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Abstract

The behaviour of a space-modulated, so-called ”argumental” oscillator
is studied, which is represented by a model having an even-parity space-
modulating function. Analytic expressions of a stability criterion and of
discrete energy levels are given. Using an integrating factor and a Van
der Pol representation in the (amplitude, phase) space, an approximate
implicit closed-form of the solution is given. The probability to enter
a stable-oscillation regime from given initial conditions is calculated in
symbolic form. These results allow an analytic approach to stability and
bifurcations of the system. They also allow an assessment of the risk of oc-
currence of sustained large-amplitude oscillations, when the phenomenon
is to be avoided, and an assessment of the conditions to apply to obtain
oscillations whenever the phenomenon is desired.
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1 Introduction

In the 1920s, physicists were searching for a device to divide the mains current
frequency in order to manufacture mains-driven clocks. As no electronics were
available, they studied various inherently frequency-dividing oscillators. Among
them was a pendulum designed by Béthenod in 1929 [1], that oscillated at a
low frequency, typically 1 Hz, when driven by the mains at 50 Hz. This design
was inspired by a remark made by Soulier [9] in 1928 about an oscillating bar.
Before, Cornu [7] and Féry [12] had designed pendulums based on magnetic
forces, aimed at the synchronization of clocks, but with a pendulum frequency
equal to the excitation frequency. Béthenod’s oscillator was a pendulum fitted
with a steel sphere at the tip of the rod. The sphere could sense the external
electromagnetic force only when it was near the lower equilibrium position of
the pendulum. Thus, there was a spatial modulation of the force. The force
was due to a magnetic field created by a solenoid with vertical axis, carrying an
alternating current. The force could only be attractive. Béthenod presented ob-
servations and calculation using a perturbation method. He did not go deeper
into this phenomenon. In this paper, this type of oscillator is referred to as
“Béthenod’s pendulum” or “Type A oscillator” [10].

In the 1960s, Russian researchers studied an oscillator subjected to a spatially-
localized external force; the oscillator operated at a frequency much lower than
that of the external force. D. I. Penner et al. coined the term “argumental
oscillations” [14, 15] from the fact that the interaction between the oscillator
and the excitation depends on the ”argument” of a space-localization function,
which we call the H-function hereinafter. The oscillator was a pendulum fitted
with a permanent electric charge at the tip of the rod. The charge crossed a
parallel-plate capacitor connected to an harmonic voltage, and could sense a
force only when passing through the capacitor. From that time on, Doubochin-
ski [10], who was in Penner’s team, studied this type of oscillator, as well as
other related types, and made many publications. He used a pendulum fitted
with a permanent magnet at the tip of the rod, whose magnetic moment was
aligned with the rod. In this set-up, the magnet can sense the external electro-
magnetic force only when it is near the lower equilibrium position. The force is
due to a magnetic field created by a coil with horizontal axis perpendicular to
the plane of displacement of the rod and the tip. This force can be attractive or
repulsive, depending on the polarity of the current producing the magnetic field.
In this paper, this type of oscillator is referred to as “Doubochinski’s pendulum”
or “Type B oscillator”. Doubochinski modelled this phenomenon and produced
mathematical results regarding the resolution of the system [11]. He modelled
the spatial localization of the interaction zone by means of a gate function. He
also designed physical models and carried out a vast number of measurements.
He also built many devices using this phenomenon.

Motion of oscillators at a frequency lower than the excitation frequency has
been studied: argumental oscillations, observed in [16]. An electronic argu-
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mental oscillator with a gate function used as dependent-variable localization
function has been studied in [8]. A new formula about the magnetic interaction
between an external force and an argumental oscillator is given in [3]. Pre-
liminary experimental results about six argumental oscillators are given in [5].
Modeling and experimental results about six argumental oscillators are given
in [6]. A symbolic formula giving the stable-regime establishment probability of
an argumental oscillator is exposed in [4].

2 Canonical second-order equation of motion.

To simplify the expression of the system behaviour, one classically uses the
reduced time τ = ω0t, where ω0 is the natural angular velocity of the oscillator.
Using from now on the dot notation to refer to the derivatives with respect to τ ,
we shall distinguish two types of oscillator, which we call “Type A” and “Type
B”. The second-order equation of motion for the Type A oscillators is:

α̈+ 2βα̇+ α+ µα3 = AH(α) sin2

(

ν

ω0

τ

)

(1)

where β is a dissipation coefficient, µ is the Duffing coefficient, A is a constant,
H is an odd function of α, and ν is the external harmonic excitation’s angular
velocity. An example of a Type-A H-function is

H(α) =
α

(1 + γα2)3
, (2)

with γ being a constant.
For the Type B oscillators, the equation is:

α̈+ 2βα̇+ α+ µα3 = AH(α) sin

(

ν

ω0

τ

)

(3)

where H is an even function of α. An example of a Type-B H-function is

H(α) =
1− γα2

(1 + γα2)2
, (4)

with γ being a constant.
The “Type A” oscillator in this paper is a Type II-1 oscillator as of our article [6],
while the “Type B” oscillator is a Type I-2 oscillator.
We can remark that the equations (1) and (3) are similar. The only formal

difference is in the expression of the external force, which is in sin2
(

ν

ω0

τ

)

for

the Type A oscillator, and in sin

(

ν

ω0

τ

)

for the Type B oscillator. This will

lead to parity considerations in the averaging process, but we shall see later on
that this doesn’t imply a formal difference in the averaged system.
[11] used a coarser approximation to a Type-B H-function by putting H(α) =
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rect(2
α

α0

), where rect denotes the rectangular function, i.e. H(α) = 1 if |α| < α0

and H(α) = 0 otherwise. We denote this model by the Type-C model. This
approximation was sufficient to elaborate averaged equations and to derive an
expression of the amplitude of the external force as a function of the oscillator
amplitude, leading to an explanation of a discrete set of stable amplitudes.
We shall use herein our smoother and more precise Type-B H-function, as
of (4), with the advantage of handling a H-function which is C∞: this will
allow us to eliminate artifacts in the ”A-function” of the Type-C model, and to
derive an approximate symbolic solution leading to an expression of the capture
probabilities.

3 Calculus workflow.

Having available the reduced-time second-order differential equation of motion
for both oscillators, one considers that a perturbation method could be an ap-
propriate approach, because the oscillator is almost always in a free-run mode.
Only at certain narrow locations in space will it “feel” the external force. More-
over, this force is of small amplitude. Keeping the expressions under symbolic
form, we shall go through four steps to get to the capture probabilities.
The first and second steps are classical, and have been described by Poincaré
xxx and [2], and used by [11]. So we shall only outline the calculus for these
two steps. Our contribution to the two first steps is the symbolic expression of
the Fourier series for the H-functions of the Type-A and Type-B oscillators and
the Van der Pol polar representation of the averaged amplitude and phase.

• The first step of the calculus is to replace the second-order differential
equation of motion by two first-order equations to get the classical stan-
dard system of equations.

• The second step is to use the averaging method to obtain an averaged
system of equations. The idea here is to use a Fourier series of the H-
function to apply the averaging calculus. As the external force is harmonic,
we can expect simplifications.

Our contribution consists of the third and fourth steps, which are as follows,
and which will be detailed hereinafter:

• The third step is to find an integrating factor to approximately solve the
averaged system, while keeping the symbolic form of the equations.

• The fourth step is to use the approximate symbolic solution to derive the
capture probabilities, i.e. the probabilities to enter a stable regime.
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4 First step: building the standard system of
equations.

