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PHYSICS-BASED BALANCING DOMAIN DECOMPOSITION BY
CONSTRAINTS FOR HETEROGENEOUS PROBLEMS ∗

SANTIAGO BADIA†‡ , ALBERTO F. MARTÍN‡† , AND HIEU NGUYEN§‡

Abstract. In this work, we present a novel balancing domain decomposition by constraints
preconditioner that is robust for multi-material and heterogeneous problems. We start with a well-
balanced subdomain partition and, based on an aggregation of elements according to their physical
coefficients, we end up with a finer physics-based (PB) subdomain partition. Next, we define geo-
metrical objects (corners, edges, and faces) for this PB partition, and select some of them to enforce
subdomain continuity (primal objects). When the physical coefficient in each PB subdomain is con-
stant and the primal objects satisfy a mild condition on the existence of acceptable paths, we can
show both theoretically and numerically that the condition number does not depend on the contrast
of the coefficient. The constant coefficient condition is computationally feasible for multi-material
problems. However, for highly heterogeneous problems, such restriction might result into a large
coarse problem. In this case, we propose a relaxed version of the method where we only require that
the maximal contrast of the physical coefficient in each PB subdomain is smaller than a predefined
threshold. The threshold can be chosen so that the condition number is reasonably small while the
size of the coarse problem is not too large. An extensive set of numerical experiments is provided to
support our findings. In particular, we show a robustness and a weak scalability analysis up to 8000
cores of the new preconditioner when applied to a 3D heterogeneous problem with more than 260
million degrees of freedom. For the scalability analysis, we have exploited a highly scalable advanced
inter-level overlapped implementation of the preconditioner that deals very efficiently with the coarse
problem computation.

Key words. BDDC, heterogeneous problem, adaptive coarse space, parallel solver, parallel
preconditioner

AMS subject classifications. 65N55, 65N22, 65F08

1. Introduction. Many realistic simulations in science and engineering, such
as subsurface flow simulations in a nuclear waste repository or in an oil reservoir, or
heat conduction in composites, involve heterogeneous materials. The linear systems
resulting from the discretization of these problems are hard to solve. The use of direct
solvers at a sufficiently fine scale can be prohibitively expensive, even with modern
supercomputers, due to their high complexity and scalability issues. In addition, the
high contrast of the physical properties significantly increases the condition number
of the resulting linear systems, posing great challenges for iterative solvers. In this
work, we will focus on developing a domain decomposition (DD) preconditioner that
is robust with the variation of the coefficients of the PDEs. For a different but related
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approach to find a reasonably accurate heterogeneous solution on a coarse mesh, we
refer interested readers to [19, 1] and references therein.

DD is one of the most popular approaches to solve large-scale problems on parallel
supercomputers. It splits a problem into weakly coupled subproblems on smaller
subdomains and use parallel local solutions on these subdomains to form a parallel
preconditioner for the original problem [53, 44]. In DD, the coarse space plays an
important role in achieving scalability as well as robustness with respect to variations
in the coefficient. Many early DD methods, such as those in [11, 18, 17, 33, 56], are
robust for heterogeneous problems when the subdomain partition is a geometric coarse
grid that resolves the discontinuities in the properties of the media. This is a strong
requirement, since the properties of the media might have complicated variations
on many scales and be difficult to capture by a geometric coarse grid. Further, it
is impractical, since it would not lead to load-balanced partitions with a reduced
interface.

Recently, there have been works on coarse grids that do not resolve the hetero-
geneity in the media [26, 48, 26, 46, 47], and especially automatic coarse spaces that
adapt to the variation in the properties of the media [23, 24, 45, 50, 15, 52, 51, 29,
28, 30, 38, 25]. In the latter, the coarse spaces are constructed from eigenfunctions
associated with small eigenvalues (low-frequency modes) of appropriate generalised
eigenvalue problems. This approach is backed up by rigorous mathematical theory
and has been numerically shown to be robust for general heterogeneous problems.
However, solving eigenvalue problems is expensive and extra implementation effort is
required as coarse spaces in DD methods are not naturally formulated as eigenfunc-
tions. Another approach is to use the deluxe scaling technique where local auxiliary
Dirichlet problems are solved to compute efficient averaging operators [35, 14, 55].
The approach yields robust DD methods, but it incurs extra implementation and
computation cost due to the auxiliary problems. In this paper, we formulate a new
balancing DD by constraints (BDDC) preconditioner that requires no eigenvalue or
auxiliary problem and is very robust with the contrast of the coefficient. The main
motivation behind this work is to achieve such goal while maintaining the simplicity
of the BDDC preconditioner.

