In the second case we have to be more careful when proving that µ and T with the desired
properties exist. Once again, we will suppose that they do not exist, hence for no Ai with
ki > 0, i 6= m we have Ai

µ−→ A′i, otherwise this allows a transition that would fulfill the
conditions. Hence (by Lemma 1) we have dom(Ai) 6= ∅ for any i with ki > 0, i 6= m. Let
ṽ = dom(P) \ dom(Am) and consider

νṽ.P ≡ Akmm |νṽ.P ′ ∼l Akmm

where P ′ is P without the factor Akmm . Similarly

νṽ.Q ≡ |i νṽi.Alii

where ṽi = dom(Ai) ∩ ṽ.
As |dom(Akmm)| < |dom(P)| by induction hypothesis the factorization is unique. We cannot
have ṽi = ∅ for any i 6= m, as this contradicts the uniqueness of the factorization asAi 6∼l Am.
As Am is prime, we have that Am|R ∼l νṽi.Ai for some i 6= m and R. More precisely,
we have νṽi.Ai ∼l Alm for some l ≥ 1, as any other factorization of R would contradict
the primeness of Am. In fact, since Am is the biggest factor in which P and Q differ and by
Lemmas 9 and 1, we have l = 1.
We cannot haveQ ∼l Ai as this would directly give a factorization ofAi. Hence there has to be
another factor Ar which – by Lemma 1 – has either dom(Ar) 6= ∅ or can execute a transition
(or both).
If dom(Ar) 6= ∅, consider ṽ′ = dom(Q) \ dom(Ai). Then – as above – we have:

Q1 = νṽ′.Q ≡ Ai|νṽ′.Q′ ∼l νṽ′.P = P1

where Q′ is Q without the factor Ai.

If Ar
η−→ A′r, we have

Q ∼l Ai|Ar|S
η−→ Ai|A′r|S = Q1

where S is Q without Ai and Ar. By P ∼l Q there exists P1 with P
η−→ P1 ∼l Ai|A′r|S.

In both cases, we have a unique factorization by induction hypothesis. Additionally exp(Ai, Q1) =
1, and by the uniqueness of the factorization exp(Ai, P1) = exp(Ai, Q1) = 1. Let s be such
that dom(As) ∩ dom(Ai) 6= ∅, ls > 0. Such s exists because of dom(Am) (dom(Ai) and
dom(P) = dom(Q). Then by hypothesis As cannot do any transition, and exp(As, P1) =
exp(As, P) = 1, which contradicts exp(Am, P1) = 1 because of the conflicting domains.
Hence µ and T with the desired properties exist, and the rest of the proof is the same as above.

15

E Proof of Lemma 3

Lemma 3 (Cancellation Lemma). For any closed normed processes A, B and C, we have

A|C ∼l B|C ⇒ A ∼l B

Proof. As A, B and C are closed and normed, there exists a unique parallel factorization for each of them,
i.e. A ∼l A1| . . . |Ak,B ∼l B1| . . . |Bl andC ∼l C1| . . . |Cm. Thus we haveA|C ∼l A1| . . . |Ak|C1| . . . |Cm
and B|C ∼l B1| . . . |Bl|C1| . . . |Cm. These are prime factorizations, and by Theorem 2 they are unique.
As A|C ∼l B|C, they have to be identical. Hence k + m = l + m, thus k = l. We will show that this
implies that the factorizations of A and B have to be identical (up to ∼l), which implies A ∼l B. Consider
the following cases:

If k = 0, A ∼l 0. As l = k = 0, B ∼l 0, and A and B have the same prime factorization.
If k > 0, we have A ∼l A1| . . . |Ak. Let count(Ai, P) denote the number of prime factors Pr of

P with Pr ≈l Ai. Suppose that there exists a prime factor Ai with count(Ai, A) 6= count(Ai, B), and
count(Ai, A|C) = count(Ai, A) + count(Ai, C) 6= count(Ai, B) + count(Ai, C) = count(Ai, B|C),
which contradicts the fact that A|C and B|C have the same prime factorization.

F Proof of Lemma 4

Lemma 4. For any process P that does not contain restriction (“ν”) or conditionals (“if then else”),
we have that P is finite if and only if P is normed.

Proof. It is easy to see that any finite process is normed. To show the converse, we use induction on the
structure of P .

• P = 0: P is obviously finite and normed.