Starting from the equation of motion under its general form (3), one defines a
function X by:

X(τ) = −2β
dα

dτ
− µα3 +AH(α) sin

(

ν

ω0

τ

)

. (5)

Thus equation (3) can be rewritten:

d2α

dτ2
+ α = X(τ, α, α̇). (6)

By observing the experimental oscillators and corresponding numerical simula-
tions, one concludes that the motion is close to that of a free-running oscillator,
with slowly varying amplitude and phase. Hence one introduces the slow-varying
amplitude a(τ) and phase ϕ(τ) as two new independent variables, which will
replace the variables α and α̇. The motion expressed as a function of t will be
α(t) = a(t) sin(ωt+ϕ(t)) = a(τ) sin(ρτ +ϕ(τ)), where ω is a parameter close to

ω0, and ρ =
ω

ω0

. As these two new independent variables are chosen, we found

it natural to introduce a Van der Pol representation, with a as abscissa and ϕ as
ordinates. Alternatively, we shall also use a polar Van der Pol representation,
i.e. a as radius and ϕ as angle.

Define the change of variables by putting:

α(τ) = a(τ) sin(ρτ + ϕ(τ)), (7)

α̇(τ) = a(τ)ρ cos(ρτ + ϕ(τ)). (8)

This is natural, because equation (8) is obtained by derivating equation (7) with
a and ϕ taken as constant. This is simply the implementation of the physical
observation that a and ϕ vary slowly with respect with the period of the free-
running oscillator.
Differentiating (7) and comparing the result with (8), one gets:

ȧ sin(ρτ + ϕ) + aϕ̇ cos(ρτ + ϕ) = 0 (9)

Differentiating (8) and putting the result into (6), one gets:

ȧ =
cos(θ)

ρ
(X(τ, a sin(θ), aρ cos(θ)) + a sin(θ)(ρ2 − 1)), (10)

where θ = ρτ + ϕ. This is the first differential equation involving only the two
new variables a and ϕ.
Substituting in (9) the expression (10) for ȧ, one gets:

ϕ̇ = − 1

aρ
(a sin(θ)(ρ2 − 1) +X(τ, a sin(θ), aρ cos(θ))) sin(θ) (11)

which is the second differential equation involving only the two new variables a
and ϕ.
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5 Second step: averaging the standard system
of equations.

5.1 Case H = even function (Type B oscillators).

In this section, one uses the variable θ = ρτ + ϕ as defined in the previous
section, and one supposes that H(α) is an even function of α. That is, we focus
on oscillators of Type B. We shall study the oscillators of Type A thereafter.
One has to average equations (10) and (11) with respect to θ. To do so, one
forms the Fourier series of H(α) = H(a sin(θ)).

5.1.1 Averaging equation (10).

In equation (10), replacing X(τ, a sin(θ), aρ cos(θ)) by its expression given in
(5), one gets, taking into account (7) and (8):

ȧ =
cos(θ)

ρ

(

−2βα̇− µα3 +AH(α) sin

(

ν

ω0

τ

)

+ a sin(θ)(ρ2 − 1)

)

=
cos(θ)

ρ

(

−2βaρ cos(θ) − µa3 sin3(θ) +AH(a sin(θ)) sin

(

ν

ω0

τ

)

+ a sin(θ)(ρ2 − 1)

)

.

One has to average ȧ with respect to θ.

Knowing that cos2(θ) =
1

2
, cos(θ) sin3(θ) = 0, and cos(θ) sin(θ) = 0, one gets :

ȧ = −βa+
A

ρ
H(a sin(θ)) cos(θ) sin

(

ν

ω0

τ

)

(12)

Knowing that H is an even function of α, one introduces the Fourier series of
H(a sin(θ)), namely

H(a sin(θ)) =
+∞
∑

q=0

cq(a) cos(2qθ) (13)

with

cq(a) =
2

π

∫ π

0

H(a sin(η)) cos(2qη)dη. (14)

At this point, define a real number n by n =
ν

ω
=

ν

ρω0

. It holds:

H(a sin(θ)) cos(θ) sin

(

ν

ω0

τ

)

=

+∞
∑

q=0

cq(a) cos(2qθ) cos(θ) sin

(

ν

ω0

τ

)

=
+∞
∑

q=0

cq(a)cos(2qθ) cos(θ) sin

(

ν

ω0

τ

)

=







−1

4
sin(nϕ)(cm(a) + cp(a)) if n is an odd integer,

0 otherwise,
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with m =
n− 1

2
and p =

n+ 1

2
.

Consequently, if n is an odd integer, one gets the first averaged equation :

ȧ = − A

4ρ
S(a) sin(nϕ) − βa, (15)

with m =
n− 1

2
, p =

n+ 1

2
, and S(a) = cm(a) + cp(a).

and otherwise, one has:
ȧ = −βa. (16)

That is, if n is not an odd integer, the averaged equation is the same as for n
odd integer, except that one must make A = 0.
The various possible values of n will be discussed hereafter.

5.1.2 Averaging equation (11).

From equation (11), one gets, in the same way:

ϕ̇ = − 1

aρ
(a sin(θ)(ρ2 − 1)− 2βα̇− µα3 +AH(α) sin

(

ν

ω0

τ

)

) sin(θ)

=
sin(θ)

aρ

(

−a sin(θ)(ρ2 − 1) + 2βaρ cos(θ) + µa3 sin3(θ)−AH(a sin(θ)) sin

(

ν

ω0

τ

))

.

One has to average ϕ̇ with respect to θ. In the same way as for the averaging
of equation (10), one has:

H(a sin(θ)) sin(θ) sin

(

ν

ω0

τ

)

=







1

4
(cm(a) + cp(a)) cos(nϕ) if n is an odd integer,

0 otherwise.

Knowing that sin2(θ) =
1

2
, sin4(θ) =

3π

8
, and cos(θ) sin(θ) = 0, one gets, if n

is an odd integer:

ϕ̇ =
1− ρ2

2ρ
+

3π

8

µa2

ρ
− A

4aρ
cos(nϕ)(cm(a)− cp(a)), (17)

and otherwise:

ϕ̇ =
1− ρ2

2ρ
+

3π

8

µa2

ρ
. (18)

That is, here again, as for the averaging of equation (10), if n is not an odd
integer, the averaged equation is the same as for n odd integer, except that one
must make A = 0.
In equation (17), define an by:

ρ2 =

(

1

n

ν

ω0

)2

=
3µa2n
4

+ 1. (19)
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Then
1− ρ2

2ρ
= −3µa2n

8
, and equation (17) can be written as follows:

ϕ̇ =
3µ

8ρ
(a2 − a2n)−

A

4aρ
cos(nϕ)D(a). (20)

with m =
n− 1

2
, p =

n+ 1

2
, and D(a) = cm(a)− cp(a).

And if n is not an odd integer, one has, putting A = 0 in (20):

ϕ̇ =
3µ

8ρ
(a2 − a2n). (21)

5.1.3 Conclusion: the averaged system for Type B oscillators.

The averaged system can now be formed, consisting of equations (15) and (20):











ȧ = − A

4ρn
S(a) sin(nϕ)− βa

ϕ̇ =
3µ

8ρn
(a2 − a2n)−

A

4aρn
cos(nϕ)D(a).

(22)

The possible values of n. Critical value of n.

In this paragraph, we shall study the link between ν, ω0, n, and the amplitudes
of the free oscillator. This will enable us to give a physical sense to ρ.
Recall the system of equations (16), (21), where the external force is null (A =
0):







ȧ = −βa

ϕ̇ =
3µ

8ρ
(a2 − a2n).