The BDDC method was introduced by Dohrmann in 2003 [12]. It is an improved
version of the balancing DD (BDD) method by Mandel [40] and has a close connection
with the FETI-DP method [21, 20]. In fact, it can be shown that the eigenvalues
of the preconditioned operators associated with BDDC and FETI-DP are almost
identical [42, 36, 10]. The BDDC method is particularly well suited for extreme
scale simulations, since it allows for a very aggressive coarsening, the computations
at different levels can be computed in parallel, the subdomain problems can be solved
inexactly [13, 37] by, e.g., one AMG cycle, and it can straightforwardly be extended
to multiple levels [54, 43]. All of these properties have been carefully exploited in
the series of articles [3, 4, 5, 6] where an extremely scalable implementation of these
algorithms has been proposed, leading to excellent weak scalability on nearly half a
million cores in its multilevel version.

Our new BDDC method is motivated from the fact that non-overlapping DD
methods, such as BDDC and FETI-DP, are robust with the variation and contrast of
the coefficient if it is constant (or varies mildly) in each subdomain [33, 32, 53]. This
implies that in order to have robustness for BDDC methods one could use a physics-
based (PB) partition obtained by aggregating elements of the same coefficient value.
However, using this type of partition is impractical as the number of the subdomains
might be too large and can lead to a poor load balancing among subdomains and large
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interfaces. In order to solve this dilemma, we propose to use a well-balanced partition,
e.g., one obtained from an automatic graph partitioner like METIS [27], to distribute
the workload among processors. Then, we consider a sub-partition of subdomains
based on the physical coefficients, leading to a PB partition. Continuity constraints
among subdomains will be defined through the definition of objects based on the
PB partition. Consequently, the interface objects are adaptively defined according to
the variation of the coefficient. The resulting BDDC preconditioner with constraints
imposed on subfaces, subedges, and vertices, will be called PB-BDDC. These ideas
can readily be applied to FETI-DP preconditioners.

For multi-material problems, e.g., problems with isolated channels or inclusions,
it is computationally feasible to require the physical coefficient in each PB subdomain
to be constant. In this situation, we are able to prove that the new BDDC method
is scalable and its convergence is independent of the contrast of the coefficient. An
important feature of our result is that not all PB objects are necessary and any
selected set of PB objects satisfying a mild condition on the so-called acceptable
paths is enough to guarantee robustness.

For heterogeneous problems with a wide spectrum of values in a small spatial
scale the requirement on the coefficient is too strong and might result in too many
coarse objects (large coarse problem). As a result, we also propose a relaxed definition
of the PB partition where we only require that the maximal contrast of the physical
coefficient in each PB subdomain is smaller than a predefined threshold. The threshold
can be chosen so that the condition number is reasonably small while the size of the
coarse problem is not too large. We empirically show that this relaxed version of PB-
BDDC, called rPB-BDDC, is robust and efficient for different difficult distributions
of the coefficient.

By definition, (r)PB-BDDC methods (as well as any other adaptive coarse space
technique) start with a coarse space that is enough to have a non-singular precon-
ditioner and enlarges it to make it robust for heterogeneities. In order to alleviate
the effect of potentially larger coarse spaces compared to homogeneous problems, we
propose two remedies:

1. In subsection 3.5, taking advantage of the fact that not all PB objects are
required for robustness, we study how to keep the size of the coarse problem
close to minimal. For the sake of illustration, we present some examples with
different distribution of the coefficient and the corresponding minimal set of
PB objects required for robustness. The number of required PB objects is the
same as the number of extra eigenfunctions needed in other approaches for
adaptive coarse spaces based on eigenvalue problems [51, 29, 25]. For general
cases, a simple procedure to construct a close to minimal coarse space is also
provided. The procedure is based on a mathematically supported definition
of acceptable paths.

