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PHYSICS-BASED BALANCING DOMAIN DECOMPOSITION BY CONSTRAINTS

FOR MULTI-MATERIAL PROBLEMS

SANTIAGO BADIA, ALBERTO F. MARTÍN, AND HIEU NGUYEN

Abstract. In this work, we present a novel balancing domain decomposition by constraints preconditioner
that is robust for multi-material problems. We start with a well-balanced subdomain partition, and based
on an aggregation of elements according to their physical coe�cients, we end up with a �ner physics-based
(PB) subdomain partition. Next, we de�ne geometrical objects (corners, edges, and faces) for this PB
partition, and select some of them to enforce subdomain continuity (primal objects). When the physical
coe�cient in each PB subdomain is constant and the set of selected primal objects satisfy a mild condition
on the existence of acceptable paths, we can show both theoretically and numerically that the condition
number does not depend on the contrast of the coe�cient. An extensive set of numerical experiments
for 2D and 3D Poisson's and linear elasticity problems is provided to support our �ndings. In particular,
we show robustness and weak scalability of the new preconditioner up to 8232 cores when applied to
3D multi-material problems with the contrast of the physical coe�cient up to 108 and more than half a
billion degrees of freedom. For the scalability analysis, we have exploited a highly scalable advanced inter-
level overlapped implementation of the preconditioner that deals very e�ciently with the coarse problem
computation. The proposed preconditioner is compared against a state-of-the-art implementation of an
adaptive BDDC method in PETSc for thermal and mechanical multi-material problems.

Keywords: BDDC, multi-material problem, adaptive coarse space, parallel solver, parallel preconditioner
AMS subject classi�cations: 65N55, 65N22, 65F08
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1. Introduction

Many realistic simulations in science and engineering involve multiple materials, e.g., composite mate-
rials. The linear systems resulting from the discretization of these problems are hard to solve. The use of
direct solvers at a su�ciently �ne scale can be prohibitively expensive, even with modern supercomputers,
due to their high complexity and scalability issues. In addition, the high contrast of the physical prop-
erties signi�cantly increases the condition number of the resulting linear systems, posing great challenges
for iterative solvers. In this work, we will focus on developing a domain decomposition (DD) precondi-
tioner that is robust for multi-material thermal and solid mechanics problems with a high variation of the
coe�cients in the corresponding partial di�erential equations (PDEs).

DD is one of the most popular approaches to solve large-scale problems on parallel supercomputers. It
splits a problem into weakly coupled subproblems on smaller subdomains and use parallel local solutions
on these subdomains to form a parallel preconditioner for the original problem [54, 44]. In DD, the coarse
space plays an important role in achieving scalability as well as robustness with respect to variations in
the coe�cient. Many early DD methods, such as those in [14, 21, 20, 35, 58], are robust for heterogeneous
problems when the subdomain partition is a geometric coarse grid that resolves the discontinuities in the
properties of the media. This is a strong requirement, since such a decomposition does not lead in general
to load-balanced partitions with a reduced interface.

For heterogeneous problems, there have been recent works on coarse grids that do not resolve the
heterogeneity in the media [28, 48, 28, 46, 47], and especially automatic coarse spaces that adapt to the
variation in the properties of the media [25, 26, 45, 51, 18, 53, 52, 31, 30, 32, 39, 27]. In the latter, the
coarse spaces are constructed from eigenfunctions associated with small eigenvalues (low-frequency modes)
of appropriate generalised eigenvalue problems. This approach is backed up by rigorous mathematical
theory and has been numerically shown to be robust for general heterogeneous problems. However, solving
eigenvalue problems is expensive and extra implementation e�ort is required as coarse spaces in DD
methods are not naturally formulated as eigenfunctions. Another approach is to use the deluxe scaling
technique where local auxiliary Dirichlet problems are solved to compute e�cient averaging operators
[36, 17, 56]. The approach yields robust DD methods, but it incurs extra implementation and computation
cost due to the auxiliary problems and spectral solvers. Even though these methods can be required for
some very complex heterogeneous problems, in this work we analyze ways to eliminate the need of spectral
solvers and auxiliary problems in some situations. We formulate a balancing DD by constraints (BDDC)
preconditioner that requires no eigenvalue or auxiliary problem and is very robust with the contrast of the
coe�cients for thermal and mechanical multi-material simulations. The main motivation behind this work
is to achieve such goal while maintaining the simplicity of the BDDC preconditioner.

The BDDC method was introduced by Dohrmann in 2003 [15]. It is an improved version of the balancing
DD (BDD) method by Mandel [40] and has a close connection with the FETI-DP method [23, 22]. In
fact, it can be shown that the eigenvalues of the preconditioned operators associated with BDDC and
FETI-DP are almost identical [42, 37, 12]. The BDDC method is particularly well suited for extreme
scale simulations, since it allows for a very aggressive coarsening, the computations at di�erent levels can
be computed in parallel, the subdomain problems can be solved inexactly [16, 38] by, e.g., one AMG
cycle, and it can straightforwardly be extended to multiple levels [55, 43]. All of these properties have
been carefully exploited in the series of articles [3, 4, 5, 6] where an extremely scalable implementation
of these algorithms has been proposed, leading to excellent weak scalability on nearly half a million cores
in its multilevel version. These algorithms are available in the FEMPAR library [7, 1]. A freely available
implementation of BDDC methods with deluxe scaling can be found in PETSc [57].

Our new BDDC method is motivated from the fact that non-overlapping DD methods, such as BDDC
and FETI-DP, are robust with the variation and contrast of the coe�cient if it is constant (or varies mildly)
in each subdomain [35, 34, 54]. This implies that, in order to have robustness for BDDC methods, one
could use a physics-based (PB) partition obtained by aggregating elements of the same coe�cient value.
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However, using this type of partition is impractical as the number of subdomains might be too large and
can lead to a poor load balancing among subdomains and large interfaces. In order to solve this dilemma,
we propose to use a well-balanced partition, e.g., one obtained from an automatic graph partitioner like
METIS [29], to distribute the workload among processors, as usual. Then, we consider a sub-partition of
subdomains based on the physical coe�cients, leading to a PB partition. Continuity constraints among
subdomains will be de�ned through the de�nition of objects based on the PB partition. Consequently, the
interface objects are adaptively de�ned according to the variation of the coe�cient. The resulting BDDC
preconditioner with constraints imposed on subfaces, subedges, and vertices, is coined PB-BDDC. These
ideas can readily be applied to FETI-DP preconditioners.

For multi-material problems, e.g., problems with isolated channels or inclusions, it is computationally
feasible to require the physical coe�cient in each PB subdomain to be constant. In this situation, we are
able to prove that the resulting BDDC method is scalable and its convergence is independent of the contrast
of the coe�cient. An important feature is that not all PB objects are necessary and any selected set of
PB objects satisfying a mild condition on the so-called acceptable paths is enough to guarantee robustness
[34].

By de�nition, the PB-BDDC method considers an enlarged coarse space to make the preconditioner
robust with respect to heterogeneities. In order to alleviate the e�ect of potentially larger coarse spaces
compared to homogeneous problems, we propose two remedies:

(1) In section 4, taking advantage of the fact that not all PB objects are required for robustness, we
study how to keep the size of the coarse problem close to minimal. For the sake of illustration, we
present some examples with di�erent distribution of the coe�cient and the corresponding minimal
set of PB objects required for robustness. The number of required PB objects is the same as the
number of extra eigenfunctions needed in other approaches for adaptive coarse spaces based on
eigenvalue problems [52, 31, 27]. For general cases, a simple procedure to construct a close to
minimal coarse space is also provided. The procedure is based on a mathematically supported
de�nition of acceptable paths.

(2) For highly complex problems with many di�erent regions, optimal robust coarse spaces can still
be large. In order to cope larger coarse spaces and keep good scalability properties, we have
considered an implementation of the PB-BDDC method in the extremely scalable BDDC code in
FEMPAR [3, 4, 5, 6]. It exploits inter-level overlapping of computations and communications so that
coarse tasks run in parallel and can be masked in run time by �ne tasks. The implementation
also provides a recursive multilevel extension which deals e�ciently with large coarse spaces. This
is particularly important for the PB-BDDC method presented herein. In section 5.2, we show
excellent scalability results up to 8232 cores and more than half a billion of unknowns for a 3D
problem.

Summarizing, the PB-BDDC method does not require to solve eigenvalue or auxiliary problems on
patches of subdomains, which could incur high computational cost and the formulation and implementation
of the PB-BDDC method is very much the same as for the standard BDDC method. The only di�erence
is in identifying and de�ning BDDC objects to impose constraints. In other words, the simplicity of the
standard BDDC method is maintained. On the other hand, the PB-BDDC methods involve a richer
interface with the application software, e.g., access to the physical properties of the problem, which is in
line with the philosophy of the FEMPAR library [7, 1], i.e., a tight interaction of discretization and linear
solver steps to fully exploit the mathematical structure of the PDE operator.

The rest of the paper is organised as follows. In section 2, we introduce the model problem, the domain
partitions and the BDDC object classi�cation. In section 3, we present the formulation of the PB-BDDC
method as well as its key ingredients, namely coarse degrees of freedom (coarse DOFs), weighting and
harmonic extension operators. The convergence analysis is also provided in this section. An automatic
algorithm to determine small and e�ective coarse spaces is proposed in section 4. In section 5, we provide
an extensive set of numerical experiments to demonstrate the robustness and e�ciency of the PB-BDDC
method, and compare the proposed algorithm with a state-of-the-art implementation of BDDC with deluxe
scaling in PETSc. We �nally draw some conclusions in section 6.



PHYSICS-BASED BDDC FOR MULTI-MATERIAL PROBLEMS 4

2. Problem setting

Let Ω ⊂ Rd, with d = 2, 3 being the space dimension, be a bounded polyhedral domain. For a
model problem, we study the Poisson's and linear elasticity equations with piece-wise constant physical
parameters. Let us consider homogeneous Dirichlet boundary conditions for simplicity in the exposition
(the non-homogeneous case only involves an obvious modi�cation of the right-hand side). The Poisson
problem in weak form reads as: �nd u ∈ H1

0 (Ω) such that∫
Ω
α∇u · ∇v dx =

∫
Ω
fvdx, for any v ∈ H1

0 (Ω), (1)

with f ∈ H−1(Ω). The linear elasticity problem reads as: �nd u ∈ H1
0 (Ω)d such that∫

Ω
αε(u) : ε(v) dx+

∫
Ω
αβ div udiv v dx =

∫
Ω
f · v dx for any v ∈ H1

0 (Ω)d, (2)

with f ∈ H−1(Ω)d, where ε(u)
.
= 1

2(∇u + ∇uT ) and (α, β) can be computed from Young's modulus E

and Poisson's ratio ν as α = E
(1+ν) and β = ν

(1−2ν) . We consider that ν is bounded away from 1
2 , i.e.,

compressible elasticity·
Let T be a shape-regular quasi-uniform mesh of Ω with characteristic size h. It can consist of tetrahedra

or hexahedra for d = 3, or triangles or quadrilaterals for d = 2. For simplicity of exposition, we assume
that α is constant on each element τ ∈ T .