(23)

Now consider the case of the free undamped oscillator, looking for the stable
regime condition. We have β = 0 and therefore, the system (23) resolves to

a = a0 and ϕ̇ =
3µ

8ρ
(a20 − a2n), where a0 is the initial value of a. The regime will

be stable if ϕ̇ is null, that is, if a0 = an. Thus, the value an which appears in
equation (19) is the amplitude of the free undamped oscillator. This equation
shows that we must distinguish between the case µ > 0 and the case µ < 0. Let’s

introduce an integer critical value for n: ncrit =

[

ν

ω0

]

, where the square bracket

notation means here: “integer part of”. Define a real ε by
ν

ω0

=

[

ν

ω0

]

+ ε; we

have 0 6 ε < 1. From equation (19), we get a2n =
4

3µ

(

(

1

n

ν

ω0

)2

− 1

)

. Thus if

µ is negative, we must have

(

1

n

ν

ω0

)2

− 1 < 0, i.e. n >
ν

ω0

= ncrit + ε, which

reduces to n > ncrit + 1. We can take n as big as we want, provided we stay
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in the validity domain of the averaging method. The energy of the oscillator
increases as n increases.
Conversely, if µ is positive, we must have n <

ν

ω0

= ncrit + ε, which reduces to

n 6 ncrit; we must also have n > 3, because n is odd and must be greater than
1 (otherwise, we have a classical forced-oscillations system). We have a finite
number of possible stable amplitudes, and the energy increases as n decreases.
From equation (19), we can get the physical sense of ρ: this value gives an
indication of the energy of the system, and takes a discrete set of values. This
is why from now on, we shall write ρn instead of ρ, because to each value of n
is associated a value of ρ.
This discrete series of stable amplitudes and energy levels has been discussed
in [11].

5.2 Case H = odd function (Type A oscillators).

In this section, we suppose that H(α) is an odd function of α. That is, we focus
on oscillators of Type A.
The main difference between those two types of oscillator lies in the Fourier
series of the function H(a sin(θ)). Because this function of θ is odd, one has:

H(a sin(θ)) =
+∞
∑

q=0

cq(a) sin((2q + 1)θ) (24)

with

cq(a) =
1

π

∫ 2π

0

H(a sin(η)) sin((2q + 1)η)dη, (25)

and therefore:

H(a sin(θ)) cos(θ) sin2(
ν

ω0

τ) =







−1

8
(cm(a) + cp(a)) sin(nϕ) if n is an even integer,

0 otherwise,

with n =
2ν

ω
=

2ν

ρnω0

, m =
n

2
− 1 and p =

n

2
. Hence, in the same way as for

the Type B oscillator, one gets the following system of two averaged equations:

If n =
2ν

ω
=

2ν

ρnω0

is an even integer:











ȧ = − A

8ρn
S(a) sin(nϕ)− βa

ϕ̇ =
3µ

8ρn
(a2 − a2n)−

A

8aρn
cos(nϕ)D(a),

(26)

with S(a) = cm(a) + cp(a), D(a) = cm(a)− cp(a), m =
n

2
− 1 and p =

n

2
.

If n is not an even integer:






ȧ = −βa

ϕ̇ =
3µ

8ρn
(a2 − a2n).

(27)
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We can see that this averaged system is formally similar to the averaged system
(22) of the Type B oscillator, in which we would substitute A/2 for A. The
difference is in the expression of the functions S(a) and D(a). Therefore, we
shall use from now on the averaged system of the Type B oscillator whenever
we shall have to discuss a point which is not specific to the H-function, i.e.
whenever we will not have to give an explicit expression for the functions S(a)
and D(a).

5.3 Symbolic expressions of the S(a) and D(a) functions.

In order to be able to draw plots for given examples, we have to know the explicit
expressions of the S and D functions for a given oscillator. Therefore, we shall
calculate the cq(a) coefficients of the H-function for one Type-A oscillator and
one Type-B oscillator. From these coefficients, we will be able to express the
S and D functions. We shall also calculate these coefficients for the Type-C
oscillator, to show the artifacts it introduces.

5.3.1 Type A.

As an example of Type A oscillator, we take the original Béthenod pendulum
and our H-function as of (2). We have to calculate the generic r-th term of the
Fourier series of H(asin(θ), namely:

cr(a) =
1

π

∫ 2π

0

H(a sin(η)) sin((2r + 1)η)dη

=
1

π

∫ 2π

0

a sin(η)

(1 + γa2 sin2(η))3
sin((2r + 1)η)dη (28)

We define L(b, q,m) as:

L(b, q,m) =

∫ 2π

0

sin(η) sin(qη)

(1 + b sin2(η))m
dη.

Hence we have:
cr =

a

π
L(γa2, 2r + 1, 3).

and

S = cn−1 + cn+1 =
a

π
(L(γa2, 2n− 1, 3) + L(γa2, 2n+ 3, 3))

D = cn−1 − cn+1 =
a

π
(L(γa2, 2n− 1, 3)− L(γa2, 2n+ 3, 3))

12



Then, using [13, §3.616-7], we find:

L(b, q,m) =
1

2

1
(

1 + b
2

)m (M(q − 1, g,m)−M(q + 1, g,m)),with

M(s, g,m) =

∫ 2π

0

cos(sη)

1− g cos(2η))m
dη

=
2m+1

gm
π

fn−m(f2 − 1)2m−1

m−1
∑

k=0

(

m+ n− 1

k

)(

2m− k − 2

m− 1

)

(f2 − 1)k

with n =
s

2
, g =

b

2 + b
and f =

1

g
+

√

1

g2
− 1.

Finally, we find that some approximations are possible. If q ≫ 5 and
√
1 + b ≫

1, we have:

L(b, q, 3) ≈ π

8
√
b

(

6 + 4
q

b
+ 36

q2

b2

(

1 +
106

36b
+

308

36b2
+

32

36b3

))

.

And if q < b and b ≫ 106

36
, we have:

L(b, q, 3) ≈ π

8
√
b

(

6 + 4
q

b
+ 36

q2

b2

)

.

5.3.2 Type B.

As of (4), we have H(α) =
1− γα2

(1 + γα2)2
and H(a sin(η)) =

+∞
∑

0

cq cos(2qθ), and

therefore:

cq =
1

π

∫ 2π

0

1− γa2 sin2(η)

(1 + γa2 sin2(η))2
cos(2qη)dη,

and we find, using [13, §3.613] and after a few manipulations:

cq(a) = 2
1 + 2q

√

1 + γa2

(1 + γa2)3/2

(

1−
√

1 + γa2

a
√
γ

)2q

. (29)

Hence, with S = cn−1

2

+ cn+1

2

and D = cn−1

2

− cn+1

2

:

S(a) =
4n

a
√
γ
√

1 + γa2

(

√

1 + γa2 − 1

a
√
γ

)n

(30)

D(a) =
4

a
√
γ(1 + γa2)3/2

(

√

1 + γa2 − 1

a
√
γ

)n

(n
√

1 + γa2 − γa2) (31)

D(a)

S(a)
=

1
√

1 + γa2
− 1

n

γa2

1 + γa2
. (32)

13



5.3.3 Type C.

We call Type C the original model from [11]. Taking H(x) = rect(2
x

h
) and

putting α = arcsin

(

h

a

)

if a ≥ h and α =
π

2
if a < h, we find cq(a) =

4

πq
sin (qα). It follows that, with S = cn−1

2

+ cn+1

2

and D = cn−1

2

− cn+1

2

:

S(α) =
4

π

(

sin
(

n−1

2
α
)

n−1

2

+
sin
(

n+1

2
α
)

n+1

2

)

(33)

D(α) =
4

π

(

sin
(

n−1

2
α
)

n−1

2

− sin
(

n+1

2
α
)

n+1

2

)

(34)

D(α)

S(α
=

tan(nα
2
)− n tan(α

2
)

n tan(nα
2
)− tan(α

2
)

(35)

5.4 Equilibrium.

We shall discuss herein the averaged system of Type B.