2. For highly heterogeneous problems, optimal robust coarse spaces can still
be large. In order to cope larger coarse spaces and keep good scalability
properties, we have considered an implementation of the PB-BDDC method
in the extremely scalable BDDC code in FEMPAR [3, 4, 5, 6]. It exploits
inter-level overlapping of computations and communications so that coarse
tasks run in parallel and can be masked in run time by fine tasks. The
implementation also provides a recursive multilevel extension which deals
efficiently with large coarse spaces. This is particularly important for the
(r)PB-BDDC methods presented herein. In subsection 4.6, we show excellent
scalability results up to 8000 processors and more than 260 million unknowns
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for a 3D problem.
Summarizing, the (r)PB-BDDC method does not require to solve eigenvalue or

auxiliary problems on patches of subdomains, which could incur high computational
cost and the formulation and implementation of the (r)PB-BDDC methods are very
much the same as for the standard BDDCmethod. The only difference is in identifying
and defining BDDC objects to impose constraints. In other words, the simplicity of
the standard BDDC method is maintained. On the other hand, the (r)PB-BDDC
methods involve a richer interface with the application software, e.g., access to the
physical properties of the problem.

The rest of the paper is organised as follows. In section 2, we introduce the model
problem, the domain partitions and the BDDC object classification. In section 3, we
present the formulation of the (r)PB-BDDC methods as well as its key ingredients,
namely coarse degrees of freedom (coarse DOFs), weighting and harmonic extension
operators. The convergence analysis is also provided in this section. In section 4,
we provide an extensive set of numerical experiments to demonstrate the robustness
and efficiency of the (r)PB-BDDC methods. We finally draw some conclusions in
section 5.

2. Problem setting. Let Ω ⊂ Rd, with d = 2, 3 being the space dimension,
be a bounded polyhedral domain. For a model problem, we study the Poisson’s
equation with non-constant diffusion and homogeneous Dirichlet conditions (the non-
homogeneous case only involves an obvious modification of the right-hand side). Thus,
the problem at hand is: find u ∈ H1

0 (Ω) such that −α∆u = f in H−1(Ω) sense, with
f ∈ H−1(Ω) and α ∈ L∞(Ω) strictly positive. The weak form of the problem reads
as: find u? ∈ H1

0 (Ω) such that

(1)
∫

Ω
α∇u? · ∇v dx =

∫
Ω
fvdx, for any v ∈ H1

0 (Ω).

Let T be a shape-regular quasi-uniform mesh of Ω with characteristic size h. It can
consist of tetrahedra or hexahedra for d = 3, or triangles or quadrilaterals for d = 2.
For simplicity of exposition, we assume that α is constant on each element τ ∈ T .

2.1. Domain partitions. We first consider a partition Θ of the domain Ω into
non-overlapping open subdomains. This partition must be driven by computational
efficiency in distributed memory platforms, i.e., it should have a reduced interface
size and lead to a well-balanced distribution of workload among processors. In a
parallel implementation, each subdomain in Θ is generally assigned to a processor.
We further assume that every D ∈ Θ can be obtained by aggregation of elements
in T and is connected. We denote by Γ(Θ) the interface of the partition Θ, i.e.,
Γ(Θ) .= (∪D∈Θ∂D) \ ∂Ω, and by Γh(Θ) the discrete version of the interface.

We also consider a PB subdomain partition. This partition is used latter in the
new definition of coarse objects and in the analysis. It is, however, not used for work
distribution. Given a subdomain D ∈ Θ, we can further consider its partition Θpb(D)
into a set of “sub-subdomains” with constant α. Clearly, the resulting global PB
partitions Θpb

.= {Θpb(D)}D∈Θ is also a partition of Ω (into PB subdomains). The
interface of this partition is Γ(Θpb) .= (∪D̂∈Θpb

∂D̂)\∂Ω. For a subdomain D ∈ Θ
(analogously for D̂ ∈ Θpb), we denote by TD the submesh of T associated with D,
TD