Ω1

Ω2

Ω3

Ω4

Ω̂1

Ω̂2

Ω̂3

Ω̂4

Ω̂5

Ω̂6

Ω̂8

Ω̂7

Figure 1. An example of an original partition Θ (left) and a physics-based partition
Θpb(right) of a square domain where di�erent colors represent di�erent values of α. On the
left, we have a Θ = {Ω1,Ω2,Ω3,Ω4}. On the right, we show the corresponding PB-partition

for every subdomain in Θ: Θpb(Ω1) = {Ω̂1, Ω̂2}, Θpb(Ω2) = {Ω̂3, Ω̂4}, Θpb(Ω3) = {Ω̂5, Ω̂6},
and Θpb(Ω4) = {Ω̂7, Ω̂8}. The complete PB-partition is Θpb = {Ω̂1, . . . , Ω̂8}. Further, we
have ω(Ω̂1) = ω(Ω̂2) = Ω1, ω(Ω̂3) = ω(Ω̂4) = Ω2, ω(Ω̂5) = ω(Ω̂6) = Ω3, ω(Ω̂7) = ω(Ω̂8) =
Ω4.

2.1. Domain partitions. We �rst consider a partition Θ of the domain Ω into non-overlapping open
subdomains. This partition must be driven by computational e�ciency in distributed memory platforms,
i.e., it should have a reduced interface size and lead to a well-balanced distribution of workload among
processors. In a parallel implementation, each subdomain in Θ is generally assigned to a processor. We
further assume that every D ∈ Θ can be obtained by aggregation of elements in T and is connected. We
denote by Γ(Θ) the interface of the partition Θ, i.e., Γ(Θ)

.
= (∪D∈Θ∂D) \ ∂Ω, and by Γh(Θ) the discrete

version of the interface.
We also consider a PB subdomain partition. This partition is used latter in the new de�nition of coarse

objects and in the analysis. It is, however, not used for work distribution. Given a subdomain D ∈ Θ,
we can further consider its partition Θpb(D) into a set of �sub-subdomains� with constant α. Clearly,
the resulting global PB partitions Θpb

.
= {Θpb(D)}D∈Θ is also a partition of Ω (into PB subdomains).
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The interface of this partition is Γ(Θpb)
.
= (∪D̂∈Θpb

∂D̂)\∂Ω. For a subdomain D ∈ Θ (analogously for

D̂ ∈ Θpb), we denote by TD the submesh of T associated with D, TD
.
= {τ ∈ T : τ ⊂ D} ⊂ T . For any

D̂ ∈ Θpb, let ω(D̂) be the only subdomain in Θ that contains D̂. In Figure 1, we show an example of the
original partition Θ and the PB partition Θpb for a simple problem. The meaning of Θpb(D) and ω(D) is
also illustrated.

2.2. Finite element spaces. Let us perform a discretization of (1) by a continuous �nite element (FE)
space V̄ associated with the mesh T . The discontinuous Galerkin (DG) case will not be considered in this
work, but we refer the reader to [19] for more information.

For every subdomain D ∈ Θ, we consider a FE space VD associated with the local mesh TD. Let H(D)
be the characteristic length of the subdomain D and h(D) be the characteristic length of the FE mesh
TD. We de�ne the Cartesian product of local FE spaces as V = ΠD∈ΘVD. We note that functions in this
space are allowed to be discontinuous across the interface Γ(Θ). Clearly, V̄ ⊂ V.

For a subdomain D ∈ Θ, we also de�ne the subdomain FE operator AD : VD → V′D as 〈ADu, v〉
.
=∫

D α∇u · ∇v dx, for all u, v ∈ VD, and the sub-assembled operator AΘ : V → V′ as 〈AΘu, v〉 .
=∑

D∈Θ〈ADu, v〉, for all u, v ∈ V.
A function u ∈ VD is said to be discrete α-harmonic in D if

〈ADu, v〉 = 0, for any v ∈ V0,D,

where V0,D
.
= {v ∈ VD : v = 0 on ∂D}. It should be noted that if u is discrete α-harmonic in D then it

satis�es the energy minimising property, namely

〈ADu, u〉 ≤ 〈ADv, v〉, ∀v ∈ VD, v|∂D = u|∂D.
In addition, we consider the assembled operator A : V̄ → V̄′, de�ned by 〈Au, v〉 =

∫
Ω α∇u · ∇v dx,

for all u, v ∈ V̄. This operator is the Galerkin projection of AΘ onto V̄. We want to compute a FE
approximation u ∈ V̄ of u? in (1) such that

〈Au, v〉 = 〈f, v〉, for any v ∈ V̄. (3)

Ω1

Ω2

Ω3

Ω4

Ω̂1

Ω̂2

Ω̂3

Ω̂4

Ω̂5

Ω̂6

Ω̂8

Ω̂7

Figure 2. An example of how FE nodes (on the interface of the original partition Θ in
Figure 1) are classi�ed in the standard way (left) using neighΘ, and in the physics-based
way (right) using neighΘpb

. Corner nodes are marked with crosses while nodes in edges are

marked with small circles. Using the standard classi�cation, on the left, we obtain Λ(Θ)
with one corner and four edges. With the new classi�cation, on the right, we have Λpb(Θ)
with �ve corners and six edges (eight edges if we only consider connected objects).

2.3. Object classi�cation. This subsection concerns with objects on subdomain interfaces and their
classi�cation. It provides foundations for the de�nition of coarse DOFs in BDDC methods later on.

Given a subdomain partition Θ, and a point ξ ∈ Γ(Θ), let us denote by neighΘ(ξ) the set of subdomains
in Θ that contain ξ. We can introduce the concept of objects as a classi�cation of points in Γ(Θ). A
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geometrical object is a maximal set λ of points in Γ(Θ) with identical subdomain set. We denote by
neighΘ(λ) the set of subdomains in Θ containing λ. It should be noted that the set of all geometrical
objects, denoted by Λ(Θ), is a partition of Γ(Θ).

Remark 2.1. Since the set of points in the interface is in�nite, the previous classi�cation of Γ(Θ) into
geometrical objects is performed in practice by the classi�cation of vertices, edges, and faces of elements
in the mesh T based on their subdomain set.

Denote by ndof(λ) the number of DOFs belonging to λ. We further consider the following standard
classi�cation of geometrical objects. In the three-dimensional case, λ ∈ Λ(Θ) is a face if |neighΘ(λ)| = 2
and ndof(λ) > 1, is an edge if |neighΘ(λ)| > 2 and ndof(λ) > 1, and is a corner if ndof(λ) = 1. In the two-
dimensional case, λ ∈ Λ(Θ) is an edge if |neighΘ(λ)| = 2 and ndof(λ) > 1, and is a corner if ndof(λ) = 1.
In the literature, e.g., [35, 54], corners are also referred to as vertices. Analogous de�nitions are also used
frequently for FETI-DP methods (see [54]). In Figure 2 (left), an illustration of this classi�cation is shown
for a simple example.

In the next step, we de�ne PB objects, which is the main ingredient of the PB-BDDC methods proposed
herein. We consider the set of objects Λpb(Θ) obtained by applying the previous classi�cation of Γ(Θ)
into corners/edges/faces but with neighΘ(·) replaced by neighΘpb

(·). In other words, we use sets of

subdomains in Θpb to classify geometrical objects on Γ(Θ). Figure 2 (right) shows objects in Λpb(Θ) for
a simple example.

Lemma 2.2. Λpb(Θ) is a re�nement of Λ(Θ).

Proof. The statement holds if for every object λpb ∈ Λpb(Θ) there exists one and only one object λ ∈ Λ(Θ)
containing it. Since all points in λpb belong to the same set of PB subdomains, neighΘpb

(λ), they are in

the same set of subdomains in Θ, namely {ω(D̂)}D̂∈neighΘpb
(λ). As a result, all these points belong to the

same object in Λ(Θ). �

Remark 2.3. In some cases, the DOF-based classi�cation into corners, edges, and faces might need some
modi�cation in order to ensure well-posedness of the BDDC method with corner constraints only. This
usually involves the use of a kernel detection mechanism (see, e.g., [49]). A new approach based on
perturbations has recently been proposed in [9, 8], where the method is well-posed in all cases.

3. PB-BDDC preconditioning

In this section, we present the PB-BDDC preconditioner. The basic idea behind BDDC methods is �rst
to de�ne a sub-assembled operator (no assembling among subdomains), and the global space of functions
that are fully independent (�discontinuous�) among subdomains. Secondly, we have to de�ne the under-
assembled space (the BDDC space) of functions for which continuity among subdomains is enforced only
on a set of coarse DOFs. In order to be robust for heterogeneous problems, the PB-BDDC method utilises
new de�nitions of the BDDC space (i.e., new coarse DOF continuity among subdomains) and a new
weighting operator.

3.1. Coarse degrees of freedom. Similarly to other BDDC methods, in the PB-BDDC method, some
(or all) of the objects in Λpb(Θ) are associated with a coarse DOF. We denote this set of objects by
ΛO and call it the set of primal or coarse objects. Obviously, ΛO ⊆ Λpb(Θ). Typical choices of ΛO are
ΛO

.
= ΛC , when only corners are considered, ΛO

.
= ΛC ∪ ΛE , when corners and edges are considered, or

ΛO
.
= Λpb(Θ), when corners, edges, and faces are considered. These choices lead to three variants of the

PB-BDDC method, referred to as PB-BDDC(c), PB-BDDC(ce) and PB-BDDC(cef), respectively. Figure
2 (right) actually shows the coarse objects of PB-BDDC(ce) for a simple 2D problem.

For a general coercive problem, given an object λ ∈ ΛO, we denote by nλ the dimension of the space
ker(A)|λ. We also consider a set of functions {rλl }

nλ
l=1 ⊂ ker(A) such that their restrictions to λ, i.e.,

{rλl |λ}
nλ
l=1, span ker(A)|λ. For Poisson's problem, nλ = 1 and the constant function rλ1 = 1 must be

considered for all objects. For 3D linear elasticity, one can consider 6 rigid-body modes (see, for example,
[54, 34]) as {rλl |λ}

nλ
l=1. These rigid-body modes are linearly independent when restricted to faces. However,

only 5 and 3 of them are linearly independent when restricted to straight edges and corners, respectively.
The dimension nλ, therefore, should be decided based on whether λ is a face, an edge, or a corner.
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We consider the following set of coarse DOFs:

cD,lλ (uD)
.
=

∫
λ uD · r

λ
l ds∫

λ r
λ
l · rλl ds

, for uD ∈ VD, l = 1, . . . , nλ.

When λ is a corner, cDλ is simply the value of uD ·rλl at that corner. The set of all the constraints for a given
subdomain D and object λ ∈ ΛO span a subspace of functionals CDλ

.
= span{cD,lλ , l = 1, . . . , nλ} ⊂ V′D.