5.4.1 Stability condition.

Recall the averaged system of Type B, given in (22):











ȧ = − A

4ρn
S(a) sin(nϕ) − βa

ϕ̇ =
3µ

8ρn
(a2 − a2n)−

A

4aρn
cos(nϕ)D(a)

(36)

We shall write this system in a more general fashion, as follows:
{

ȧ = Af(a) sin(nϕ) + g(a) = F (a, ϕ)

ϕ̇ = Aj(a) cos(nϕ) + h(a) = G(a, ϕ)
(37)

Let’s write the equilibrium condition for this averaged system. Call aS and ϕS

the values of a and ϕ at an equilibrium point. Putting ȧ = 0 and ϕ̇ = 0 for
a = aS and ϕ = ϕS , we get:

{

Af(aS) sin(nϕS) + g(aS) = 0

Aj(aS) cos(nϕS) + h(aS) = 0
(38)

Hence:


















A2 =
g2(aS)

f2(aS)
+

h2(aS)

j2(aS)

tan(nϕS) =
g(aS)j(aS)

f(aS)h(aS)

(39)
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For instance, for the system of Type B, we get:



















A =
4aS
S(aS)

√

(ρnβ)2 +
9

64
µ2

S(aS)2

D(aS)2
(a2S − a2n)

2

tan(nϕS) = − 8

3µ

ρn
a2S − a2n

D(aS)

S(aS)

(40)

5.4.2 Stability criterion.

Having written the equilibrium condition, we shall now give a simple expression
of the stability criterion. We shall use the general form (37) of the equilibrium
condition. To simplify the notations, Put

F ′

a =
dF

da

∣

∣

∣

∣

a=aS

, F ′

ϕ =
dF

dϕ

∣

∣

∣

∣

a=aS

, G′

a =
dG

da

∣

∣

∣

∣

a=aS

, and G′

ϕ =
dG

dϕ

∣

∣

∣

∣

a=aS

.

To express the stability criterion, we use the classical method of the first-order
expansion of the tangent system around the equilibrium point. We have, noting
aS and ϕS the values taken by a and ϕ at the equilibrium point:

{

ȧ = (a− aS)F
′

a + (ϕ− ϕS)F
′

ϕ

ϕ̇ = (a− aS)G
′

a + (ϕ− ϕS)G
′

ϕ

(41)

The characteristic equation of this system is:

∣

∣

∣

∣

F ′

a − λ F ′

ϕ

G′

a G′

ϕ − λ

∣

∣

∣

∣

= 0

that is, λ2 − (F ′

a +G′

ϕ)λ+ F ′

aG
′ϕ− F ′

ϕG
′

a = 0. The classical condition for this
system to have a stable stationary solution is that the roots of the characteristic
equation have negative real parts, i.e. that:

{

the sum of the real parts be negative, that is, F ′

a +G′

ϕ < 0

the product be positive, that is, F ′

aG
′ϕ− F ′

ϕG
′

a > 0
(42)

In order to transform the first and second inequalities constituting the stability
criterion in (42), we use the form (37) and, to simplify the notations, we put

f = f(aS), g = g(aS), f
′ =

df(a)

da

∣

∣

∣

∣

a=aS

, g′ =
dg(a)

da

∣

∣

∣

∣

a=aS

,

First inequality

We have seen in (42) that the first inequality linked to the stability criterion is:

F ′

a +G′

ϕ < 0, (43)

which gives here: A sin(nϕS)(f
′ − nj) + g′ < 0. Replacing, in this expression,

A sin(nϕS) by its value deduced from (38), we get: − g

f
(f ′−nj)+ g′ < 0, which
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can be written:

f
d

da

(

g

f

)∣

∣

∣

∣

a=aS ,ϕ=ϕS

+ nj
g

f
< 0. (44)

Given the definition of the averaged system (37), this form will be much easier
to manipulate than the original form (43). We can notice that the function h is
not part of this inequality.

Second inequality

We have seen in (42) that the second inequality linked to the stability criterion
is:

F ′

aG
′

ϕ − F ′

ϕG
′

a > 0, (45)

Substituting in (45) the developed values of F ′

a, F
′

ϕ, G
′

a and G′

ϕ by their expres-
sions as deduced from (37), we get:

F ′

aG
′

ϕ−F ′

ϕG
′

a = −(Af ′ sin(nϕS)+g′)nAjsin(nϕS)−nAf cos(nϕS)(Aj
′ cos(nϕS)+h′).

(46)
Being in a stationary condition, we can replace, in this expression, Asin(nϕS)
and Acos(nϕS) by their expressions as deduced from (38), thus obtaining:

F ′

aG
′

ϕ − F ′

ϕG
′

a = n

(

−f ′j
g2

f2
+ g′j

g

f
− j′f

h2

j2
+ h′f

h

j

)

(47)

Now, from (39), expressing the derivative of A2 with respect to aS , we obtain:

1

2

dA2

daS
=

gg′f − g2f ′

f3
+

hh′j − h2j′

j3
.

Therefore, by taking (47) into account:

1

2
jf

dA2

daS
=

gg′jf2 − g2f ′jf

f3
+

hh′j2f − h2jj′f

j3

=
gg′j

f
− g2f ′j

f2
+

hh′f

j
− h2j′f

j2

=
1

n

(

F ′

aG
′

ϕ − F ′

ϕG
′

a

)

.

And, because n is always positive, we can write the second inequality of the
stability criterion as follows:

jf
dA2

da
> 0. (48)

Because A is always positive by definition, we could use A instead of A2, but
the expression of A and its derivatives is much more intricate than that of A2,
and thus, we shall preferably use the form given in (48).
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Application to Type B systems

In (44) and (48), substitute the expressions of f , g and j corresponding to the
system of Type B, i.e.:

f(a) = −S(a)

4ρn
, g(a) = −βa and j(a) = −D(a)

4aρn
.

The first inequality (44) becomes:

a

S(a)

dS(a)

da
− n

D(a)

S
− 1 < 0 (49)

while the second inequality (48) becomes: S(a)D(a)
dA2(a)

da
> 0. And because

A > 0, we can write:

S(a)D(a)
dA(a)

da
> 0 (50)

Now take the case of the Type B system. Replacing the general expressions S(a)
and D(a) by their known particular expressions given in (32), we can transform

the first inequality (49), thus obtaining: −1 − 1 + γa2

1 + γa2
< 0, which is always

true. In the same way, by transforming the second inequality (50), we get:

(

γa2 −
(

2

n2 − n
√
n2 + 4 + 2

− 1

))

dA

da
> 0, (51)

knowing that
dA

da
and

dA2

da
are the same sign.

For n >= 3, the expression γa2 −
(

2

n2 − n
√
n2 + 4 + 2

− 1

)

can be approxi-

mated by γa2 − n2 − 1.
In conclusion, for the systems of Type B, the stability criterion is as of (51),
and can be approximated by

(

γa2 − n2 − 1
) dA

da
> 0. (52)

5.4.3 The A(aS) function for systems of Type B.

When we studied the stability condition, we found an expression (39) giving A
as a function of aS : the A(aS) function gives the amplitude of the external force
as a function of the oscillator’s amplitude at the equilibrium point (aS , ϕS), for
a given n.
Then, when we studied the stability criterion, we found that, for systems of
Type B, the stability criterion can be expressed very simply as a condition on
the A(aS) function, as of equations (51) and (52).
Thus, the variation of the A(aS) function is worth being discussed.