.= {τ ∈ T : τ ⊂ D} ⊂ T . For any D̂ ∈ Θpb, let ω(D̂) be the only subdomain in
Θ that contains D̂. In Figure 1, we show an example of the original partition Θ and
the PB partition Θpb for a simple problem. The meaning of Θpb(D) and ω(D) is also
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Fig. 1: An example of an original partition Θ (left) and a physics-based partition
Θpb(right) of a square domain where different colors represent different values of α.
On the left, we have a Θ = {Ω1,Ω2,Ω3,Ω4}. On the right, we show the corresponding
PB-partition for every subdomain in Θ: Θpb(Ω1) = {Ω̂1, Ω̂2}, Θpb(Ω2) = {Ω̂3, Ω̂4},
Θpb(Ω3) = {Ω̂5, Ω̂6}, and Θpb(Ω4) = {Ω̂7, Ω̂8}. The complete PB-partition is Θpb =
{Ω̂1, . . . , Ω̂8}. Further, we have ω(Ω̂1) = ω(Ω̂2) = Ω1, ω(Ω̂3) = ω(Ω̂4) = Ω2, ω(Ω̂5) =
ω(Ω̂6) = Ω3, ω(Ω̂7) = ω(Ω̂8) = Ω4.

illustrated.
2.2. Finite element spaces. Let us perform a discretization of (1) by a con-

tinuous finite element (FE) space V̄ associated with the mesh T . The discontinuous
Galerkin (DG) case will not be considered in this work, but we refer the reader to
[16] for more information.

For every subdomain D ∈ Θ, we consider a FE space VD associated with the
local mesh TD. Let H(D) be the characteristic length of the subdomain D and h(D)
be the characteristic length of the FE mesh TD. We define the Cartesian product of
local FE spaces as V = ΠD∈ΘVD. We note that functions in this space are allowed to
be discontinuous across the interface Γ(Θ). Clearly, V̄ ⊂ V.

For a subdomain D ∈ Θ, we also define the subdomain FE operator AD : VD →
V′D as 〈ADu, v〉

.=
∫
D α∇u · ∇v dx, for all u, v ∈ VD, and the sub-assembled operator

AΘ : V→ V′ as 〈AΘu, v〉 .=
∑
D∈Θ〈ADu, v〉, for all u, v ∈ V.

A function u ∈ VD is said to be discrete α-harmonic in D if

〈ADu, v〉 = 0, for any v ∈ V0,D,

where V0,D
.= {v ∈ VD : v = 0 on ∂D}. It should be noted that if u is discrete

α-harmonic in D then it satisfies the energy minimising property, namely

〈ADu, u〉 ≤ 〈ADv, v〉, ∀v ∈ VD, v|∂D = u|∂D.

In addition, we consider the assembled operator A : V̄→ V̄′, defined by 〈Au, v〉 =∫
Ω α∇u · ∇v dx, for all u, v ∈ V̄. This operator is the Galerkin projection of AΘ onto
V̄. We want to compute a FE approximation u ∈ V̄ of u? in (1) such that

(2) 〈Au, v〉 = 〈f, v〉, for any v ∈ V̄.
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Fig. 2: An example of how FE nodes (on the interface of the original partition Θ in
Figure 1) are classified in the standard way (left) using neighΘ, and in the physics-
based way (right) using neighΘpb

. Corner nodes are marked with crosses while nodes
in edges are marked with small circles. Using the standard classification, on the left,
we obtain Λ(Θ) with one corner and four edges. With the new classification, on the
right, we have Λpb(Θ) with five corners and six edges (eight edges if we only consider
connected objects).

2.3. Object classification. This subsection concerns with objects on subdo-
main interfaces and their classification. It provides foundations for the definition of
coarse DOFs in BDDC methods later on.

Given a subdomain partition Θ, and a point ξ ∈ Γ(Θ), let us denote by neighΘ(ξ)
the set of subdomains in Θ that contain ξ. We can introduce the concept of objects
as a classification of points in Γ(Θ). A geometrical object is a maximal set λ of points
in Γ(Θ) with identical subdomain set. We denote by neighΘ(λ) the set of subdomains
in Θ containing λ. It should be noted that the set of all geometrical objects, denoted
by Λ(Θ), is a partition of Γ(Θ).

Remark 1. Since the set of points in the interface is infinite, the previous classi-
fication of Γ(Θ) into geometrical objects is performed in practice by the classification
of vertices, edges, and faces of elements in the mesh T based on their subdomain set.

Denote by ndof(λ) the number of DOFs belonging to λ. We further consider the
following standard classification of geometrical objects. In the three-dimensional case,
λ ∈ Λ(Θ) is a face if |neighΘ(λ)| = 2 and ndof(λ) > 1, is an edge if |neighΘ(λ)| > 2 and
ndof(λ) > 1, and is a corner if ndof(λ) = 1. In the two-dimensional case, λ ∈ Λ(Θ)
is an edge if |neighΘ(λ)| = 2 and ndof(λ) > 1, and is a corner if ndof(λ) = 1. In the
literature, e.g., [33, 53], corners are also referred to as vertices. Analogous definitions
are also used frequently for FETI-DP methods (see [53]). In Figure 2 (left), an
illustration of this classification is shown for a simple example.