Once we have de�ned the coarse DOFs, we can de�ne the BDDC space as follows

Ṽ .
= {v ∈ V : cD,lλ (v) = cD

′,l
λ (v), ∀λ ∈ ΛO, ∀D,D′ ∈ neighΘ(λ), l = 1, . . . , nλ}, (4)

i.e., the subspace of functions in V having continuous coarse DOFs values. Clearly, V̄ ⊂ Ṽ ⊂ V.
For BDDC methods, solving the coarse problem is usually the bottleneck (cf. [2, 3, 4, 9]). Therefore, it

is of great interest to �nd a minimal set of coarse objects (the number of the coarse objects is the number
of the coarse DOFs and also is the size of the coarse problem), so that BDDC methods can achieve their
potential of fast convergence and perfect weak scalability. According to [35, 54], in the case where the
physical coe�cient in each subdomain is constant, the set of coarse objects only needs to guarantee the
existence of the so-called acceptable paths. We need a similar concept here for the PB-BDDC method.

The de�nitions below follows [34]. For the rest of the subsection, we consider the 3D case. The 2D case
follows a straightforward restriction where faces become edges and edges become corners.

De�nition 3.1 (Fully primal face). A face λ ∈ Λpb(Θ) is fully primal if there exists a set of functionals

φm ∈ Cλ, for m = 1, . . . , nλ, such that, for any D̂ ∈ neighΘpb
(λ) and uD̂ ∈ VD̂, the following properties

are satis�ed:

|φm(uD̂)|2 ≤ C 1

H(D̂)

(
1 + log

(
H(D̂)

h(D̂)

))
(|uD̂|

2

H
1
2 (λ)

+ ‖uD̂‖
2
L2(λ)),

φm(rλl ) = δml ∀m, l = 1, . . . , nλ.

It is obvious to check that a primal face is fully primal. Now, we are in position to de�ne the concept
of acceptable path.

De�nition 3.2 (Acceptable path). Let Θ∂
pb be the set of PB subdomains D̂ ∈ Θpb touching the interface

Γ(Θ), i.e., ∂D̂ ∩ Γ(Θ) 6= ∅. For two subdomains D̂a, D̂b ∈ Θ∂
pb that share at least one object λ ∈ Λpb(Θ),

an acceptable path connecting them is a sequence {D̂a = D̂1, D̂2, . . . , D̂n = D̂b} of PB subdomains in Θpb

such that

TOL αk ≥ R(k) min(αa, αb), 1 ≤ k ≤ n (5)

where TOL is some prede�ned tolerance and R(k) = h(D̂k)/H(D̂k) if λ is a corner and R(k) = 1 otherwise.
The path can only pass from one subdomain to the next one through a primal face.

Assumption 3.3. Given a prede�ned tolerance TOL for the de�nition of acceptable paths, we assume
that the set of PB-BDDC objects ΛO are such that for any pair of subdomains D̂a, D̂b ∈ Θ∂

pb such that

ω(D̂a) 6= ω(D̂b) sharing an object, then the object is primal or there is an acceptable path between the
subdomains.

Remark 3.4. For D̂a and D̂b sharing a primal object in ΛO, there is a trivial path with TOL = 1. If
ω(D̂a) = ω(D̂b), pointwise continuity is enforced between them or between subdomains connecting them to
form a path. This is much stronger than having an acceptable path. In other words, we can say that there
is at least one acceptable path with TOL = 1 between any pair of PB subdomains belonging to the same
original subdomain.

3.2. Restriction operator. Let us de�ne the projection Q : V→ V̄ as some weighted average of interface
values together with an α-harmonic extension to subdomain interiors (see, e.g., [41]). We de�ne these
ingredients as follows.
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For u ∈ V, ξ ∈ Γ(Θ) and an associated PB partition Θpb of Θ, the weighting operator W is de�ned as

Wu(ξ)
.
=

∑
D∈neighΘ(ξ)

δ†D(ξ)uD(ξ), with δ†D(ξ)
.
=

∑
D̂∈neighΘpb

(ξ)∩Θpb(D)
αD̂∑

D̂∈neighΘpb
(ξ)
αD̂

, (6)

where αD̂ denotes the constant coe�cient in the PB subdomain D̂.

Ω1

Ω2

Ω3

Ω4

ξ

Ω̂1

Ω̂2

Ω̂3

Ω̂4

Ω̂5

Ω̂6

Ω̂8

Ω̂7

ξ

Figure 3. Illustration for the weighting W at ξ on the interface Γh(Θ) of the original
partition (left) with an associated PB partition (right).

We note that (6) de�nes the weighting for points on the original interface Γ(Θ). However, information
of the associated PB partition Θpb is also incorporated. For illustration, the action of W on u ∈ V at ξ
shown in Figure 3 is

Wu(ξ) =
α̂3 + α̂4

α̂3 + α̂4 + α̂7
u2(ξ) +

α̂7

α̂3 + α̂4 + α̂7
u4(ξ),

where ui denotes the local �component� of u associated with subdomain Ωi.
The α-harmonic extension operator E taking data on the interface Γh(Θ) and α-harmonically extending

it to each subdomain D ∈ Θ is formally de�ned as

Eu .
= (1−A−1

0 A)u,

where A0 is the Galerkin projection of A onto the bubble space V0
.
= {v ∈ V : v = 0 on Γ(Θ)}.

We �nally de�ne Q = EW.

3.3. Preconditioner statement. In this subsection, we present the PB-BDDC preconditioner, and de-
scribe its set-up and formulation. The PB-BDDC preconditioner is a BDDC preconditioner in which the
set of coarse DOFs enforce continuity on a set of PB coarse objects, thus modifying the BDDC space
being used. Once one has de�ned the set of PB coarse objects ΛO, the rest of ingredients of the PB-BDDC
preconditioner are identical to the ones of a standard BDDC preconditioner. In any case, the de�nition
of the weighting operator introduced in (6) is new.

The BDDC preconditioner is a Schwarz-type preconditioner that combines interior corrections with
corrections in the BDDC space (see, e.g., [11, 54]). In case of the PB-BDDC preconditioner, the BDDC

correction is expressed as Q(ÃΘ)−1QT , where ÃΘ is the Galerkin projection of AΘ onto Ṽ. More speci�-
cally, the PB-BDDC preconditioner reads as follows:

B = A−1
0 +Q(ÃΘ)−1QT .

Apart from the task of identifying and de�ning coarse objects, the implementation of the PB-BDDC
method is identical to that of the standard BDDC method. We refer the interested reader to [15, 16, 43, 11]
for more details on the formulation of BDDC methods and to [2, 4, 6] for an e�cient implementation of
BDDC methods on distributed memory machines, which requires much further elaboration.
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3.4. Condition number estimates. In order to prove condition number estimates for the PB-BDDC

preconditioner, we �rst need to introduce B̂, an auxiliary BDDC preconditioner. The de�nition of this
preconditioner follows verbatim that of the PB-BDDC preconditioner. There are only changes in the
partition, the weighting, and the coarse objects being used.

B̂ is de�ned on the PB partition. Given the FE mesh T , the FE space type, and the PB subdomain
partition Θpb, one can similarly build the FE spaces and operators as in section 2.2, leading to the

sub-assembled space Vpb and operator AΘpb .

As for the weighting, Ŵ, its rigorous formulation is given as follows. For û ∈ Vpb, and ξ ∈ Γ(Θpb), the

weighting operator Ŵ is de�ned as

Ŵû(ξ)
.
=

∑
D̂∈neighΘpb

(ξ)

δ†
D̂

(ξ) ûD̂(ξ), where δ†
D̂

(ξ)
.
=

αD̂∑
D̂∈neighΘpb

(ξ)
αD̂

. (7)

For ξ illustrated in Figure 3, this de�nition yields

Ŵû(ξ) =
α̂3

α̂3 + α̂4 + α̂7
û3(ξ) +

α̂4

α̂3 + α̂4 + α̂7
û4(ξ) +

α̂7

α̂3 + α̂4 + α̂7
û7(ξ),

where ûi denotes the local �component� of û associated with subdomain Ω̂i. In other words, Ŵ is nothing
but the pseudoinverse of a classical weighted counting function introduced in [35] (see also [54, 6.2.1]).

It is well known that δ†
D̂
is constant in each (PB) coarse object associated with D̂ and the following

important inequality, cf. [54, (6.19)], holds

αD̂a

(
δ†
D̂b

(ξ)
)2
≤ min

(
αD̂a , αD̂b

)
, ∀D̂a, D̂b ∈ neighΘpb

(ξ). (8)

Lemma 3.5. The weighting Ŵ and W satisfy

Ŵu(ξ) =Wu(ξ) for all u ∈ V, ξ ∈ Γ(Θ).

Proof. The proof comes directly from (6), (7), and the fact that vD̂a(ξ) = vD̂b(ξ) = vD(ξ) for any ξ ∈ Γ(Θ),

v ∈ V ⊂ Vpb, and D̂a, D̂b ∈ Θpb(D) such that ξ ∈ D̂a, D̂b. Using these facts, we �nd that

Wv(ξ) =
∑

D∈neighΘ(ξ)

δ†D(ξ) vD(ξ) =
∑

D∈neighΘ(ξ)

∑
D̂∈Θpb, D̂3ξ

δ†
D̂

(ξ) vD(ξ)

=
∑

D̂∈neighΘpb
(ξ)

δ†
D̂

(ξ) vD̂(ξ) = Ŵv(ξ).

It ends the proof. �

With the de�nition of Ŵ in place, we can de�ne Q̂ = ÊŴ, where Ê is the extension operator taking
data on Γ(Θpb) and α-harmonically extending to the interiors of each PB subdomain (cf. section 3.2).

The de�nition of the set of coarse objects of B̂ requires further elaboration. The set of objects Λ(Θpb)
obtained by applying the classi�cation in section 2.3 for the PB subdomain partition Θpb provides a
classi�cation of Γ(Θpb) ⊃ Γ(Θ). We have the following relation between the PB objects Λpb(Θ) and the
(standard) objects of the PB partition Λ(Θpb).

Lemma 3.6. All the objects in Λpb(Θ) are also in Λ(Θpb), i.e., Λpb(Θ) ⊂ Λ(Θpb).