First, we can see that when aS → 0 and when aS → +∞,
aS

S(aS)
→ +∞, and

therefore A(aS) → +∞. So the A(aS) function has at least one minimum on
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R+.
Second, we can reasonably guess that we can have a local minimum around
aS = an.
To give an idea of the shape of the plot of A(aS), let’s take an example: the
case of the Type B system (40), where we have:

A(aS) =
4aS
S(aS)

√

(ρnβ)2 +
9

64
µ2

S(aS)2

D(aS)2
(a2S − a2n)

2. (53)

Being in the case of a system of Type B, we know the symbolic expressions of
S(aS) and D(aS), given in (32). Substituting these expressions in (53), we can
trace a plot of A(aS) for any numeric instance of the system parameters. We
must keep in mind that our averaging calculus is only valid for small values of A,
say A < 10. However, we keep the plots as they are, for the sake of completeness
and comparison between different models. Moreover, in some cases, the A(aS)
function may exhibit more than one minimum, which is illustrated in figure 3.

Take a typical case where γ = 10100, µ = −1

6
(pendulum case), ν = 6.24 ∗ 101,

ω0 = 6.28, ncrit = 100, n=101 and β = 0.001. Consequently, we have ρn =
6.24

6.28
.

In figure 1, we have a Type C system. In this model, we can see that the use
of a H-function which is discontinuous introduces artifacts in the curve: the
experiment and the numeric simulations using the averaged equations show
that we don’t have so many minima and stable regions in reality. However, the
local minimum at aS ≈ 0.4 represents a real physical minimum and is usable
for calculus and discussion.

Figure 1: A(aS) for a Type C system

In figure 2, we have a Type B system. In this model, we have a smooth curve
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for A(aS), because we used a smooth function for our H-function.
In figure 3, we have another Type B system. In this model, we have a sharp
minimum for the A(aS) function, due to the Duffing behaviour, plus a smooth
minimum, due to the S(aS) function. We shall see later on how these two types
of minimum lead to stable regimes.

Figure 2: A(aS) for a Type B system

5.4.4 Bifurcations.

Until now, we discussed the averaged system on the basis of only one averaging
calculus, based on one value of n. However, in the reality, we must take into
account the fact that there is a plurality of values possible for n, each one cor-
responding to a value of the amplitude of the free oscillator, to an averaging
calculus, and to an integral solution curve Un(a, ϕ) = 0. This way, we obtain a
plurality of solutions, in the form of a plurality of integral curves Un(a, ϕ) = 0.
These curves will overlap in the Van der Pol representations, and we shall have
to decide which curve is the effective solution in a given domain of the Van der
Pol plane.
For illustrative purpose, let’s take the same typical case than for the represen-

tation of the A(aS) curve of Type B in figure 2, where γ = 10100, µ = −1

6
,

ω0 = 6.28, nu=624, β = 0.001.
As we took µ negative, we have to take n > ncrit + 1 = 100, i.e. n > 101. Let’s
plot the A(aS) curves for n=101, 103, ..., 119. We get a series of overlapped
curves (see figure 4), and we are interested in the local minimums indicated by
letters M101...M111. For each minimum Mi, we shall spot a point Ni having
an abscissa slightly greater than that of Mi. As we saw before, these points
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Figure 3: A(aS) for a Type B system with more than one minimum for A

represent stable solutions to the averaged system of equations, because they are
on an ascending part of the curve A(aS).
Because the averagedmethod gives better results when the perturbation is small,
we shall (in a first approach) keep the parts of the overlapped curves which are
the lowest in ordinates, i.e. corresponding to the lowest values of A, the inten-
sity of the perturbation.
In figure 4 are also represented the points Jn, which are the intersections of
curves A(aS) for two consecutive values of n: n and n+2. Denote by An the
ordinate of Mn. From equation (53), we have:

An = A(an) =
4an
S(an)

ρnβ. (54)

And as the ordinate of Mn increases as the system parameter A increases, we
can see that the number of stable solutions to the original non-averaged system
(10) and (11), i.e. the number of A(aS) curves cut by a given line A = Cte,
increases as A increases, constituting the phenomenon of bifurcation.
To have a more precise indication of the limits (in abscissa a) of the region

where the averaging method is valid for a given value of n, we must find a

symbolic expression for the coordinates of the points Jn. Denote by
q

A(aS) the
curve representing the function A(aS) when n has the value q. Then Jn is the

intersection of
n

A(aS) and
n+2

A (aS).

The abscissa x of Jn satisfies the equation (53) with n for
n

A(aS) as well as this
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Figure 4: A(aS) for a Type B system, with multiple values of n

same equation with n+ 2 for
n+2

A (aS). We get, after a few transformations:

λ2β2

(

1

n2
− 1

(n+ 2)2
− 2

)

=
9

64
µ2

(

S(x)

D(x)

)2

(a2n − a2n+2)(2x
2 − a2n − a2n+2),

(55)

with λ =
ν

ω0

.

Replacing an and an+2 by their developed expressions as given in equation (19),
we get:

x2 =
2

3µ

(

λ2

n2
+

λ2

(n+ 2)2
− 2

)

+
8β2

3µ

(

D(x)

S(x)

)

. (56)

Assuming that, for x in the interval [an, an+2], S(x) ≈ S (ξ) and D(x) ≈ D (ξ),

with ξ =
an + an+2

2
, and remarking that a2n+a2n+2 =

4

3µ

(

λ2

n2
+

λ2

(n+ 2)2
− 2

)

,

we finally get:

an,n+2 =

√

a2n + a2n+2 +
8

3µ
λ2β2

(

D(ξ)

S(ξ)

)2

, (57)

where we denote by an,n+2 the abscissa of Jn, intersection of the curves
n

A(aS)

and
n+2

A (aS).

5.5 The rectangular Van der Pol representation.

As we previously mentioned, we are naturally induced to use a Van der Pol
representation, with a as abscissa and ϕ as ordinates. In figure 5, we have an
example of an integral curve in this representation. The parameters are the
same as previously. The integral curve winds into a spiral leading up to a stable
equilibrium represented as point S. This rectangular representation is useful to
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assess various probabilities in terms of areas in the plane. As the probability
is uniformly distributed against the abscissa and the ordinates, we can carry
out the calculus of areas without any risk of giving an excess weight to a given
region.

Figure 5: Integral curve with stable equilibrium at point S. Parameters: ν = 624,

ω0 = 6.28, n=101, β = 0.001, µ = −1

6
, A=0.534, γ = 10100. Initial conditions:

a0 = 0.45, ϕ0 = 0.

.

5.6 The polar Van der Pol representation.

We also use a polar Van der Pol representation, i.e. a as radius and ϕ as angle.
This polar representation is useful to represent plots having a periodicity with
respect to ϕ and plots in which ϕ varies globally by more than a given finite
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interval. In particular, we can notice that our averaged system of equations (22)

is invariant by the transformation ϕ → ϕ+
π

2n
. Therefore, in the polar Van der

Pol representation, the plot of the integral curves will be invariant by a rotation

of angle
π

2n
, and we will be able to obtain the entirety of the plot by duplication

and rotation of only one set of solution curves, located in a given sector. For
instance, with parameters identical to those we used about the bifurcations, fig-
ure 6 is a polar Van der Pol representation of the integral curve computed using
a Runge-Kutta Fehlberg method that produces a fifth-order accurate solution,
with initial conditions a0 = 0.45 and ϕ0 = 0.018. The solution winds up around
the origin, and could not be entirely represented in a rectangular plot, because
although a(t) remains finite, ϕ(t) can become big when t increases.

With the same parameters, if we take the initial conditions a0 = 0.45,
ϕ0 = 0.01473684211, we get a completely different behaviour, as represented
in figure 7: the movement enters a spiral winding up around a stable solution
not located at the origin. The zoomed view in figure 8 shows the detail in
polar coordinates. This represents the same data as in figure 5, which was in
rectangular coordinates.