In the next step, we define PB objects, which is the main ingredient of the PB-
BDDC methods proposed herein. We consider the set of objects Λpb(Θ) obtained
by applying the previous classification of Γ(Θ) into corners/edges/faces but with
neighΘ(·) replaced by neighΘpb

(·). In other words, we use sets of subdomains in
Θpb to classify geometrical objects on Γ(Θ). Figure 2 (right) shows objects in Λpb(Θ)
for a simple example.
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Lemma 2. Λpb(Θ) is a refinement of Λ(Θ).
Proof. The statement holds if for every object λpb ∈ Λpb(Θ) there exists one and

only one object λ ∈ Λ(Θ) containing it. Since all points in λpb belong to the same set
of PB subdomains, neighΘpb

(λ), they are in the same set of subdomains in Θ, namely
{ω(D̂)}D̂∈neighΘpb

(λ). As a result, all these points belong to the same object in Λ(Θ).

Remark 3. In some cases, the DOF-based classification into corners, edges, and
faces might need some modification in order to ensure well-posedness of the BDDC
method with corner constraints only. This usually involves the use of a kernel detection
mechanism (see, e.g., [49]). A new approach based on perturbations has recently been
proposed in [8, 7], where the method is well-posed in all cases.

3. PB-BDDC preconditioning. In this section, we present the PB-BDDC
preconditioner. The basic idea behind BDDC methods is first to define a sub-
assembled operator (no assembling among subdomains), and the global space of func-
tions that are fully independent (“discontinuous”) among subdomains. Secondly, we
have to define the under-assembled space (the BDDC space) of functions for which
continuity among subdomains is enforced only on a set of coarse DOFs. In order to
be robust for heterogeneous problems, the PB-BDDC method utilises new definitions
of the BDDC space (i.e., new coarse DOF continuity among subdomains) and a new
weighting operator.

3.1. Coarse degrees of freedom. Similarly to other BDDC methods, in the
PB-BDDC method, some (or all) of the objects in Λpb(Θ) are associated with a
coarse DOF. We denote this set of objects by ΛO and call it the set of primal or
coarse objects. Obviously, ΛO ⊆ Λpb(Θ). Typical choices of ΛO are ΛO

.= ΛC , when
only corners are considered, ΛO

.= ΛC ∪ ΛE , when corners and edges are considered,
or ΛO

.= Λpb(Θ), when corners, edges, and faces are considered. These choices lead to
three variants of the PB-BDDC method, referred to as PB-BDDC(c), PB-BDDC(ce)
and PB-BDDC(cef), respectively. Figure 2 (right) actually shows the coarse objects
of PB-BDDC(ce) for a simple 2D problem.

Given an object λ ∈ ΛO, we define its coarse DOF as the mean value on λ. The
rigorous definition is as follows. Assume λ ∈ ΛO is associated with a subdomain
D ∈ Θ. We define the coarse DOF cDλ corresponding to λ as

(3) cDλ (uD) .=
∫
λ
uD ds∫
λ

1 ds
, for uD ∈ VD.

Clearly, cDλ is a functional in V′D. When λ is a corner, cDλ is simply the value at that
corner. Once we have defined the coarse DOFs, we can define the BDDC space as
follows

(4) Ṽ .= {v ∈ V : cDλ (v) = cD
′

λ (v), ∀λ ∈ ΛO, ∀D,D′ ∈ neighΘ(λ)},

i.e., the subspace of functions in V that are continuous “at” coarse DOFs. Clearly,
V̄ ⊂ Ṽ ⊂ V.

For BDDC methods, solving the coarse problem is usually the bottleneck (cf.
[2, 3, 4, 8]). Therefore, it is of great interest to find a minimal set of coarse objects
(the number of the coarse objects is the number of the coarse DOFs and also is the
size of the coarse problem), so that BDDC methods can achieve their potential of
fast convergence and perfect weak scalability. According to [33, 53], in the case where
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the physical coefficient in each subdomain is constant, the set of coarse objects only
needs to guarantee the existence of the so-called acceptable paths. We need a similar
concept here for the PB-BDDC method.