Proof. Let us consider an object λpb ∈ Λpb(Θ). In both object partitions Λpb(Θ) and Λ(Θpb), we are
using the same criteria, i.e., neighΘpb

(·), to classify points. The di�erence is that Λpb(Θ) is the result of a

classi�cation of points in Γ(Θ) whereas Λ(Θpb) is obtained from a classi�cation of points in Γ(Θpb). Since
Γ(Θ) ⊂ Γ(Θpb), all points in λpb belong to the same object λ′ ∈ Λ(Θpb). Since λpb is on the interface

Γ(Θ), there exist at least two subdomains D̂, D̂′ ∈ neighΘpb
(λpb) such that ω(D̂) 6= ω(D̂′). Let us assume

there is a point ξ ∈ λ′ such that ξ /∈ λpb. Then, ξ ∈ Γ(Θpb)\Γ(Θ), i.e., it only belongs to one subdomain in

Θ. As a result, ω(D̂) is the same for all D̂ ∈ neighΘpb
(ξ). Thus, we have a contradiction, since neighΘpb

(ξ)

cannot be the same as neighΘpb
(λpb). �
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With the theoretical support from Lemma 3.6, we can de�ne the set of coarse objects Λ̂O of B̂ as a
classi�cation of Γ(Θpb) as follows. On Γ(Θ), we consider the same set of objects ΛO used in the PB-BDDC
preconditioner, i.e., ΛC , or ΛC ∪ ΛE , or Λpb(Θ). For the rest of the interface Γ(Θpb)\Γ(Θ), we enforce
full continuity among PB subdomains. It can be understood as treating all FE nodes on Γ(Θpb)\Γ(Θ) as

corners. Denote this set of objects by Λ̂∗, we have Λ̂O = ΛO ∪ Λ̂∗. Figure 4 illustrates the partitions and

coarse objects of B and B̂ when ΛO = ΛC ∪ ΛE .

Remark 3.7. By construction, the BDDC space Ṽpb of the auxiliary BDDC preconditioner B̂ is the same

as the BDDC space Ṽ, de�ned in (4), of the PB-BDDC preconditioner.

Ω1

Ω2

Ω3

Ω4

Ω̂1

Ω̂2

Ω̂3

Ω̂4

Ω̂5

Ω̂6

Ω̂8

Ω̂7

Figure 4. Partitions and coarse objects of the PB-BDDC preconditioner B (left) and the

auxiliary BDDC preconditioner B̂ (right) when ΛO = ΛC ∪ ΛE : corner objects are labeled
with crosses while nodes of other objects are labeled with circles.

Lemma 3.8. The condition number κ(BA) of the PB-BDDC preconditioned operator is bounded by

κ(BA) ≤ max
v∈Ṽpb

〈AΘpbQ̂v, Q̂v〉
〈AΘpbv, v〉

. (9)

Proof. According to [43, Theorem 15] (see also [41]), κ(BA) is bounded by

κ(BA) ≤ max
v∈Ṽ

〈AΘQv,Qv〉
〈AΘv, v〉

. (10)

Now we only need to bound the right-hand-side in (10) by the one in (9).

On the one hand, using the fact that Ṽ = Ṽpb (cf. Remark 3.7) , we have 〈AΘv, v〉 = 〈AΘpbv, v〉 for
all v ∈ Ṽ because any v ∈ Ṽ is continuous in each subdomain of Θ. On the other hand, let us prove that

the weighting operator Ŵ de�ned by (6) for Θpb restricted to V is identical to the weighting operator W
de�ned by (6) for Θ. Let us consider a subdomain D ∈ Θ and its PB partition Θpb(D). We have

δ†D(ξ) =
∑

D̂∈Θpb(D), D̂3ξ

δ†
D̂

(ξ),

by the de�nition in (6). Using Lemma 3.5, we get that Q̂v and Qv are identical on Γ(Θ) and Q̂v is
continuous across Γ(Θpb). In addition, Qv is discrete α-harmonic in each D ∈ Θ and has minimal energy

norm with respect to AΘ. As a consequence,

〈AΘQv,Qv〉 =
∑
D∈Θ

〈AΘ
DQv,Qv〉

≤
∑
D∈Θ

〈AΘ
DQ̂v, Q̂v〉 =

∑
D̂∈Θpb

〈AΘpb

D̂
Q̂v, Q̂v〉 = 〈AΘpbQ̂v, Q̂v〉.

This �nishes the proof. �
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We could stop here and derive the estimate for κ(BA) knowing that the condition number of the

auxiliary BDDC preconditioned operator B̂A is estimated by an upper bound of the last quantity on the
right of (10). However, we will go a bit further to obtain a stronger result.

Lemma 3.9. Assume that ΛO is such that Assumption 3.3 holds. Then we have the following inequality:

max
v∈Ṽpb

〈AΘpbQ̂v, Q̂v〉
〈AΘpbv, v〉

≤ C max{1,TOL} max
D∈Θ∂pb

(
1 + log

(
H(D)

h(D)

))2

,

where the constant C is independent of the number of subdomains, H(D̂), h(D̂) and the physical coe�cient
α.

Proof. By triangle inequality, we have

max
v∈Ṽpb

〈AΘpbQ̂v, Q̂v〉
〈AΘpbv, v〉

≤ 1 + max
v∈Ṽpb

〈AΘpb(Q̂v − v), (Q̂v − v)〉
〈AΘpbv, v〉

.

Let w = Q̂v − v. Then its component on D̂a, wD̂a , can be explicitly written as

wD̂a(ξ) =
∑

D̂b∈neighΘpb
(ξ)

δ†
D̂b

(ξ)
(
wD̂a(ξ)− wD̂b(ξ)

)
.

Given a FE function u ∈ VD̂, we denote by θ
D̂
λ (u) ∈ VD̂ the FE function that is discrete α-harmonic in

D̂ and agrees with u at the FE nodes in the object λ and vanishes at all the other nodes on ∂D̂. Since
Λ(Θpb) is a partition of Γ(Θpb), we can split w into object and subdomain contributions as follows:

w =
∑

λ∈Λ(Θpb)

∑
D̂∈neighΘpb

(λ)

θD̂λ (w). (11)

By construction of the set of objects Λ̂O = ΛO ∪ Λ̂∗ and the de�nition of Ṽpb, w vanishes at all coarse

objects in Λ̂∗, i.e., at all FE nodes in Γ(Θpb) \ Γ(Θ). Consequently, (11) can be simpli�ed as follows:

w =
∑

λ∈Λpb(Θ)

∑
D̂∈Θ∂pb

θD̂λ (w).

When ΛO satis�es Assumption 3.3, the set of objects in Λ̂O also ful�lls [54, Assumption 6.27]. Conse-

quently, using the fact that δ†
D̂
is constant in each PB coarse object associated with D̂ and (8), we can use

the analysis in [34] for 3D linear elasticity (see also the proof in [54, Lemma 6.36] and in [35, Lemma 10]
for the Poisson's problem) to obtain

〈AΘpb

D̂
θD̂λ (w), θD̂λ (w)〉

≤ C max{1,TOL}

(
1 + log

(
H(D̂)

h(D̂)

))2 ∑
D̂∈neighΘpb

(λ)

〈AΘpb

D̂
v, v〉,

for any D̂ ∈ Θ∂
pb and λ ∈ Λ(Θpb). Here the constant C is independent of H(D̂), h(D̂) and the physical

coe�cient α.
Adding up the estimate for all subdomains D̂ ∈ Θpb, we �nd that

〈AΘpbw,w〉 ≤ C max{1,TOL} max
D̂∈Θ∂pb

(
1 + log

(
H(D̂)

h(D̂)

))2

〈AΘpbv, v〉.

This �nishes the proof. �

Combining results in Lemma 3.8 and Lemma 3.9, we have the �nal bound for the PB-BDDC precondi-
tioner, which is both weakly scalable and independent of the coe�cient α.
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Theorem 3.10. If the set of PB-BDDC coarse objects ΛO satis�es Assumption 3.3, then the condition
number of the PB-BDDC preconditioned operator κ(BA) is bounded by

κ(BA) ≤ C max{1,TOL} max
D̂∈Θ∂pb

(
1 + log

(
H(D̂)

h(D̂)

))2

,

where the constant C is independent of the number of subdomains, H(D̂), h(D̂) and the physical coe�cient
α.

Remark 3.11. As seen in Lemma 3.9 and Theorem 3.10, the condition number associated with the PB-
BDDC method depends only on the characteristic size and mesh size of PB subdomains touching the original
interface Γ(Θ). Further, the convergence of PB-BDDC is independent of variations of the coe�cient. The
main target of this work is achieved.

Remark 3.12. As PB partition and PB subdomains are de�ned mainly based on the variation of the
coe�cient, a natural question that arises is whether the convergence of the PB-BDDC preconditioner
depends on the shapes of PB subdomains. It is well-known that subdomains with bad aspect ratio [24] and
irregular subdomains with ragged boundary do have bad e�ect on domain decomposition preconditioners [33].
For PB-BDDC, such e�ect is negligible. The explanation is two-fold. First, the PB partition is not unique,
i.e., we could split any PB subdomains into smaller PB subdomains as soon as Λpb(Θ) remains the same,
leading to the same preconditioner. Therefore, PB subdomains with bad aspect ratio or irregular boundary
can be broken into smaller PB subdomains with good aspect ratio and more regular boundary and ideally

consider the one that minimizes the constants in Theorem 3.10. Second, in the auxiliary preconditioner B̂
for which the classical domain decomposition theory in [54] is applied, all of the boundary FE nodes on the
PB interface but not on the original interface are treated as corners. Therefore, constraints on the aspect
ratio as well as the regularity of the boundary of these PB subdomains do not a�ect the performance of the
preconditioner. This will be later con�rmed by the numerical experiment in section 5.1.4.

4. Reducing the size of the coarse space in PB-BDDC

4.1. Some explanatory examples. If all the constraints associated with the PB partition are used, we
might end up using too many constraints and the size of the coarse space can be quite large. This could
a�ect the overall performance of the PB-BDDC method since the coarse problem is usually the bottleneck
in large scale simulations (cf. [2, 3, 4, 9]). However, according to Theorem 3.10, not all the constraints
associated with the PB partition are required to guarantee robustness. We only need to choose the set of
PB-BDDC coarse objects ΛO so that Assumption 3.3 holds. A simple option is to use, e.g., PB-BDDC(f),
i.e., considering all faces as primal, since Assumption 3.3 readily holds. However, care must be taken as
Assumption 3.3 might hold, but only for TOL proportional to the constrast of physical values (see [54,
6.4.5]). In the following, we will discuss a more elaborated approach.

Roughly speaking, for any two PB subdomains that share at least one point on the original subdomain
interface, we need at least one acceptable path between them. From De�nition 3.2, it implies that for any
pair of PB subdomains, if one or both of them have a small coe�cient, then the other neighboring PB
subdomains with larger or equal coe�cients can be included in the acceptable path without increasing the
tolerance TOL. In other words, one only needs to worry about pairs of connected PB subdomains with
large coe�cients. There can be as many inclusions and channels as wanted inside a subdomain and not
a single extra PB object is required. We note that these inclusions and channels can touch but not cross
the original interface.