• P = {M/x}: P is finite and normed.

• P = Q|R: If N (P) < ∞ then N (Q) < ∞ and N (R) < ∞. By induction hypothesis |Q|t < ∞
and |R|t <∞, hence |P |t <∞.

• P =!Q: If N (P) <∞ then |Q|t = 0, hence |P |t <∞.

• P = in(u, x).Q or P = out(u,M).Q: If N (P) < ∞ then N (Q) < ∞. By induction hypothesis
|Q|t <∞, hence |P |t <∞.

G Proof of Lemma 5

Lemma 5. If for a closed process A with dom(A) = ∅ there does not exist a sequence of transitions
A→∗ α−→ A′, then we have A ≈l 0.

Proof. Suppose there is no sequence of transitions A →∗ α−→ A′. We will show that this implies A ≈l 0.
Consider the relation R = {(A′, 0)|A →∗ A′}. We will show that it fulfills the conditions of labeled
bisimilarity:

1. By hypothesis for any (C,D) ∈ R we have ∅ = dom(A) = dom(C) (as internal reductions do not
change the frames, Lemma 7) and dom(D) = dom(0) = ∅, hence C ≈s D.

16

2. Let (C,D) ∈ R. Hence A →∗ C and D = 0. If C → C ′, we have A →∗ C ′, hence (C ′, 0) ∈ R
with 0 →∗ 0. Note that symmetrically 0 cannot perform any transition, hence the condition is
trivially true.

3. The last condition is trivially true. Suppose there exists (C,D) ∈ R such that C α−→ C ′, then we
have A →∗ α−→ C ′, which contradicts the hypothesis. Symmetrically by definition 0 cannot perform
any transitions at all.

As we have (A, 0) ∈ R, this gives A ≈l 0, which we wanted to show.

As a direct consequence, this gives us that any non-zero process with empty domain can do a visible
transition.

Corollary 1. For every closed process A with dom(A) = ∅ and A 6≈l 0 there exists a sequence of
transitions A→∗ α−→ A′.

H Proof of Lemma 7
Lemma 7. For any closed process A with A→∗ A′, we have dom(A) = dom(A′).

Proof. The domain of a process is the set of variables for which it defines a substitution. No transition can
destroy an existing active substitution. Similarly, if A executes only internal reductions, A cannot create
any new active substitutions, hence dom(A) = dom(A′).

I Proof of Lemma 8
Lemma 8. For any closed process A with dom(A) 6= ∅ and for which no sequence of transitions A→∗ α−→
A′ exists, we have A ≈l A′ for any A′ with A→∗ A′.

Proof. Consider the relation R = {(X,Y)|A →∗ X and A →∗ Y }. We will show that it fulfills the
conditions of labeled bisimilarity:

1. Obviously we have A ≈s A, which is closed under internal reductions (as they do not change the
frames). Hence for any (C,D) ∈ R we have C ≈s D.

2. Let (C,D) ∈ R. Hence A→∗ C and A→∗ D. If C → C ′, we have A→∗ C ′, hence (C ′, D) ∈ R
(and symmetrically for D → D′).

3. The last condition is trivially true. Suppose there exists (C,D) ∈ R such that C α−→ C ′, then we
have A→∗ α−→ C ′, which contradict the hypothesis. The symmetrical case is analogous.

Obviously we have (A,A′) ∈ R for any A′ with A→∗ A′.

J Proof of Lemma 9

Lemma 9. LetA be a closed extended process andX ⊆ dom(A). Then νX.A
µ−→ νX.A′ impliesA

µ−→ A′

where µ can be a silent or a visible transition.

Proof. Any transition by νX.A can be executed by A as the SCOPE-rule may only forbid certain transi-
tions.

17

K Proof of Theorem 3

Theorem 3 (Existence of Factorization). Any closed finite active process P can be expressed as the parallel
product of parallel primes, i.e. P ≈l P1| . . . |Pn where for all 1 ≤ i ≤ n Pi is weakly parallel prime.

Proof. By induction on the visible depth of P , and on the size of the domain dom(P).

• If |P |v = 0:

– If |dom(P)| = 0, then P ≈l 0 (by Lemma 5), hence the factorization is the empty product.