6 Third step: approximate analytical solution

for the damped Duffing oscillator.

In this section, we shall present an approximate closed-form solution of the av-
eraged system of equations (22). We shall use an integrating factor, which will
lead us to an implicit equation of the integral curve (independent of the reduced
time τ). We shall then discuss the validity of the approximation.

6.1 Integrating factor.

Let’s recall our averaged system (22):











ȧ = − A

4ρ
S(a) sin(nϕ)− βa

ϕ̇ =
3µ

8ρ
(a2 − a2n)−

A

4aρn
cos(nϕ)D(a)

(58)

We shall write (58) under a more compact form, by defining two functions F
and G of a and ϕ as follows:











F (a, ϕ) = − A

4ρ
S(a) sin(nϕ)− βa

G(a, ϕ) =
3µ

8ρ
(a2 − a2n)−

A

4aρn
cos(nϕ)D(a)

(59)
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Figure 6: Polar representation: integral curve winding up around the origin.
Radius is a, argument is ϕ. Parameters: ν = 624, ω0 = 6.28, n=101, β = 0.001,

µ = −1

6
, A=0.534, γ = 10100. Initial conditions: a0 = 0.45, ϕ0 = 0.

Hence:
{

ȧ = F (a, ϕ)

ϕ̇ = G(a, ϕ)
(60)

that is,
G(a, ϕ)da + F (a, ϕ)dϕ = 0. (61)

This is generally not an exact differential, but if we multiply the whole equation
by an integrating factor, i.e an appropriate function I(a, ϕ) such that there exists
a function U(a, ϕ) such that I(a, ϕ)G(a, ϕ)da + I(a, ϕ)F (a, ϕ)dϕ = dU(a, ϕ),
equation (61) becomes dU(a, ϕ) = 0, and the solution is U(a, ϕ) = constant.
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Figure 7: Polar representation: integral curve winding up around a stable solu-
tion, not at the origin.

The new expression dU(a, ϕ) is an exact differential. A necessary condition

for this to be possible is that
∂

∂ϕ
(I(a, ϕ)G(a, ϕ)) = − ∂

∂a
(I(a, ϕ)F (a, ϕ)). Re-

placing F and G by their definition expressions from (59), and developing, we
get:

(

An

4aρn
D(a) sin(nϕ) − A

4ρn

dS(a)

da
sin(nϕ)− β

)

I(a, ϕ) =

(

A

4ρn
S(a) sin(nϕ) + βa

)

∂

∂a
I(a, ϕ)−

(

3

8

µ

ρn
(a2 − a2n)−

A

4aρn
D(a) cos(nϕ)

)

∂

∂ϕ
I(a, ϕ)

(62)
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Figure 8: Polar representation: integral curve winding up around a stable solu-
tion represented as point S, not at the origin. Zoomed view.

We shall not try to find an integrating factor as a function of a and ϕ; instead, we
shall search I as a function of a only. By so doing, the integrating factor becomes
approximatively findable in closed-form. Let I(a) be the unknown integrating
factor. For the sake of clarity, we shall represent the following functions of a:

S(a), D(a), I(a),
dS(a)

da
,
dD(a)

da
,
dI(a)

da
respectively by S,D, I, S′, D′, I ′. Equa-

tion (62) becomes:

A

4ρn
sin(nϕ)

(

nD

a
I − S′I − SI ′

)

= β (aI ′ + I) (63)
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and, due to the fact that a and ϕ are independent variables, this is possible only
if:







I
An

4aρn
D − I ′

A

4ρn
S − I

A

4ρn
S′ ≡ 0

I ′βa+ Iβ ≡ 0
(64)

that is, we obtain the two following equations:

nD

a
I − IS′ − I ′S ≡ 0 (65)

aI ′ + I ≡ 0. (66)

Equation (66) gives I(a) =
k

a
, where k is a real constant. And as the result is

equivalent for any non-null value of k, as is expressed by kU(a, ϕ) = 0, we shall
take k = 1 to simplify the writing. By substituting this expression of I(a) into

equation (66), we get:
n

a2
D +

n

a2
S − 1

a
S′ ≡ 0, that is,

nD + S − aS′ ≡ 0. (67)

This equation is not strictly verified by the functions S(a) and D(a), but we can
remark that generally, those two functions do not vary very much in the region
of the spiral leading to the stable stationary solution. We shall then be able to
use one of the following three methods to replace S or D by another function
so as to satisfy (67):

• Keeping the original definition of S(a), and replacing D(a) by
aS′ − S

n
;

• Keeping the original definition ofD(a), and replacing S(a) by na

∫

D

a2
da+

C1a, where C1 is a constant;

• Replacing S by an affine function of a and D by a constant function. Let
aS be the value of a in the stationary solution, represented by the point

S in figures 5 and 8. Let’s take S′(aS) =
nD(aS) + S(aS)

aS
. We then have

S(a) = S(aS) + S′(aS)(a− aS) and S(a)− aS′(a) = S(aS)− aSS
′(aS) =

Cte = nD(a).

The numerical simulations show that the two first methods are approximately
equivalent and lead to satisfactory results for oscillators of Type B. Supposing
that we now have an S(a) and a D(a) functions satisfying equation (67), we
can now go on and compute the function U(a, ϕ) using one of the two following
formulas:

∂U

∂a
= I(a)G(a, ϕ) (68)

∂U

∂ϕ
= −I(a)F (a, ϕ). (69)
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Let’s pick (69). Replacing F (a, ϕ) by its definition expression from (59), we get:

U(a, ϕ) = − A

4ρn

cos(nϕ)

n

S

a
+ βϕ+ L(a), (70)

where L(a) is a function of a to be determined using equation (69).

Calculating
∂U

∂a
from equation (70) and substituting the result into equation

(69), we get:

A

4ρn

(

1

n
(S − S′a) +D

)

cos(nϕ) =
3

8

µ

ρn
a(a2 − a2n)− a2L′(a). (71)

As a and ϕ are independent variables, this is possible only if:






S − S′a+ nD ≡ 0
3

8

µ

ρn
(a2 − a2n)− aL′(a) ≡ 0.

(72)

We have already encountered and discussed the first condition previously. The

second condition gives: L′(a) =
3

8

µ

ρn

(

a− a2n
a

)

. Hence L(a) =
3

8

µ

ρn

(

a2

2
− a2n ln(a)

)

+

C2, where C2 is a constant.
Finally, substituting this expression of L(a) into (70), we get:

U(a, ϕ) = −AS(a)

4nρn

cos(nϕ)

a
+ βϕ+

3

8

µ

ρn

(

a2

2
− a2n ln(a)

)

+ C3 (73)

where C3 is a constant and with nD(a) ≡ aS′(a)− S(a).

6.2 Implicit equation of the integral curves.

From equation (73), we deduce the implicit equation of the integral curve begin-
ning at the initial condition (a = a0, ϕ = ϕ0): U(a, ϕ) = U(a0, ϕ0). Developing
and eliminating the constant C3, we get:

β(ϕ− ϕ0)−
A

4nρn

(

S(a) cos(nϕ)

a
− S(a0) cos(nϕ0)

a0

)

+

3

8

µ

ρn

(

a2 − a20
2

− a2n(ln(a)− ln(a0))

)

= 0. (74)

In figure 9, the implicit equation (74) is represented by a solid line, with a typical
set of system parameters. The corresponding numeric solution is represented

as a dotted line. Dashed lines represent the locus of the condition
da

dt
= 0, and

a dotted line represents the locus of the condition
dϕ

dt
= 0. Depending on the

initial conditions, the symbolic approximation is composed of either a single
curve surrounding the ovoid region, or two curves, one of which surrounds the
ovoid region, the other following the numeric solution before arriving at the
ovoid, and then going away from the ovoid. In figure 9 are also represented a
number of points which will be discussed in the next sections.