In Fig. 5, we illustrate some common scenarios of the coe�cient and indicate the number of extra con-
straints, apart from the ones needed for well-posedness, required to guarantee the existence of acceptable
paths. For simplicity of exposition, for the rest of this section, we only consider Poisson's problem. Linear
elasticity will be considered in the next section. In addition, we only use channels for the clarity of the
illustration even though the procedure can be applied to general scenarios. For docking channels that
do not cross the subdomain interface as in Figure 5a, no extra constraint is required provided that the
original subdomains are connected, i.e., there is at least an acceptable path that connects them. For a long
channel crossing the subdomain interface (see Figure 5b), one extra constraint is required. This constraint
can be a vertex, an edge, or a face constraint. For channels that are connected inside subdomains, as
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illustrated in Figure 5c, they all belong to the same PB subdomain and only one extra vertex, edge or
face constraint is su�cient (due to the weaker restriction on face-connected subdomains in Figure 3.3).
When channels are disjoint even in one of the subdomains only, we need at least one extra constraint for
each non-connected channel, because every channel of this type leads to a di�erent PB subdomain. This
is illustrated in Figure 5d.

In summary, we need one extra PB constraint for every non-connected channel of high coe�cient
crossing the original interface. This is similar to spectral-based approaches of adaptive coarse spaces, e.g.,
[52, 31, 27], where the number of eigenfunctions needed is the same as the number of high coe�cient
channels crossing the interface. The conclusion will be numerically veri�ed in section 5.1.1 and section
5.1.3.

Ω̂1 Ω̂3

Ω̂2

(a) Docking channel: no extra constraint is re-

quired.

Ω̂1

Ω̂3

Ω̂2
Ω̂4

V1

(b) Long channel crossing boundary interface: one

extra constraint is su�cient, e.g., Ω̂2
V1−→ Ω̂4.

Ω̂1 Ω̂5

Ω̂2

Ω̂3

Ω̂4

Ω̂6

Ω̂7

Ω̂8

V1

(c) Channels that are connected: one extra con-

straint is su�cient e.g., Ω̂2
V1−→ Ω̂8.

Ω̂1 Ω̂5

Ω̂2

Ω̂3

Ω̂4

Ω̂6

Ω̂8

Ω̂7

V1

V2

V3

(d) Disjoint channels: one extra constraint is re-

quired for each channel, e.g., Ω̂2
V1−→ Ω̂8, Ω̂2

V2−→
Ω̂7, Ω̂2

V3−→ Ω̂6.

Figure 5. Some scenarios of coe�cient distribution and the minimal number of extra
constraints required.

In practice, it can be complicated to select the minimal set of constraints. However, it is not di�cult to
choose a reasonably small set of constraints that is su�cient for PB-BDDC to be α-robust. For example,
we can consider only PB subdomains touching the original interface and having coe�cient relatively larger
than the smallest coe�cient of the neighboring PB subdomains in the same original subdomain. For two
PB subdomains that are of this type and belong to two di�erent original subdomains, we will select a
vertex, an edge, or a face constraint to �connect� them if they share at least a point. For simplicity, vertex
constraints only can be used in 2D. This approach is utilized in our numerical experiments with Poisson's
problem in section 5.

4.2. PB-BDDC(f-min): an automatic face-based algorithm. In order to make the PB-BDDC al-
gorithm competitive, especially for general 3D linear elasticity problems, one needs to de�ne an e�ective
automatic algorithm that will generate a small coarse space, i.e., with a dimension close to the minimum
number of coarse DOFs needed to satisfy Assumption 3.3. Since the computation of the optimal is im-
practical and can involve long acceptable paths, our main target is to de�ne a heuristic but scalable and
e�ective algorithm.

We consider herein an algorithm that relies on face constraints. This choice is motivated by the fact that
the acceptable path relies on fully primal faces and that primal faces are automatically fully primal.1 Thus,
the BDDC problem is well-posed without the need to deal with complex kernel detection mechanisms.

1We note that the de�nition of constraint sets in 3D linear elasticity for FETI-DP methods in the seminal work [34] rely on
edge constraints.
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However, for heterogeneous problems, face-only algorithms are not robust in all cases, e.g., when inclusions
with high coe�cients only share an edge (see Fig. 5.2 in [34] for an illustration).

We provide the following algorithm to automatically determine a small face-based coarse space satisfying
Assumption 3.3. In the following algorithm, we work with an undirected graph G (to be built during the
course of the algorithm) where the vertices are the PB subdomains in Θpb and an edge connecting two
vertices means that there is an acceptable path between the PB subdomains.
Part 1: Determine subdomain interior connections. Every subdomain D ∈ Θ is composed by a set of PB
subdomains Θpb(D). We consider that two PB subdomains in Θpb(D) are connected if they share a face,

i.e., D̂a∩D̂b is of dimension d−1. We note that full continuity is enforced on all these faces in PB-BDDC,
and thus these faces are fully primal and the PB subdomains have an acceptable path. In a �rst step,
we introduce all these connections in the graph G for all subdomains in Θ. This work is embarrassingly
parallel.
Part 2: Determine face connections. For a face F ∈ Λ(Θ) shared by subdomains D1,D2 ∈ Θ, we denote by
Λpb(F ) all the PB objects λ ∈ Λpb(Θ) such that λ ⊆ F . For every PB face f ∈ Λpb(λ) and the respective

PB subdomains D̂1 and D̂2 sharing this face, we compute the value min(αD̂1
, αD̂2

) and max(αD̂1
, αD̂2

).

We sort these faces �rst with respect to the �rst value and next to the second one in decreasing order.2

(If there are still ties, one can consider, e.g., the face with maximum area and �nally the minimum global
Id.) Thus, the set of faces in Λpb(F ) are ordered and can be represented with f1, . . . , fnF . We de�ne f1

as coarse DOF, i.e., it is included in ΛO, and mark the PB subdomains sharing this face as connected
in G, since there is a trivial acceptable path between them. We take i = 2, and check whether these
two subdomains have an acceptable path restricted to PB subdomains in Θpb(D1) ∪ Θpb(D2), i.e., two

consecutive subdomains are connected in G and their physical values satisfy (5).3 If there is no acceptable
path, we consider the face as coarse DOF. We mark as connected these two subdomains in G in any case.
We proceed for i = i+ 1, till traversing all PB faces. We proceed for all faces in Λ(Θ).

To have at every processor all the connections of G for PB subdomains in Θpb(D1)∪Θpb(D2), nearest-
neighbor communications are performed right before Part 1. We note that every processor only needs to
perform this work for its faces to have all the connections of its PB subdomains. With this information,
the seek of acceptable paths is embarrassingly parallel.
Part 3: Adding coarse edges/corners constraints. Now, for every PB edges/corners e ∈ Λpb(Θ), we
check whether there is a trivial acceptable path, restricted to PB subdomains in neighΘpb

(e). If not,

the edge/corner is added to the set of coarse DOFs ΛO. As before, this step involves a nearest-neighbor
communication to have at every processor all the connections of G (in the status corresponding to the
end of Part 2) for PB subdomains in neighΘpb

(e), whereas the seek of acceptable paths is embarrassingly

parallel.

Proposition 4.1. The coarse DOFs ΛO obtained with the previous algorithm satis�es Assumption 3.3.

Proof. First, full continuity is enforced for interior PB objects. By construction, all PB subdomains sharing
faces of Λ(Θ) have an acceptable path by construction in Step 2. Finally, PB subdomains only sharing
corners/edges also have an acceptable path by construction in Step 3. �

Remark 4.2. Less restrictive algorithms that would look for connections in larger patches could be con-
sidered. It would reduce the coarse space but it would involve longer paths, deteriorating convergence. It
would also incur in more communications between processors and memory consumption.

Remark 4.3. It can easily be checked that this automatic algorithm leads to the same number of coarse
constraints as for the cases in Fig. 5, the only di�erence being that face (edge in 2D) constraints instead
of vertices, would be considered.

2This choice is motivated by (5) in the de�nition of the acceptable path.
3Clearly, by restricting the connections to PB subdomains in Θpb(D1) ∪ Θpb(D2), we restrict the length of the acceptable
paths, not attaining the minimum coarse space. However, it is essential to expose concurrency in the implementation of the
algorithm by controlling the length of the acceptable paths.
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5. Numerical experiments

In this section, we test the robustness and e�ciency of the PB-BDDC preconditioner for the system
matrix associated with (3) for di�erent types of variation in the coe�cient α, which are similar but
generally harder than the ones in [45, 31, 39].

5.1. Experiments in 2D. We consider the problem (1) with homogeneous Dirichlet boundary condition
and the forcing term f = 1. In most cases, the physical domain is Ω = (0, 1)2. Unless otherwise stated, we
use uniform triangular meshes of size h = 1/72 and a regular 3 × 3 subdomain partition. We report the
dimension of the coarse space, denoted by dim, and the number of iterations required for the preconditioned
conjugate gradients method to reduce the residual norm by a factor of 106. We also provide the computed
(not estimated) condition number κ of the preconditioned operator in most examples.

We will compare the performance of BDDC(ce), the standard BDDC method with all possible subdo-
main corner and edge coarse objects, with that of PB-BDDC(ce), PB-BDDC(e) and PB-BDDC([c]), three
variants of the PB-BDDC method where all possible physics-based corner and edge or edge coarse objects,
or selected physics-based corner coarse objects are used. No corner detection mechanism (see, e.g., [49])
has been needed. Alternatively, one might want to consider the perturbed formulation introduced in [8, 9].

5.1.1. Two channels. In this test case, we consider two channels of high α cutting through vertical subdo-
main edges (see Figure 6). The coe�cient in the channels αmax takes the values {102, 104, 106, 108}, while
the coe�cient in the rest of the domain is equal to 1.

Figure 6. Two channels test case: the coe�cient distribution when αmax = 106. The
coarse objects used by PB-BDDC(ce) are shown on the interface with corners labeled by
stars and DOFs in edges labeled by circles.

From Table 1, we can see that the condition number and the number of iterations for the standard BDDC
preconditioner, BDDC(ce), de�nitely increase with αmax, whereas they remain practically constant for the
three variants of the PB-BDDC preconditioner: PB-BDDC(ce), PB-BDDC(e) and PB-BDDC([c]). In
other words, the convergence of the PB-BDDC method is independent of the contrast and the PB-BDDC
method is perfectly robust for this test case.

In addition, we want to emphasize that PB-BDDC([c]) can deliver perfect robustness with a coarse
space of the same dimension as the coarse space of the standard method BDDC(ce). The coarse objects
of PB-BDDC(ce) and PB-BDDC([c]) are illustrated in Figure 6 and Figure 7 respectively.

5.1.2. Channels and inclusions. In this test case, we consider both channels and inclusions of high coe�-
cient. First, the three channels include all the elements whose centroids are less than 2 · 10−2 from one of
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Figure 7. Two channels test case: only a small number of critical corners, and subdomain
corners are required by PB-BDDC([c]) to have perfect robustness. These corners are shown
on the interface as stars.

Table 1. Comparison of the iteration count and condition number in the two channels
test case.