– If |dom(P)| > 0, then P 6≈l 0, hence P is either parallel prime itself (in which case we
are done), or can be written as P ≈l Q|R with Q,R 6≈l 0 (by the definition of parallel
prime). As we have dom(P) = dom(Q) ∪ dom(R) with dom(Q) ∩ dom(R) = ∅ and
|dom(Q)|, |dom(R)| > 0 (since Q,R 6≈l 0), we have |dom(Q)|, |dom(R)| < |dom(P)|,
hence we can use the induction hypothesis to conclude.

• If |P |v > 0:

– If |dom(P)| = 0: If P ≈l 0, the factorization is the empty product. Otherwise P is either
parallel prime itself, or can be written as P ≈l Q|R. Then we have dom(P) = dom(Q) =
dom(R) = ∅, and |Q|v, |R|v > 0 (by Lemma 5), hence |Q|v, |R|v < |P |v and we can apply
the induction hypothesis.

– If |dom(P)| > 0, then P 6≈l 0, hence P is either parallel prime itself, or can be written as
P ≈l Q|R. Suppose |Q|v, |R|v > 0, hence |Q|v, |R|v < |P |v and we can apply the induction
hypothesis. Suppose w.l.o.g. |Q|v = 0 < |P |v , then |R|v = |P |v . Since Q 6≈l 0 by Lemma 5
this implies |dom(Q)| > 0, hence |dom(R)| < |dom(P)|, and we can use the induction
hypothesis to conclude.

L Proof of Theorem 4
Definition 11 (“�”). For two finite processes P and Q we have P � Q iff

• |P |v > |Q|v or

• P = Q or

• if not Q→∗ P

i.e. P has either a longer visible trace than Q or Q 6= P cannot be reduced to P using internal reductions.

Note that this is well-defined, as P →∗ Q and Q →∗ P with P 6= Q would imply that P and Q are
not finite. The order is not total, which is however not necessary for our proofs: We can simply choose one
of the possibly multiple maximal processes.

Theorem 4 (Uniqueness of Factorization). The parallel factorization of a closed finite process P is unique
(up to ≈l).

Proof. We will prove a slightly different statement which implies the uniqueness of the factorization: Any
closed finite processes Pf and Qf with Pf ≈l Qf have the same factorization (up to ≈l).

Suppose Pf ≈l Qf , but Pf and Qf have different factorizations:

Pf = P1|P2| . . . |Po1
Qf = Q1|Q2| . . . |Qo2

18

We can rewrite this factorization as follows:

P = Ak11 |A
k2
2 | . . . |Aknn

Q = Al11 |A
l2
2 | . . . |Alnn

where P ≈l Pf and Q ≈l Qf , the Ai’s are distinct (i.e. for i 6= j we have Ai 6≈l Aj) and ki, li ≥ 0.
We will show that this leads to a contradiction by induction on a = |P |t + |Q|t, and inside each case

by induction on the size of the domain b = |dom(P)| = |dom(Q)|.

• If a = 0:

– If b = 0, then P ≈l 0 (by Lemma 5), hence the factorization is the unique empty product.
– If b > 0, then P 6≈l 0.

Let exp(A,R) denote the exponent of prime A in the unique factorization of R.
Note that since ∀i Ai 6≈l 0 and a = |P |t + |Q|t = 0, we have dom(Ai) 6= ∅ by Lemma 5,
which implies ki, li ≤ 1 as we cannot have two substitutions defining the same variable.
Let m be such that km 6= lm. Without loss of generality we assume 1 = km > lm = 0.
Obviously we have dom(P) = dom(Q). Let ṽ = dom(P) \ dom(Am). Then we have (by
Lemma 1 and rules ALIAS and NEW-PAR):

νṽ.P ≡ Am|νṽ.P ′ ≈l Am
where P ′ is P without the factor Am. Similarly

νṽ.Q ≡ |i∈I νṽi.Ai|i/∈I νṽi.Alii ≈l |i∈I νṽi.Ai
where I = {i|dom(Ai) ∩ dom(Am) 6= ∅ and li = 1} and ṽi = dom(Ai) ∩ ṽ.
By νṽ.P ≈l νṽ.Qwe haveAm ≈l |i∈I νṽi.Ai. If |I| = 0, we haveAm ≈l 0 which contradicts
the hypothesis that Am is prime. Similarly for |I| > 1, we have a factorization for Am into
several processes, which also contradicts Am prime.
For |I| = 1 we have the following cases: Let i denote the only index in I . If ṽi = ∅, we
have a contradiction to the distinctness hypothesis of the Aj’s since Am ≈l Ai with m 6= i as
lm = 0 6= li = 1.
If ṽi 6= ∅ we have dom(Am) ⊂ dom(Ai). Now consider ṽ′ = dom(Q) \ dom(Ai). Then - as
above - we have:

νṽ′.Q ≡ Ai|νṽ′.Q′ ≈l Ai
where Q′ is Q without the factor Ai. Similarly

νṽ′.P ≡ |j∈I′ νṽ′j .Aj |j /∈I′ νṽ′j .A
lj
j ≈l |j∈I′ νṽ

′
j .Aj

where I ′ = {j|dom(Aj) ∩ dom(Ai) 6= ∅ and lj = 1} and ṽ′j = dom(Aj) ∩ ṽ′. Since
dom(Am) ⊂ dom(Ai) and dom(P) = dom(Q) we have |I ′| > 1, hence Ai ≈l |j∈I′ νṽ′j .Aj
gives a factorization of Ai, which contradicts the hypothesis that it is prime.

• If a > 0:

– If b = 0: If P ≈l 0 then the (empty) factorization is unique. Hence suppose 0 6≈l P ≈l Q.
Let m be such that km 6= lm, and Am � Ai for any Ai with li 6= ki. Without loss of generality
we assume km > lm.
In the following we will use the fact that P ≈l Q and hence Q can simulate each transition of
P and vice versa. Assume P →∗ µ−→ P ′ such that |P |v = |P ′|v+1, then the labeled bisimilarity
gives us Q→∗ µ−→→∗ Q′ with P ′ ≈l Q′. For our proof it will be important that to simulate this

transition in Q the prime factors cannot communicate. Suppose two prime factors Ar
β−→ R

and As
β̄−→ S communicated (through an internal reduction), then this has consumed at least

two visible actions, hence |Q′|v ≤ |Q|v − 2 = |P |v − 2 = |P ′|v − 1 < |P ′|v . Thus P ′ and Q′

do not have the same visible depth, which contradicts that fact that they are bisimilar.
We now analyze different cases:

19

∗ If P ≈l Akmm , i.e. P is the power of a prime:
Note that Q cannot contain any prime factor Ar, r 6= m with Ar � Am: Suppose lr > 0.
By assumption, Am is the maximal (w.r.t. �) prime factor in which P and Q differ, hence
kr = lr > 0. This contradicts P ≈l Akmm .
If km = 1 (i.e. P is prime), then Q is prime as well, and since 1 = km > lm we have
Q ≈l Aj for some j 6= m, which gives Am ≈l Aj , which contradicts the distinctness of
the prime factors.
If km > 1:
Note that this implies dom(Am) = ∅ as otherwise we would have several substitutions
defining the same variables. Assume lm = 0, then for some µ ∈ Act Am →∗

µ−→ R (by
Am 6≈l 0 and Corollary 1) with |R|v = |Am|v − 1, so P →∗ µ−→ P ′ with exp(Am, P

′) =

km − 1 > 0. Since P ≈l Q, there exists a Q′ with Q →∗ µ−→→∗ Q′. For any such Q′ we
have exp(Am, Q

′) = 0 since Am is maximal (w.r.t. �), li = 0 for all Ai with |Ai|v >
|Am|v and since communication between different prime factors – which could through
the exchange of secret channels lead to bigger (in the sense of visible depth) new prime
factors – is not possible. As P ′ and Q′ have a unique prime factorization by induction
hypothesis, we have a contradiction with exp(Am, P

′) = km − 1 > 0 = exp(Am, Q
′).

Hence assume lm > 0:
Suppose lm < km−1: AsAm →∗

µ−→ R, we have P →∗ µ−→ P ′ with exp(Am, P
′) = km−

1 and since P ≈l Q there exists Q′ with Q→∗ µ−→→∗ Q′. Hence we have exp(Am, P
′) =

km − 1 > lm ≥ exp(Am, Q
′) which contradicts P ≈l Q using the induction hypothesis.