28



Figure 9: Symbolic approximation vs numeric (Runge-Kutta) solution to the
averaged system.

6.3 Group of ovoids inside an annulus for a given value of
n.

In figure 9, we have represented one ovoid in rectangular Van der Pol repre-
sentation, using the symbolic implicit solution. But as our averaged system of

equations is invariant by a rotation of angle
2π

n
, we shall represent this ovoid

in a polar system of coordinates, with a as radius and ϕ as argument. Because
of said invariance, we shall duplicate n times the ovoid along a circle centred at
the centre of coordinates, by successive rotations of the initial ovoid by an angle

of
2π

n
. In figure 10, the contents of 6 adjacent annuli is represented, as well as

the circles of radii an,n+2 obtained from equation (57). Those circles delimit, for
each value of n, an upper bound of the validity region of the averaging method
that we used.

7 Fourth step: capture probability.

In this section, we shall use the closed-form implicit equation (74) to assess the
area of the ovoid basin, and compare it to the area of the annulus containing
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Figure 10: Multiple ovoids in 6 consecutive annuli.

the ovoid. This will lead us to a symbolic formula giving the capture probability
for initial conditions inside said annulus.
Let’s call “angular diameter” the maximum distance between two points of the
ovoid, said points having the same radius in the polar Van der Pol representa-
tion. And we shall call “radial diameter” the maximum distance between two
points of the ovoid, said points having the same angle. We shall calculate those
two diameters and deduce a value of the area of the ovoid.

7.1 Angular positions of points S and T in figure 9.

In figure 9, we represent four points around the ovoid region, called T (at co-
ordinates (aT , ϕT )) at the top, R (at coordinates (aR, ϕR)) at the right, B (at
coordinates (aB, ϕB)) at the bottom, and L (at coordinates (aL, ϕL)) at the left.
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T and B correspond to
dϕ

dt
= 0, while L and R correspond to

da

dt
= 0. As of figure

9, those points are not exactly on the perimeter of the ovoid, because their loca-
tion is calculated in an approximate way, as described hereafter. We also repre-
sent point S (at coordinates (aS , ϕS)), which is the stable-equilibrium solution
to the averaged system (22), while point T represents the unstable-equilibrium
solution. As T and S both satisfy the equilibrium condition (ȧ = 0, ϕ̇ = 0),
we can calculate the position of these points by getting back to the averaged
system (22) with a = aS , ϕ = ϕS , ȧ = 0 and ϕ̇ = 0. We have:











0 = − A

4 ρn
S(aS) sin(nϕ)− β aS

0 =
3 µ

8 ρn
(a2S − a2n)−

A

4 aS ρn
cos(nϕ)D(aS)

(75)

Hence, with aS ≈ an, S(aS) ≈ S(an) and D(aS) ≈ D(an):











aS ≈ AS(an)

4ρnβ

sin(nϕS) = −4ρnβan
AS(an)

(76)

Putting Sn = S(an), we get, in the interval
[

−π

n
,
π

n

]

, two possible values for

ϕS : − 1

n
arcsin

(

4βρnan
ASn

)

and −π

n
+

1

n
arcsin

(

4βρnan
ASn

)

. Because S and T

both represent equilibrium conditions, both ϕS and ϕT satisfy equations (76).
Consider the case of a Type B system, where aT < an < aS , which is true,
as we discussed earlier, if point (aT , A(aT )) is on a decreasing part of the plot
representing A as a function of a (hence in an unstable-equilibrium region),
while point (aS , A(aS)) is on an increasing part of said plot (hence a stable-
equilibrium region). We then have:















ϕS = −π

n
+

1

n
arcsin

(

4βρnan
ASn

)

ϕT = − 1

n
arcsin

(

4βρnan
ASn

)

.
(77)

7.2 Angular position of point B. Angular diameter of the
ovoid.

Consider the points T and B in figure 9. Those two points delimit the angular
extension of the ovoid. As we search an expression for the angular diameter of
the ovoid, i.e. ϕT − ϕB, and know the expression of ϕT , we have to find an
expression for ϕB.
We shall consider that, in the rectangular Van der Pol representation, the ovoid
has a shape approximatively symmetric with respect to the vertical. Hence we
shall write:

aB ≈ aT , (78)
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and consequently, S(aB) ≈ S(aT ). Point B is on the integral curve passing
through point T. The equation of this integral curve is: U(a, ϕ) = U(aT , ϕT ),
i.e. equation (74), where we replace (a0, ϕ0) by (aT , ϕT ). Let’s write that point
B is on this curve. Substituting the coordinates of point B for the current
coordinates (a, ϕ) in this equation, and taking (78) into account:

β(ϕB − ϕT )−
AS(aT )

4nρnaT
(cos(nϕB)− cos(nϕT )) ≈ 0. (79)

From equations (77), we know the expression of ϕT . Furthermore, as point T
is an equilibrium state, (aT , ϕT ) satisfies the system (76) by substituting point
T for point S. Hence we have :











aT ≈ AS(an)

4ρnβ

sin(nϕT ) = −4ρnβan
AS(an)

.
(80)

Considering that function S(a) varies slowly inside the ovoid and that aT is
close to an, we put S(aT ) ≈ S(an); thus, by substituting S(an) for S(aT ) and

− β

nsin(nϕT )
for

AS(an)

4ρnβan
in equation (79), we get:

nϕB − nϕT +
1

sin(nϕT )
(cos(nϕB)− cos(nϕT )) ≈ 0. (81)

ϕT being known, this is a transcendental equation in ϕB , which we shall solve
approximately as follows.
Put x = nϕB and x0 = nϕT . Equation (81) becomes :

sin(x0) (x − x0) = cos(x)− cos(x0), (82)

which means that we are searching the intersection of the curve z(x) = cos(x)
with the line z(x) = sin(x0) (x − x0) + cos(x0). A first solution is x = x0, i.e.
ϕB = ϕT . What we search is the other solution. x0 is in the limited range
[0, π/2]. Over this range, we approximate the curve implicitly given by (82) by
using the curve giving x explicitly as a function of x0 as follows:

x(x0) = −π

2
− 3 arcsin

(

1 +
2

π
x0

)

, (83)

Getting back to the initial problem, where we had put x = nϕB and x0 = nϕT ,
we get:

ϕB ≈ − 1

n

(

π

2
+ 3 arcsin

(

1 +
2n

π
ϕT

))

. (84)

We remark that if nϕT = −π

2
, then nϕB = −π

2
. In this case, both solutions

ϕB and ϕT are identical, and the ovoid is reduced to a single point.
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7.3 Capture probability with initial condition a = a
n
.

To assess this probability, we shall calculate the angular diameter of the ovoid,
in the rectangular Van der Pol representation, that is the distance TB, and form
the ratio of this distance to the distance between the centres of two contiguous
ovoids.
Now that we know the expression giving ϕB, we can calculate the angular
diameter Dang = TB = an(ϕT − ϕB) of the ovoid, along the radius an:

Dang ≈ an

(

π

2n
+ ϕT +

3

n
arcsin

(

1 +
2n

π
ϕT

))

, (85)

with

ϕT ≈ − 1

n
arcsin

(

4 β ρn aS
A S(an)

)

. (86)

From equation (86), we deduce that there exists a critical value for the ratio
β

A
, i. e.

(

β

A

)

crit

=
S(an)

4ρnan
. Whenever

β

A
>

(

β

A

)

crit

, the angular diameter

vanishes, and there is no ovoid.

We have seen that the averaged system is invariant by a rotation of angle
2π

n
.