The definition below is modelled after [53, Definition 6.26], [33] and [34]. For the
rest of the subsection, we consider the 3D case. The 2D case follows a straightforward
restriction where faces become edges and edges become corners.

Definition 4 (Acceptable path). Let Θ∂
pb be the set of PB subdomains D̂ ∈ Θpb

touching the interface Γ(Θ), i.e., ∂D̂ ∩ Γ(Θ) 6= ∅. For two subdomains D̂a, D̂b ∈ Θ∂
pb

that share at least one object λ ∈ Λpb(Θ), an acceptable path connecting them is a
sequence {D̂a = D̂1, D̂2, . . . , D̂n = D̂b} of PB subdomains in Θpb, which satisfy the
following properties:
i) All D̂k, k = 1, . . . , n̂− 1, share λ.
ii) Subdomains D̂k and D̂k+1, k = 1, . . . , n̂− 1, must share a primal edge in ΛO.
iii) Their (constant) coefficients satisfy

TOL αk ≥ R(k) min(αa, αb), 1 ≤ k ≤ n

where TOL is some predefined tolerance and R(k) = h(D̂k)/H(D̂k) if λ is a
corner and R(k) = 1 otherwise.
Assumption 5. Given a predefined tolerance TOL for the definition of accept-

able paths, we assume that the set of PB-BDDC objects ΛO satisfies the following
properties:

1. For any pair of subdomains D̂a, D̂b ∈ Θ∂
pb sharing a face in Λpb(Θ), either

the face is primal or there is an edge belonging to that face for which there
exists an acceptable path between the two subdomains.

2. For all pairs of subdomains D̂a, D̂b ∈ Θ∂
pb not sharing a face, but having at

least one common object in Λpb(Θ), there exists an acceptable path for one
of the objects in common.

Remark 6. We note that Assumption 5 is weaker than the standard one in the
literature (see, e.g., [53, Assumption 6.27]). The difference is that, for every face, we
do not assume the existence of a primal edge in ΛO that belongs to its boundary.
Instead, we only require the existence of an acceptable path for one edge of the face.
This sharper definition is particularly important in PB-BDDC, because it allows one
to reduce the size of the coarse space needed. One example is the case in Figure 5c,
where no primal constraints are needed between PB subdomains with low values of
α.

Remark 7. In Definition 4, if {D̂a, D̂b} share an object belonging to ΛO, then
there exists a trivial acceptable path {D̂a, D̂b} with TOL = 1 and n = 2. Thus,
BDDC(ce) and BDDC(cef) always satisfy Assumption 5 for TOL = 1.

3.2. Restriction operator. Let us define the projection Q : V → V̄ as some
weighted average of interface values together with an α-harmonic extension to sub-
domain interiors (see, e.g., [41]). We define these ingredients as follows.

For u ∈ V, ξ ∈ Γ(Θ) and an associated PB partition Θpb of Θ, the weighting
operator W is defined as

(5) Wu(ξ) .=
∑

D∈neighΘ(ξ)

δ†D(ξ)uD(ξ), with δ†D(ξ) .=

∑
D̂∈neighΘpb

(ξ)∩Θpb(D) αD̂∑
D̂∈neighΘpb

(ξ) αD̂
,
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Ω1

Ω2

Ω3

Ω4

ξ

Ω̂1

Ω̂2

Ω̂3

Ω̂4

Ω̂5

Ω̂6

Ω̂8

Ω̂7

ξ

Fig. 3: Illustration for the weighting W at ξ on the interface Γh(Θ) of the original
partition (left) with an associated PB partition (right).

where αD̂ denotes the constant coefficient in the PB subdomain D̂.
We note that (5) defines the weighting for points on the original interface Γ(Θ).

However, information of the associated PB partition Θpb is also incorporated. For
illustration, the action of W on u ∈ V at ξ shown in Figure 3 is

(6) Wu(ξ) = α̂3 + α̂4

α̂3 + α̂4 + α̂7
u2(ξ) + α̂7

α̂3 + α̂4 + α̂7
u4(ξ),

where ui denotes the local “component” of u associated with subdomain Ωi.
The α-harmonic extension operator E taking data on the interface Γh(Θ) and

α-harmonically extending it to each subdomain D ∈ Θ is formally defined as

Eu .= (1−A−1
0 A)u,

where A0 is the Galerkin projection of A onto the bubble space V0
.= {v ∈ V : v =

0 on Γ(Θ)}.
We finally define Q = EW.