Hence assume lm = km − 1:
We can write Q = S|Almm , where S is composed of prime factors. We have S 6≈l Am as
the opposite contradicts either the distinctiveness of the prime factors or the fact that Am
is prime. Since ∅ = dom(Am) = dom(P) = dom(Q) = dom(S) we have S 6≈s Am,
hence either S or Am can do a transition the other cannot match. This transition can be a
visible transition or an internal reduction.
Suppose S

µ−→ S′ with |S′|t < |S|t such that no Am can match the transition. As we have
P ≈l Q, S|Almm

µ−→ S′|Almm = Q′ gives us that P →∗ µ−→→∗ P ′ (w.l.o.g., otherwise P →∗
P ′). Since this transition reduced the total depth, we can apply the induction hypothesis
and both Q′ and P ′ have a unique prime factorization, hence P ′ = R|Akm−1

m where
Am →∗

µ−→→∗ R (or Am →∗ R respectively). By the uniqueness of the factorization we
also have R ≈l S′, which contradicts the assumption.
Suppose Am

µ−→ R with |R|t < |Am|t such that S cannot match the transition. As we
have P ≈l Q, P = Akmm

µ−→ R|Akm−1
m = P ′ gives us that Q →∗ µ−→→∗ Q′ (w.l.o.g.,

otherwise Q →∗ Q′). Since this transition reduced the total depth, we can apply the
induction hypothesis and both Q′ and P ′ have a unique prime factorization, hence Q′ ≈l
R|Akm−1

m where R ≈l S′. Since Am is the biggest factor in which P and Q differ, we
have S →∗ µ−→→∗ R (or S →∗ R respectively), which contradicts the assumption.
∗ If there exists j 6= m such that kj > 0:

Let µ ∈ Act, T be such that P →∗ µ−→ T and |P |v = |T |v + 1 and for all ν such
that P →∗ ν−→ P ′ with |P |v = |P ′|v + 1 we have exp(Am, P

′) ≤ exp(Am, T). Then
exp(Am, T) ≥ km. We will now show that such µ, T exist.
Suppose no such µ, T exist. Hence for no Ai with ki > 0, i 6= m we have Ai →∗

µ−→
A′i, otherwise this allows a transition that would fulfill the above conditions. Hence (by
Lemma 5) we have dom(Ai) 6= ∅ for any i with ki > 0, i 6= m, which contradicts
|dom(P)| = 0.
As P ≈l Q there exists Q′ with Q →∗ µ−→→∗ Q′ and Q′ ≈l T . Hence |Q|v = |Q′|v + 1

and ∃At with At →∗
µ−→→∗ R as there can be no communication between the Ai’s (as

shown above).
If |At|v ≤ |Am|v then exp(Am, Q

′) ≤ lm < km ≤ exp(Am, T), which gives the contra-
diction to the induction hypothesis. Note that as Am is the maximal prime factor in which

20

P and Q differ, Aj →∗ Am implies kj = kl, hence Q′ cannot contain additional Am as a
result of internal reductions - this would imply exp(Aj , Q

′) 6= exp(Aj , P
′).

If |At|v > |Am|v then t 6= m, and kt = lt > 0 (as Am is maximal). Consider
P →∗ µ−→→∗ P ′ = Ak11 | . . . |A

kt−1
t | . . . |Aknn |R with exp(Am, P

′) = km + exp(Am, R).
Hence exp(Am, Q

′) ≤ lm + exp(Am, R) < km + exp(Am, R) = exp(Am, P
′), which

contradictsQ′ ≈l P ′. Hence the only option forQ to match this transition would be to use
a ever bigger As, in which case we can however apply the same argument (ks = ls). As
the number of prime factors is finite, we have that Q 6≈l P which gives the contradiction.
Note that – as above – Q′ cannot contain additional Am as a result of internal reductions.

– If b > 0: This is essentially the same proof as above. In the first case (P is a power of a prime),
we only have to consider the case km = 1 as dom(Am) 6= ∅. Hence P is prime, and then Q
is prime as well, and since 1 = km > lm we have Q ≈l Aj for some j 6= m, which gives
Am ≈l Aj , which contradicts the distinctness of the prime factors.
In the second case we have to be more careful when proving that µ and T with the desired
properties exist. Once again, we will suppose that they do not exist, hence for no Ai with
ki > 0, i 6= m we have Ai →∗

µ−→ A′i, otherwise this allows a transition that would fulfill the
conditions. Hence (by Lemma 5) we have dom(Ai) 6= ∅ for any i with ki > 0, i 6= m. Let
ṽ = dom(P) \ dom(Am) and consider