BDDC(ce) PB-BDDC(ce) PB-BDDC(e) PB-BDDC([c])
dim 16 64 36 16
αmax # it. (κ) # it. (κ) # it. (κ) # it. (κ)

102 9(8.68e2) 4 (1.38e0) 5 (3.01e0) 6 (3.77e0)
104 13(1.83e5) 4 (1.36e0) 5 (2.92e0) 5 (2.25e0)
106 17(3.61e5) 4 (1.36e0) 5 (2.92e0) 5 (2.24e0)
108 22(4.05e7) 4 (1.36e0) 5 (2.92e0) 5 (2.24e0)

the following three lines:

L1 : x1 − x2 − 0.2 = 0,

L2 : x1 + x2 − 0.7 = 0,

L3 : x1 − 0.7x2 − 0.7 = 0.

The coe�cient αmax in these channels takes the values {102, 104, 106, 108}. Secondly, the inclusions are
de�ned as the regions of elements whose all vertices x satisfy

mod
(

floor(10xi), 2
)

= 1, for i = 1, 2.

For an element τ that belongs to one of the inclusions and is not in the channels, its coe�cient is de�ned
as

α|τ = (αmax/10)1/5∗floor(0.5∗floor(10x1(cτ ))+1, where cτ is the centroid of τ. (12)

The coe�cient in (12) is: a) constant in each inclusion; b) increasing from left to right; c) increasing as
αmax increases; and d) always belongs to (1, αmax). For the rest of the domain, we set α = 1. The maximal
contrast ratio in this experiment is 108. The coe�cient distribution when α = 106 is shown in Figure 8.

We can see from Table 2 that as αmax becomes larger the condition number and the number of iterations
associated with the standard BDDC(ce) method increases signi�cantly. In contrast, both variants of the
PB-BDDC method, PB-BDDC(ce) and PB-BDDC(e), are perfectly robust with respect to the changes of
the coe�cient in the channels and in the inclusions. Especially, PB-BDDC(e) maintains its robustness
with a reasonably small coarse space (see also Figure 9).
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Figure 8. Channels and inclusions test case: the coe�cient distribution when αmax = 106.
The coarse objects used by PB-BDDC(ce) are shown on the interface with corners labeled
by stars and DOFs in edges labeled by circles.

Figure 9. Channels and inclusions test case: only a small number of critical corners, and
subdomain corners are required by PB-BDDC([c]) to have α-robustness. These corners are
shown on the interface as stars.

Table 2. Comparison of the iteration count and condition number in the channels and
inclusions test case.

BDDC(ce) PB-BDDC(ce) PB-BDDC(e) PB-BDDC([c])
dim 16 89 39 19
αmax # it. (κ) # it. (κ) # it. (κ) # it. (κ)

102 10(2.57e5 ) 6 (1.91e0) 10 (4.84e1) 12 (2.25e2)
104 24(1.79e7 ) 6 (1.99e0) 10 (7.00e1) 13 (3.44e2)
106 36(1.54e9 ) 6 (2.04e0) 11 (7.03e1) 14 (3.49e2)
108 61(1.47e11) 6 (2.04e0) 11 (7.03e1) 14 (3.50e2)



PHYSICS-BASED BDDC FOR MULTI-MATERIAL PROBLEMS 18

Figure 10. Complex channels test case: the coe�cient distribution when αmax = 106.
Only few corners are required by PB-BDDC([c]) to guarantee perfect robustness (to have
acceptable paths). These corners are shown on the interface as stars.

5.1.3. Complex channels. In this test case, we demonstrate the importance of having acceptable paths. We
consider a distribution with multiple channels of high coe�cient αmax taking values in {102, 104, 106, 108}
(see Figure 10 for the case when αmax = 106).

From Table 3, we can see that PB-BDDC(ce) is perfectly robust. On the other hand, the condition num-
ber and number of iterations of the PB-BDDC(e) preconditioner increase signi�cantly as αmax increases.
The reason is that there are some pairs of channels sharing a corner but not an edge. In PB-BDDC(e),
none of these corners are selected as a coarse object. Consequently, there is no acceptable path with TOL
independent of the contrast between the associated paired of channels (PB subdomains) and Assumption
3.3 does not hold. By using a small number of these critical corners in order to satisfy Assumption 3.3 and
the subdomain corners to guarantee invertibility, the resulting preconditioner, PB-BDDC([c]), is perfectly
robust with respect to changes in the contrast of the coe�cient (see Table 3).

Table 3. Comparison of the iteration count and condition number in the complex channels
test case.

BDDC(ce) PB-BDDC(ce) PB-BDDC(e) PB-BDDC([c])
dim 16 78 46 13
αmax # it. (κ) # it. (κ) # it. (κ) # it. (κ)

102 16 (2.40e3) 6 (2.75e0) 14 (1.42e3) 10 (8.79e1)
104 26 (4.22e5) 6 (2.82e0) 19 (1.96e5) 10 (9.83e1)
106 38 (4.25e7) 6 (2.82e0) 25 (1.97e7) 10 (9.84e1)
108 55 (4.93e9) 6 (2.82e0) 29 (1.97e9) 10 (9.84e1)

5.1.4. Special PB subdomains with bad aspect ratio or irregular boundary. In this test case, we check
whether PB subdomains with bad aspect ratios or irregular boundary could jeopardize the convergence of
the PB-BDDC preconditioner. We consider several regions of high coe�cient α including long and thin
channels thickness h and length H, and regions with ragged boundary. (see Figure 11). The coe�cient
αmax of these regions takes the values {102, 104, 106, 108}, while the coe�cient in the rest of the domain
is equal to 1.

From Table 4, we can see that the condition number and the number of iterations for BDDC(ce) and
PB-BDDC(e) de�nitely increase with αmax, whereas they remain practically constant for PB-BDDC(ce)
and PB-BDDC([c]). So as long as Assumption 3.3 on the existence of acceptable paths holds, PB-BDDC
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Figure 11. Special PB subdomains test case: the coe�cient distribution when αmax =
106. The coarse objects used by PB-BDDC(ce) are shown on the interface with corners
labeled by stars and DOFs in edges labeled by circles.

Figure 12. Special PB subdomains test case: only a small number of critical corners,
and subdomain corners are required by PB-BDDC([c]) to have perfect robustness. These
corners are shown on the interface as stars.

preconditioner is robust. More importantly, compared with results in experiments in section 5.1.1 and
section 5.1.3, we can conclude that PB subdomains with bad aspect ratio or irregular boundary do not or
have a very mild in�uence on the convergence of PB-BDDC preconditioner.

5.2. Experiments in 3D. For the set of experiments presented in this section, an HPC implementation
of the PB-BDDC preconditioner was developed using the tools provided by FEMPAR [1, 7]. FEMPAR is a
parallel hybrid MPI+OpenMP, object-oriented (OO) software package for the massively parallel Finite
Element (FE) simulation of multiphysics problems governed by PDEs, developed by the members of the
LSSC team at CIMNE. FEMPAR is released under the GNU GPL v3 license, and its �rst public release has
almost 300K lines of (mostly) Fortran 95/200X code.

A major and unique (compared to other packages available on the Internet) cornerstone of FEMPAR

is an abstract OO framework for the implementation of widely applicable highly scalable multilevel DD
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Table 4. Comparison of the iteration count and condition number in the special PB
subdomains test case.

BDDC(ce) PB-BDDC(ce) PB-BDDC(e) PB-BDDC([c])
dim 16 52 24 16
αmax # it. (κ) # it. (κ) # it. (κ) # it. (κ)

102 7 (6.56e0) 6 (1.78e0) 10 (3.13e01) 8 (5.68e1)
104 11 (3.17e3) 6 (2.09e0) 16 (1.46e04) 8 (1.17e2)
106 17 (3.61e5) 6 (2.11e0) 26 (1.53e06) 8 (1.19e2)
108 22 (4.05e7) 6 (2.11e0) 41 (7.50e08) 8 (1.19e2)

solvers.4 By letting this framework to be highly coupled with the numerical integration data structures
of the application, on the one hand, and to be highly customizable, on the other, one can derive optimal
preconditioners for the particular structure of the discrete operator at hand, and tackle new problems and
challenges, while leveraging the distributed-memory implementation ideas [3, 4, 6] on which the framework
is grounded on. In a nutshell, the global set of MPI tasks is split into those that have �ne-grid duties and
those that have coarse-grid duties. In addition, the di�erent computations and communications arising in
the BDDC-PCG algorithm are scheduled and mapped in such a way that the maximum degree of duty
overlapping is achieved. Customizable building blocks in the framework include the �ne-grid to coarse-
grid DOFs aggregation, the constraint matrix underlying the imposition of continuity of coarse DOFs
functionals across coarse objects, the weighting operator underlying the injection among the continuous
and discontinuous spaces, and the kind of solvers to be used for the Dirichlet, Neumann constrained
local problems, and the coarsest-grid global problem. In particular, the parallel codes in FEMPAR heavily
use standard computational kernels provided by highly-e�cient vendor implementations of BLAS and
LAPACK. Besides, through proper interfaces to several third party libraries, the aforementioned problems
can be either solved via sparse direct or approximate (e.g., AMG) solvers. For example, the use of inexact
solvers within this framework has been presented in [5].

The experiments in this section have been performed on a large-scale multicore-based massively parallel
supercomputer, Gottfried, hosted by the Leibniz Universität IT Services (LUIS) at Hannover (Germany).
Gottfried is a Cray XC30 equipped with 744 compute nodes connected together by Cray's proprietary
�Aries� high speed interconnect (dragon�y topology). Each node is equipped with 2x Intel Xeon IvyBridge
(E5-2695v2) multi-core CPUs, with 12 cores each (i.e., 24 cores per node), and 64 GBytes of DDR3 RAM.
Compute nodes run a lightweight kernel and run-time environment based on the SuSE Linux Enterprise
Server (SLES) version 11.

FEMPAR was compiled with the Intel Fortran compiler (16.0.3) using system-recommended optimization
�ags, and linked against the Intel MPI Library (5.1.3) for message-passing, and the BLAS/LAPACK
and PARDISO available on the Intel MKL library (11.3.3) for optimized dense linear algebra kernels, and
sparse direct solvers, respectively. All �oating-point calculations were performed in IEEE double precision.

The performance and scalability of the HPC implementation of PB-BDDC available at FEMPAR will
be compared against those of PCBDDC (see [57] and references therein), a highly scalable and robust
implementation of BDDC available from PETSc library [10]. PCBDDC combines adaptive constraint
selection with the optimal deluxe scaling [57], making it suitable for elliptic PDEs with arbitrary jumps in
the coe�cients. It belongs to the category of DD preconditioners for heterogeneous PDEs which require
auxiliary problems and spectral solvers (see Section 1). This comparison is designed in order to provide
experimental evidence on our claim that PB-BDDC can still very robust with the contrast of the coe�cients
for thermal and mechanical multi-material simulations, while consuming signi�cantly less computational
and memory resources. Unassembled local sti�ness matrices (and associated data describing distributed-
memory layout) are exported from FEMPAR into data �les and imported into PCBDDC by an ad-hoc
designed driver program. This driver program was linked against the PETSc library (3.7.0) compilation
available as one of the Cray Programming Environment supported software packages on Gottfried. For a

4Indeed, since 2014, the multilevel DD solvers within FEMPAR have been in the High-Q club of the most scalable European
codes, maintained by the Jülich supercomputing center [13].
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fair comparison among PB-BDDC and PCBDDC, only the aggregated time spent in setting up the BDDC
preconditioner and solving the global linear system by PCG will be reported.