3.3. Preconditioner statement. In this subsection, we present the PB-BDDC
preconditioner, and describe its set-up and formulation. The PB-BDDC precondi-
tioner is a BDDC preconditioner in which the set of coarse DOFs enforce continuity
on a set of PB coarse objects, thus modifying the BDDC space being used. Once one
has defined the set of PB coarse objects ΛO, the rest of ingredients of the PB-BDDC
preconditioner are identical to the ones of a standard BDDC preconditioner. In any
case, the definition of the weighting operator introduced in (5) is new.

The BDDC preconditioner is a Schwarz-type preconditioner that combines interior
corrections with corrections in the BDDC space (see, e.g., [9, 53]). In case of the PB-
BDDC preconditioner, the BDDC correction is expressed asQ(ÃΘ)−1QT , where ÃΘ is
the Galerkin projection ofAΘ onto Ṽ. More specifically, the PB-BDDC preconditioner
reads as follows:

B = A−1
0 +Q(ÃΘ)−1QT .

Apart from the task of identifying and defining coarse objects, the implementation
of the PB-BDDC method is identical to that of the standard BDDC method. We
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refer the interested reader to [12, 13, 43, 9] for more details on the formulation of
BDDC methods and to [2, 4, 6] for an efficient implementation of BDDC methods on
distributed memory machines, which requires much further elaboration.

3.4. Condition number estimates. In order to prove condition number esti-
mates for the PB-BDDC preconditioner, we first need to introduce B̂, an auxiliary
BDDC preconditioner. The definition of this preconditioner follows verbatim that of
the PB-BDDC preconditioner. There are only changes in the partition, the weighting,
and the coarse objects being used.

The partition that B̂ is defined on is the PB partition. Given the FE mesh T ,
the FE space type, and the PB subdomain partition Θpb, one can similarly build the
FE spaces and operators as in subsection 2.2, leading to the sub-assembled space Vpb

and operator AΘpb .
As for the weighting, Ŵ, its rigorous formulation is given as follows. For û ∈ Vpb,

and ξ ∈ Γ(Θpb), the weighting operator Ŵ is defined as

(7) Ŵû(ξ) .=
∑

D̂∈neighΘpb
(ξ)

δ†
D̂

(ξ) ûD̂(ξ), where δ†
D̂

(ξ) .=
αD̂∑

D̂∈neighΘpb
(ξ) αD̂

.

For ξ illustrated in Figure 3, this definition yields

(8) Ŵû(ξ) = α̂3

α̂3 + α̂4 + α̂7
û3(ξ) + α̂4

α̂3 + α̂4 + α̂7
û4(ξ) + α̂7

α̂3 + α̂4 + α̂7
û7(ξ),

where ûi denotes the local “component” of û associated with subdomain Ω̂i. In other
words, Ŵ is nothing but the pseudoinverse of a classical weighted counting function
introduced in [33] (see also [53, 6.2.1]).

It is well known that δ†
D̂

is constant in each (PB) coarse object associated with
D̂ and the following important inequality, cf. [53, (6.19)], holds

(9) αD̂a

(
δ†
D̂b

(ξ)
)2
≤ min

(
αD̂a

, αD̂b

)
, ∀D̂a, D̂b ∈ neighΘpb

(ξ).

Lemma 8. The weighting Ŵ and W satisfy

Ŵu(ξ) =Wu(ξ) for all u ∈ V, ξ ∈ Γ(Θ).

Proof. The proof comes directly from (5), (7), the facts that V ⊂ Vpb and uD̂a =
uD̂b

= uD if u ∈ V and D̂a, D̂b ∈ Θpb(D).

With the definition of Ŵ in place, we can define Q̂ = ÊŴ, where Ê is the extension
operator taking data on Γh(Θpb) and α-harmonically extending to the interiors of each
PB subdomain (cf. subsection 3.2).

The definition of the set of coarse objects of B̂ requires further elaboration. The
set of objects Λ(Θpb) obtained by applying the classification in subsection 2.3 for the
PB subdomain partition Θpb provides a classification of Γ(Θpb) ⊃ Γ(Θ). We have the
following relation between the PB objects Λpb(Θ) and the (standard) objects of the
PB partition Λ(Θpb).