νṽ.P ≡ Akmm |νṽ.P ′ ≈l Akmm

where P ′ is P without the factor Akmm . Similarly

νṽ.Q ≡ |i νṽi.Alii

where ṽi = dom(Ai) ∩ ṽ.
As |dom(Akmm)| < |dom(P)| by induction hypothesis the factorization is unique. We cannot
have ṽi = ∅ for any i 6= m, as this contradicts the uniqueness of the factorization asAi 6≈l Am.
As Am is prime, we have that Am|R ≈l νṽi.Ai for some i 6= m and R. More precisely,
we have νṽi.Ai ≈l Alm for some l ≥ 1, as any other factorization of R would contradict
the primeness of Am. In fact, since Am is the biggest factor in which P and Q differ and by
Lemmas 5 and 9, we have l = 1.
We cannot have Q ≈l Ai as this would directly give a factorization of Ai. Hence there has to
be another factor Ar which – by Lemma 5 – has either dom(Ar) 6= ∅ or can execute a visible
transition (or both).
If dom(Ar) 6= ∅, consider ṽ′ = dom(Q) \ dom(Ai). Then – as above – we have:

νṽ′.Q ≡ Ai|νṽ′.Q′ = Q1 ≈l νṽ′.P = P1

where Q′ is Q without the factor Ai.
If Ar →∗

η−→ A′r, we have

Q ≈l Ai|Ar|S →∗
η−→ Ai|A′r|S = Q1

where S isQwithoutAi andAr. By P ≈l Q there exists P1 with P →∗ η−→→∗ P1 ≈l Ai|A′r|S.
In both cases, we have a unique factorization by induction hypothesis. Additionally exp(Ai, Q1) =
1, and by the uniqueness of the factorization exp(Ai, P1) = exp(Ai, Q1) = 1. Let s be such
that dom(As) ∩ dom(Ai) 6= ∅, ls > 0. Such s exists because of dom(Am) (dom(Ai) and
dom(P) = dom(Q). Then by hypothesisAs cannot do any visible transition, and by Lemma 8
exp(As, P1) = exp(As, P) = 1, which contradicts exp(Am, P1) = 1 because of the conflicting
domains.
Hence µ and T with the desired properties exist, and the rest of the proof is the same as above.

21

M Proof of Lemma 6

Lemma 6 (Cancellation Lemma). For any closed finite processes A, B and C, we have

A|C ≈l B|C ⇒ A ≈l B

Proof. As A, B and C are finite, there exists a unique parallel factorization for each of them, i.e. A ≈l
A1| . . . |Ak, B ≈l B1| . . . |Bl and C ≈l C1| . . . |Cm. Thus we have A|C ≈l A1| . . . |Ak|C1| . . . |Cm and
B|C ≈l B1| . . . |Bl|C1| . . . |Cm. These are prime factorizations, and by Theorem 4 they are unique. As
A|C ≈l B|C, they have to be identical. Hence k +m = l+m, thus k = l. We will show that this implies
that the factorizations of A and B have to be identical (up to ≈l), which implies A ≈l B. Consider the
following cases:

If k = 0, A ≈l 0. As l = k = 0, B ≈l 0, and A and B have the same prime factorization.
If k > 0, we have A ≈l A1| . . . |Ak. Let count(Ai, P) denote the number of prime factors Pr of

P with Pr ≈l Ai. Suppose that there exists a prime factor Ai with count(Ai, A) 6= count(Ai, B), and
count(Ai, A|C) = count(Ai, A) + count(Ai, C) 6= count(Ai, B) + count(Ai, C) = count(Ai, B|C),
which contradicts the fact that A|C and B|C have the same prime factorization.

22

	Introduction
	Our Contributions
	Outline of the Paper

	Preliminaries
	Applied -Calculus
	Depth and Norm of Processes

	Decomposition w.r.t. Strong Labeled Bisimilarity
	Decomposition w.r.t. Weak Labeled Bisimilarity
	Conclusion
	Related Work
	Conclusion and Future Work
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Lemma 3
	Proof of Lemma 4
	Proof of Lemma 5
	Proof of Lemma 7
	Proof of Lemma 8
	Proof of Lemma 9
	Proof of Theorem 3
	Proof of Theorem 4
	Proof of Lemma 6