That is, two ovoids having the same radius aS have their centres S located
2π

n
apart along the line a = aS . Hence, to evaluate the probability for a given point
of this line to be in the ovoid, we shall operate in the rectangular Van der Pol
representation, and write that the capture probability Pcapt,circle is the ratio of
the angular diameter of the ovoid to the distance between the centres of two

contiguous ovoids. We get, when
β

A
<

(

β

A

)

crit

:

Pcapt,circle =
Dang

2π
n an

=
1

4
+

1

2π

(

nϕT + 3 arcsin

(

1 +
2n

π
ϕT

))

, (87)

for initial condition (a = an, ϕ = random value).

And for
β

A
>

(

β

A

)

crit

, we have Pcapt = 0.

Introduce a new parameter r, with r =
β
A

(

β
A

)

crit

. Hence n ϕT ≈ − arcsin(r),

and

Pcapt,circle =
1

4
+

1

2π

(

− arcsin(r) + 3 arcsin(1− 2

π
arcsin(r))|

)

. (88)

Figure 11 shows Pcapt as a function of r.
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Figure 11: Capture probability with initial condition a = an.

7.4 Capture probability with initial condition inside the
annulus tangent to the ovoid.

To assess this probability, although we operate in the polar Van der Pol rep-
resentation, we shall carry out the calculus in the rectangular Van der Pol
representation, to avoid a distortion due to the polar representation, where a
given area next to the centre of coordinates is more probably hit than the same
surface located far from the centre. We shall calculate the area of the ovoid, and
form the ratio of this area to the area of the rectangle delimited by the left and
right tangents to the ovoid (at points L and R in figure 9), and by the centres
(points S in said figure) of two contiguous ovoids.
We define the radial diameter Drad of the ovoid as the distance between the left
and right vertical tangents to the ovoid, i.e. approximately the distance LR. As

the averaged system is invariant by a rotation of angle
2π

n
, the distance between
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the centres of two contiguous ovoids is
2π

n
an. The surface Srect of the rectangle

is then Srect =
2π

n
anDrad.

To calculate the area of the ovoid, we approximate it by an ellipse having
as axes TB and LR of figure 9. We have TB = Dang = an(ϕT − ϕB) and

LR = Drad = aR − aL. The ovoid area is then Sov = π
Dang

2

Drad

2
.

Hence the capture probability with initial condition inside the annulus is Pcapt,annulus1 =

Sov

Srect
=

π
Dang

2

Drad

2

2π
n anDrad

=
n Dang

8 an
. We can see that this expression does not de-

pend on Drad. This is because we approximated the ovoid by an ellipse, and
took the annulus tangent to the ovoid as a delimiting area.

We see that, as the maximal possible value for Dang is
2π

n
an, in which case two

contiguous ovoids are in contact, the maximal possible value for Pcapt,annulus1

is
n

8 an

2π

n
an =

π

4
.

Using the same parameter r than for the discussion of the probability with initial
condition a = an, we get:

Pcapt,annulus1 =
1

8

(

π

2
− arcsin(r) + 3 arcsin

(

1− 2

π
arcsin(r)

))

, (89)

with r =
β
A

(

β
A

)

crit

.

Figure 12 shows Pcapt,annulus as a function of r.

7.5 Radial diameter.

In this section, we shall discuss the radial diameter of the ovoid. This will
enable us to assess, for a given value of n, the capture probability with initial
condition inside the annulus delimiting an upper bound of the validity region of
the averaging method, as represented in figure 10.
In figure 4, we have seen that, for a given value of n that we choose to carry out
the averaging method, we must constrain a to be in a limited interval around
an. An upper bound of this limiting interval is formed by the abscissae of Jn
and Jn+2.
To calculate the radial diameter of the ovoid, we shall write the equation giving
aL and aR. This will lead to a second-degree equation in a, whose solutions are
aL and aR. The difference of the roots of said equation is the radial diameter
Drad = aR − aL.
Assuming that the arguments of points L, S, and R are identical, i.e. ϕL =
ϕS = ϕR, and that S(a) and D(a) are constants, respectively denoted S and D,
in the ovoid region, we write that points T, L and R belong to the same integral
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Figure 12: Capture probability with initial condition inside the annulus.

curve:

β(ϕS−ϕT )−
AS

4nρn

(

cos(nϕS)

a
− cos(nϕT )

aT

)

+
3

8

µ

ρn

(

a2

2
− a2T

2
− a2n (ln(a)− ln(aT ))

)

= 0.

(90)

Besides, due to equations (77), we have cos(nϕS) ≈ − cos(nϕT ) = − a

AD

3µ(a2T − a2n)

2
.

From equation (76), we have sin(nϕT ) ≈ −4ρnβan
AS(an)

. Consequently, the coeffi-

cient
AS

4nρn
from equation (90) is approximated by − 1

n

βan
sin(nϕT )

, and we can

write, putting η =
β

n
cot(nϕT ) and ζ =

3

8

µ

ρn
a2n:

β(ϕS−ϕT )−anη

(

1

an
+

1

aT

)

+
ζ

a2n

(

a2

2
− a2T

2
− a2n(ln(a)− ln(aT ))

)

= 0. (91)
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We shall study this equation in the neighbourhood of an, and we shall search
for solutions in a to the equation y(a) = 0, denoting by y(a) the left member of
equation (91).
Putting a = an(1 + ǫ), we make a second-order Taylor development of y(a) in

the neighbourhood of an. We have: y(a) ≈ y(an) + ǫany
′(an) +

(ǫan)
2

2
y′′(an).

Replacing η and ζ by their definition expressions and ordering with respect to
ǫ, we get:

(ζ − η)ǫ2 + ηǫ − 2η = 0. (92)

The discriminant is ∆ = η2 − 4(ζ − η)(β(ϕS −ϕT )− 2η). Let ǫL and ǫR denote
the roots of this second-degree equation. We have, aR and aL denoting the
values of a at points R and L: Drad = aR − aL = an(1 + ǫR) − an(1 + ǫL) =

an(ǫR − ǫL) = an

√
∆

ζ − η
. Knowing that ϕT − ϕS =

π

n
+ 2ϕT , we finally get:

Drad = an

√

η2 + 4(ζ − η)(β
(

π
n + 2ϕT

)

+ 2η)

ζ − η
, (93)

with ϕT ≈ − 1

n
arcsin(

4βρnan
AS(an)

), η =
β

n
cot(nϕT ) and ζ =

3

8

µ

ρn
a2n.

7.6 Capture probability with initial condition inside the
annulus delimiting an upper bound of the validity re-
gion of the averaging method.

The total area of said annulus is π(a2n+2 − a2n). The total area of the n ovoids

belonging to that annulus is nSov = nπ
Dang

2

Drad

2
. Hence, neglecting, inside

the annulus, the area of the ovoids’ upstream basins, the capture probability

with initial condition in said annulus is Pcapt,annulus2 =
n

4

DangDrad

a2n+2 − a2n
.

Replacing an and an+2 by their developed expressions as given in equation (19),
we get:

Pcapt,annulus2 = − 3µ

64λ2

n3(n+ 2)2

n+ 1
DangDrad, (94)

with λ =
ν

ω0

and Dang given by equation (85) and Drad given by equation (93).

8 Future

An interesting question is about systems with more than one minimum in the
A-function, and therefore with more complicated implicit solutions and ovoid
figures. These systems are important, because in them, the capture phenomenon
can be initiated at surprisingly low amplitudes, and evolve into high-amplitude
oscillations, taking advantage of the energy provided by the external harmonic

37



excitation source. This kind of argumental oscillations is of interest to further
delimit the hazardous parameter domains in civil engineering.
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