5.2.1. 3D Poisson's problem with multiple channels. In this experiment, we will study a series of problems
modeled by (1) in the unit cube Ω = [0, 1]3. We consider homogeneous Dirichlet boundary conditions
on the whole boundary, and the forcing term f = 1. First, we build a set of uniform meshes with
4mk × 3mk × 2mk hexahedra, where k = 10, 20, 30, 40, and m = 1, 2, 3, 4, 5, 6, 7. The meshes are split
into 4m× 3m× 2m cubic subdomains, with k × k × k hexahedra each. In other words, the parameter m
decides the partition of the global mesh into subdomains, while k is the size of the local problems (Hh )
on each subdomain. We use Q1 scalar-valued Lagrangian FEs for the discretization. The largest problem
considered is thus discretized using a mesh composed of 526,848,000 cells, and solved on 8,232 subdomains.
For all the experiments in Section 5.2, we consider a one-to-one mapping among subdomains, MPI tasks
and CPU cores.

For this experiment, we construct the physical coe�cient α in (1) using two di�erent materials, the
background with α = 1.0 and a set of channels (see Figure 13a) with α = 10` (the particular values chosen
for ` will be given when describing each experiment at hand). The number of channels as well as their
structure depends on the partition in such a way that we have one channel per direction per subdomain.
In addition, the channels are positioned at the lower corner (i.e., at the smallest x and y coordinates of
each subdomain). The fact that these channels not only cut through subdomain faces with their smaller
cross sections but also touching two other subdomain faces by two of their longer cross sections, makes
the problem even more di�cult. We also note that the number of channels scales with the number of
subdomains and thus the problems get harder and harder, i.e., the number of inclusions scales with the
number of subdomains, and the number of additional coarse functions to make the preconditioner robust
with respect to the contrast of physical parameters increase in the same way.

In Figure 13b, we compare the number of PCG iterations required by the standard BDDC(cef) and
PB-BDDC(f) preconditioners for the smallest problem of the series, i.e., the one obtained with k = 10
and m = 1, as a function of α within the channels, with α = 10` and ` = 2, 4, 6, 8. We set the initial
guess x0 = 0, and the PCG iteration is stopped whenever the residual rk at a given iteration k satis�es
‖rk‖2 ≤ 10−6‖r0‖2. This set-up also applies to the rest of experiments in Section 5.2. From Figure 13b,
it can be observed that the PB-BDDC preconditioner is robust with respect to the jump of the di�usion
coe�cient between materials. It needs only 9 or 10 iterations to converge regardless of the contrast of the
coe�cient. On the other hand, the number of iterations required by the standard BDDC becomes larger
as the contrast increases. When ` = 8, it needs more than 400 iterations to converge for this simple test
problem.

In Figures 14, 15 and 16, we respectively report the weak scalability in the computational time, in the
number PCG iterations, and in the size of the coarse-grid problem of the three variants of BDDC, namely
PCBDDC(c), PB-BDDC(f) and PB-BDDC(f-min), for the case l = 8. Here, PCBDDC(c) is the HPC
implementation of BDDC in PETSc equipped with deluxe scaling and adaptive selection of constraints
started with only corner constraints. In addition, PB-BDDC(f) and PB-BDDC(f-min) correspond to the
HPC implementation of the PB-BDDC preconditioner in FEMPAR. PB-BDDC(f) uses all PB face coarse
objects, while PB-BDDC(f-min) use only the ones associated with high di�usion coe�cient, following the
mathematical analysis-driven algorithm in section 4.2.

For PCBDDC(c), there are two parameters needed to be tuned. On the one hand, the so-called adaptive
threshold [57], for selecting eigenfunctions to enrich the coarse space, and the number of MPI tasks devoted
to solve the coarse-grid problem by the parallel distributed-memory sparse direct solver in the MUMPS
library. We performed preliminary tests, where the threshold equals 2, 5, and 10 (the smallest and largest
values were used in the PCBDDC paper [57]). Based on these preliminary tests, the threshold 5 is
selected for all of the scalability tests because PCBDDC(c), since it was the one that provided better CPU
times. On the other hand, we selected the number of MPI tasks from the set 2, 4, 8, 12, 24 that led to less
computational time for each number of subdomains. Thus, we note that, in Figure 14, the number of MPI
tasks devoted for the coarse-grid problem may increase as we go to a larger number of subdomains.5

5For reproducibility purposes, the exact command-line argument values that we used to invoke the PETSc PCB-
DDC driver program were [57]: -pc_bddc_use_vertices true -pc_bddc_use_edges false -pc_bddc_use_faces
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(a) High di�usivity channels are shown in solid color for

the partition 4× 3× 2. Subdomains are shown as trans-

parent volume with di�erent colors. The subdomains in

the top front are clipped to reveal the inner structure of

the channels. The number of channels is always propor-

tional to the number of subdomains.
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Figure 13. 3D Poisson's problem

The HPC implementation of the PB-BDDC preconditioner follows the ideas described in detail in [4].
A separated MPI task is devoted to the coarse-grid problem, and mapped to a separated compute node,
where it can exploit up to 24 cores and 64 GBytes of RAM memory. The multi-threaded PARDISO solver
in Intel MKL was used to solve the coarse-grid problem within this node. The number of threads was set
to 24 in all experiments, as this number leads to the lowest computational time.

In Figures 14, 15, and 16, the results for H
h = 40 are not reported for PCBDDC(c). For such local

problem size, PCBDDC(c) did not �t into memory for all number of subdomains considered. A memory
pro�le of PCBDDC(c) revealed that there are two main sources of extra memory consumption over PB-
BDDC. First, the PETSc implementation of PCBDDC is such that it does not exploit the symmetry of the
problem at hand, i.e., both the lower and upper triangles of matrices and their respective LU factors are
stored. Second, adaptive selection of constraints and deluxe scaling need to explicitly compute the Schur
complement matrix related to subdomain interface DOFs, and to set up auxiliary eigenvalue problems.
The second source was con�rmed as PCBDDC(c) for H/h = 40 without deluxe scaling and adaptive
selection of constraints did �t into memory.

As observed in Figure 16, the coarse-grid problem size for PB-BDDC(f) and PB-BDDC(f-min) does not
depend on the value of H

h , but solely on the partition of mesh cells into PB subdomains. On the other
hand, some of the coarse DoFs of PCBDDC(c) are judiciously selected based on numerical eigenvalue
analysis, and this may depend on the spectrum of the operators at hand. This in particular justi�es why
in Figure 16 the coarse-grid problem size depends on H

h .
It can be concluded by the results of Figure 15 that the three methods are robust and scalable, as they

all lead to an asymptotically constant number of iterations for �xed problem size, and increasing number
of subdomains, regardless of the high contrast of the α coe�cient, and ill-distribution of the channels. PB-
BDDC(f-min) and PCBDDC(c) require a very similar number of iterations, while PB-BDDC(f) slightly
need less at the price of a much larger coarse-grid problem size, see Figure 16. For all three methods, a
slight increase in the number of iterations is observed as H

h becomes larger. This is a well-known behavior
mathematically justi�ed by the analysis of these methods.

However, signi�cant di�erences in the performance and scalability in computational time of the three
methods are observed in Figure 14. For simplicity, let us �rst focus on the top left sub�gure with the

false -pc_bddc_adaptive_threshold {2,5,10} -pc_bddc_use_deluxe_scaling true -pc_bddc_coarse_redistribute

{2,4,8,12,24} -pc_bddc_coarse_pc_type lu -pc_bddc_coarse_pc_factor_mat_solver_package mumps.
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Figure 14. Weak scalability for the total computational time of the PCBDDC(c), PB-
BDDC(f), and PB-BDDC(f-min) solvers for the 3D Poisson problem on Gottfried.

smallest local problem size H
h = 10. For such local problem size, the computational time increases with

�xed problem size and increasing number of subdomains. The reason is that the coarse-grid problem
time-to-solution grows with the number of subdomains and dominates the total computation time. Their
computational times grow at a di�erent pace, though. In particular, it can be observed that, despite the
coarse-grid problem size of PB-BDDC(f-min) and PCBDDC(c) being almost the same (see Figure 16), the
HPC implementation of the former turns out to be much more e�ective in tackling the overhead associated
with the coarse-grid problem. This can be explained by the positive e�ect that overlapping of �ne-grid and
coarse-grid duties at all stages of the BDDC implementation has on its parallel scalability [4]. In any case,
we can observe that PB-BDDC is faster than PCBDDC. This is justi�ed by the extra computational time
that PCBDDC requires for deluxe scaling and adaptive selection of constraints, i.e., explicit computation
of Schur complement associated to interface DoFs, set up and solution of auxiliary eigenvalue problems.
In addition, the larger H

h becomes, the larger the gap between the two algorithms becomes. For example,

for H
h = 30, PB-BDDC(*) is roughly 7.8x faster than PCBDDC when larger number of subdomains is

considered, and even larger factors are foreseen for larger H
h . Another interesting observation is that the

three methods become more and more e�ective in tackling the bottleneck associated to the solution of
the coarse-grid problem as H

h increases, with PB-BDDC being more e�ective than PCBDDC. Indeed, for
H
h = 30, 40, no di�erence is observed for the computational time of PB-BDDC(f) and PB-BDDC(f-min),
and the weak scalability of both is excellent, despite the much larger coarse-grid problem size of the latter
compared to the former.

5.2.2. 3D linear elasticity problem with multiple channels. In this experiment, we consider the linear elas-
ticity problem (2) in the unit cube Ω = [0, 1]3. We let the forcing term f = [0 0 0]T , and impose
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Figure 15. Weak scalability for the number of PCG iterations of the PCBDDC(c), PB-
BDDC(f), and PB-BDDC(f-min) solvers for the 3D Poisson problem.
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Figure 16. Weak scalability for the coarse-grid problem size of the PCBDDC(c) with
di�erent local problem size H

h , PB-BDDC(f), and PB-BDDC(f-min) for the 3D Poisson's
problem.

inhomogeneous Dirichlet boundary conditions u(x) = x1 + x2 + x3 on the whole boundary. Similar to the
3D Poisson's problem, we also use meshes with 4mk × 3mk × 2mk hexahedra, where m = 2, 3, 4, 5, 6, 7,
but with k = 10, 15, 20, 30. Regular partitions are used to divide this set of meshes into 4m × 3m × 2m
subdomains. Then we consider a material with Poisson's ratio ν = 0.2 and two di�erent values for the



PHYSICS-BASED BDDC FOR MULTI-MATERIAL PROBLEMS 25

 0

 5

 10

 15

 20

 25

 30

192 648 1536 3000 5184 8232

P
re

c
o

n
d

it
io

n
e

r 
S

e
tu

p
 +

 P
C

G
 C

o
m

p
u

ta
ti
o

n
 t

im
e

 (
s
e

c
s
.)

#cores/subdomains

Weak scaling with H/h=10

PETSc PCBDDC(c)
FEMPAR PB-BDDC(f)

FEMPAR PB-BDDC(f-min)

 0

 5

 10

 15

 20

 25

 30

192 648 1536 3000 5184 8232

P
re

c
o

n
d

it
io

n
e

r 
S

e
tu

p
 +

 P
C

G
 C

o
m

p
u

ta
ti
o

n
 t

im
e

 (
s
e

c
s
.)

#cores/subdomains

Weak scaling with H/h=15

PETSc PCBDDC(c)
FEMPAR PB-BDDC(f)

FEMPAR PB-BDDC(f-min)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

192 648 1536 3000 5184 8232

P
re

c
o

n
d

it
io

n
e

r 
S

e
tu

p
 +

 P
C

G
 C

o
m

p
u

ta
ti
o

n
 t

im
e

 (
s
e

c
s
.)

#cores/subdomains

Weak scaling with H/h=20

PETSc PCBDDC(c)
FEMPAR PB-BDDC(f)

FEMPAR PB-BDDC(f-min)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

192 648 1536 3000 5184 8232

P
re

c
o

n
d

it
io

n
e

r 
S

e
tu

p
 +

 P
C

G
 C

o
m

p
u

ta
ti
o

n
 t

im
e

 (
s
e

c
s
.)

#cores/subdomains

Weak scaling with H/h=30

FEMPAR PB-BDDC(f)
FEMPAR PB-BDDC(f-min)

Figure 17. Weak scalability for the total computational time of the PCBDDC(c), PB-
BDDC(f), and PB-BDDC(f-min) solvers for the 3D Linear Elasticity problem on Gottfried.

Young's modulus: the background with E = 1 and a system of channels with E = 10`, where ` = 2, 4, 6, 8.
The con�guration of these channels is exactly as described in section 5.2.1 for the 3D Poisson's problem.
Q1 vector-valued Lagrangian FEs are used for the discretization of this problem.

In Figure 17, we respectively report the weak scalability in computational time, in the number of PCG
iterations and in the coarse grid problem size of the PCBDDC(c), PB-BDDC(f) and PB-BDDC(f-min).
The Young modulus E = 106 was used in this test case for the coe�cient within the channels. The results
of PCBDDC(c) for H

h = 30 are not reported as this test did not �t into available memory.
Overall, similar conclusions to the ones in Section 5.2.1 can be drawn from the results in Figures 17,

18, and 19. For the linear elasticity problem, though, the balance achieved among the factors determining
performance and scalability of the solvers at hand was di�erent. The linear elasticity problem is a vector-
valued problem with 3 unknowns per vertex. This implies that, for a given FE mesh, the size of the
discrete operator is 3 times larger to that of the Poisson problem, and has 9 times more nonzero entries.
Besides, the PB-BDDC(*) solvers require 6 coarse DoFs per PB coarse face, corresponding to the six rigid
body modes. Thus, a di�erent balance is necessarily struck among the time spent in local solvers and the
coarse-grid problem.

We would like to remark the following observations. Firstly, between two variants of PB-BDDC, PB-
BDDC(f-min) is the only one that achieves perfect weak scalability in time for this test case. Indeed,
the HPC implementation of PB-BDDC(f) is not able to e�ectively tackle the bottleneck associated to
the coarse-grid problem in the whole number of subdomains range, even for the most favorable scenario
when H

h = 30. For this local problem size, time weak scalability starts degrading beyond 3K subdomains
for PB-BDDC(f), see Figure 17. Even though PB-BDDC(f) is faster than PCBDDC(c) in this case, the
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Figure 18. Weak scalability for number of PCG iterations of the PCBDDC(c), PB-
BDDC(f), and PB-BDDC(f-min) solvers for the 3D Linear Elasticity problem on Gottfried.
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Figure 19. Weak scalability for the coarse-grid problem size of the PCBDDC(c), PB-
BDDC(f), and PB-BDDC(f-min) solvers for the 3D Linear Elasticity problem.

trends indicate that PCBDDC(c) will be faster for larger number of subdomains. Secondly, PB-BDDC(f-
min) requires more iterations than PB-BDDC(f), but still less or very close to the ones of PCBDDC(c),
depending on the local problem size. This extra number of iterations can be compensated by the bene�t
associated to the reduction of the coarse-grid problem size. As a result, PB-BDDC(f-min) is faster than
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(a) High di�usivity channels are shown in solid color

for the partition 4 × 3 × 2. Subdomains are shown as

transparent volume with di�erent colors. Leftmost sub-

domains are clipped to reveal the inner structure of the

channels. The number of channels is always proportional

to the number of subdomains.
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Figure 20. 3D Linear Elasticity of a beam.

PCBDDC(c), most noticeably for the local problem size H
h = 20. For example, for H

h = 20, and 3K
subdomains, PB-BDDC(f-min) is 7.4x faster than PCBDDC(c).

5.2.3. 3D linear elasticity for a beam with multiple channels. In this experiment, we consider problem (2),
where Ω is the long beam [0, 2] × [0, 0.5] × [0, 0.5]. We use homogeneous Dirichlet boundary conditions
on the plane x = 0, and homogeneous Neumann boundary conditions on the rest of the boundary. The
force is f = [0 -9.8 0]T . The rest of experiment set up was equivalent to that described in Section 5.2.2.
In Figure 20a, we illustrate the structure of the channels (i.e. the ones where a value of α = 10l is used)
for the partition 4 × 3 × 2. In Figure 20b, we compare the number of PCG iterations required by the
standard BDDC(cf) and PB-BDDC(f) preconditioners for the smallest problem of the series, i.e., the one
obtained with k = 10 and m = 1, as a function of the Young's modulus E within the channels, E = 10`,
and ` = 2, 4, 6, 8. From Figure 20b, it can be observed that the PB-BDDC preconditioner is robust with
respect to the jump of the di�usion between materials. It needs only 17 or 18 iterations to converge
regardless of the contrast of the coe�cient. On the other hand, the number of iterations required by the
standard BDDC becomes larger as the contrast increases. For l = 6, 8, standard BDDC does not converge
for this small-scale test problem even after 5000 iterations.

In Figures 21 and 18, we respectively report the weak scalability in the computational time and in the
number of PCG iterations of PB-BDDC(f) and PB-BDDC(f-min) for the Linear Elasticity problem of a
beam with multiple channels. The sizes of the coarse-grid problem for PB-BDDC(f) and PB-BDDC(f-min)
for this experiment are the same as the ones reported in Section 5.2.2, see Figure 19. The Young's modulus
E = 106 was used as the coe�cient within the channels. The results for PCBDDC(c) are not reported for
this problem. Our implementation of PB-BDDC in FEMPAR can handle natural boundary condition on any
part of the boundary without losing robustness or weak scalability. On the other hand, PCBDDC breaks
down if there is at least one subdomain associated only with natural boundary conditions. In order for
PCBDDC to work in this case, an automatic selection of primal corners that guarantees the well posedness
of local Neumann problems is needed, such as the one described in [50], but not implemented yet. In any
case, the results are expected to be analogous to the ones in the previous section.

Overall, very similar conclusions to the ones in Section 5.2.2 can be drawn from the results in Figures 21
and 22. Perhaps the most noticeably di�erence between the two experiments is that PB-BDDC(f-min)
roughly requires twice the number of iterations compared to that of PB-BDDC(f) for this experiment, see
Figure 22. However, small coarse-grid problem sizes appear to compensate for large number of iteration.
Indeed, PB-BDDC(f-min) is faster than PB-BDDC(f) either for small local problem sizes, or for large
number of subdomains, see Figure 21.
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Figure 21. Weak scalability for the total computational time of the PB-BDDC(f), and
PB-BDDC(f-min) solvers for the 3D Linear Elasticity of a beam with multiple channels on
Gottfried.

6. Conclusions

In this work, we have proposed a novel type of BDDC preconditioners that are robust for multi-material
problems with high contrast. The underlying idea is to modify the continuity constraints enforced among
subdomains making use of the knowledge about the physical coe�cients. In order to do that, we rely on
a physically motivated partition of standard coarse objects (corners, edges, and faces) into coarse sub-
objects. The motivation for that is the well-known robustness of DD methods when there are only jumps
of physical coe�cients across the interface between subdomains. All these ideas can also be used in the
frame of FETI methods.

In cases where the physical coe�cient is constant in each PB subdomain, we are able to prove that
the associated condition number can be bounded independently of the number of the subdomains and
the contrast of the physical coe�cient. In other words, the new preconditioner is scalable and robust for
multi-material problems. In addition, not all but any set of PB objects satisfying a mild condition on
acceptable paths is su�cient to guarantee robustness.

Apart from the new set of coarse objects and a weighting operator, the PB-BDDC preconditioner is
very much the same as the standard BDDC preconditioner. As a result, the implementation of the new
preconditioners involves a very simple modi�cation of the standard BDDC implementation. In all of our
experiments, the new preconditioners delivers fast, robust and contrast-independent convergence while
maintaining the simplicity of BDDC methods at a reasonable computational cost. Compared to the other
robust DD solvers for heterogeneous problems currently available, such as the ones in [28, 48, 28, 46, 47,
25, 26, 45, 51, 18, 53, 52, 31, 30, 32, 39, 27], our approach does not involve any type of eigenvalue or
auxiliary problem.
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Figure 22. Weak scalability for number of PCG iterations of the PB-BDDC(f), and
PB-BDDC(f-min) solvers for the 3D Linear Elasticity problem of a beam with multiple
channels.

The use of the PB-BDDC method to highly complex multi-material problems can lead to larger coarse
problems than in the homogeneous case (as the spectral-based methods listed above). In order to cope
this problem, we have considered two remedies. First, we provide a simple procedure to �nd small and
close to minimal coarse spaces that guarantee robustness. Second, we have implemented the algorithms
in the extremely scalable BDDC code in FEMPAR [3, 4, 5, 6], which exploits an inter-level task-overlapping
implementation to e�ciently deal with the coarse space computation in weak scalability analyses. We
have shown excellent scalability results up to 8232 cores and more than 500 million unknowns on a
supercomputer. The preconditioner has been compared with a state-of-the-art implementation of BDDC
with deluxe scaling in PETSc, called PCBDDC. PB-BDDC has been observed to be cheaper and less
expensive in terms of memory than PCBDDC for the multi-material problems considered in the numerical
experiments. It justi�es the motivation of this work, i.e., to de�ne robust and simple BDDC methods
for multi-material problems that do not require expensive spectral solvers to de�ne the coarse spaces or
weighting operators, but to de�ne these ingredients only looking at the physical properties of the materials
at hand.
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