Lemma 9. All the objects in Λpb(Θ) are also in Λ(Θpb), i.e., Λpb(Θ) ⊂ Λ(Θpb).
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Proof. Let us consider an object λpb ∈ Λpb(Θ). In both object partitions Λpb(Θ)
and Λ(Θpb), we are using the same criteria, i.e., neighΘpb

(·), to classify points. The
difference is that Λpb(Θ) is the result of a classification of points in Γ(Θ) whereas
Λ(Θpb) is obtained from a classification of points in Γ(Θpb). Since Γ(Θ) ⊂ Γ(Θpb),
all points in λpb belong to the same object λ′ ∈ Λ(Θpb). Since λpb is on the in-
terface Γ(Θ), there exist at least two subdomains D̂, D̂′ ∈ neighΘpb

(λpb) such that
ω(D̂) 6= ω(D̂′). Let us assume there is a point ξ ∈ λ′ such that ξ /∈ λpb. Then,
ξ ∈ Γ(Θpb)\Γ(Θ), i.e., it only belongs to one subdomain in Θ. As a result, ω(D̂) is
the same for all D̂ ∈ neighΘpb

(ξ). Thus, we have a contradiction, since neighΘpb
(ξ)

cannot be the same as neighΘpb
(λpb).

With the theoretical support from Lemma 9, we can define the set of coarse objects
Λ̂O of B̂ as a classification of Γ(Θpb) as follows. On Γ(Θ), we consider the same set of
objects ΛO used in the PB-BDDC preconditioner, i.e., ΛC , or ΛC ∪ ΛE , or Λpb(Θ).
For the rest of the interface Γ(Θpb)\Γ(Θ), we enforce full continuity among PB sub-
domains. It can be understood as treating all FE nodes on Γ(Θpb)\Γ(Θ) as corners.
Denote this set of objects by Λ̂∗, we have Λ̂O = ΛO ∪ Λ̂∗. Figure 4 illustrates the
partitions and coarse objects of B and B̂ when ΛO = ΛC ∪ ΛE .

Remark 10. By construction, the BDDC space Ṽpb of the auxiliary BDDC pre-
conditioner B̂ contains the BDDC space Ṽ, defined in (4), of the PB-BDDC precon-
ditioner.

Ω1

Ω2

Ω3

Ω4

Ω̂1

Ω̂2

Ω̂3

Ω̂4

Ω̂5

Ω̂6

Ω̂8

Ω̂7

Fig. 4: Partitions and coarse objects of the PB-BDDC preconditioner B (left) and the
auxiliary BDDC preconditioner B̂ (right) when ΛO = ΛC ∪ ΛE : corner objects are
labeled with crosses while nodes of other objects are labeled with circles.

Lemma 11. The condition number κ(BA) of the PB-BDDC preconditioned oper-
ator is bounded by

(10) κ(BA) ≤ max
v∈Ṽpb

〈AΘpbQ̂v, Q̂v〉
〈AΘpbv, v〉

.
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Proof. According to [43, Theorem 15] (see also [41]), κ(BA) is bounded by

(11) κ(BA) ≤ max
v∈Ṽ

〈AΘQv,Qv〉
〈AΘv, v〉

.

Now we only need to bound the right-hand-side in (11) by the one in (10).
On the one hand, using the fact that Ṽ ⊂ Ṽpb (cf. Remark 10) , we have

〈AΘv, v〉 = 〈AΘpbv, v〉 for all v ∈ Ṽ because any v ∈ Ṽ is continuous in each subdomain
of Θ. On the other hand, let us prove that the weighting operator Ŵ defined by (5)
for Θpb restricted to V is identical to the weighting operator W defined by (5) for Θ.
Let us consider a subdomain D ∈ Θ and its PB partition Θpb(D). We have

δ†D(ξ) =
∑

D̂∈Θpb(D), D̂3ξ

δ†D̂(ξ),

by the definition in (5). For an arbitrary function v ∈ V ⊂ Vpb, we find that

Wv(ξ) =
∑

D∈neighΘ(ξ)

δ†D(ξ) vD(ξ) =
∑

D∈neighΘ(ξ)

∑
D̂∈Θpb, D̂3ξ

δ†D̂(ξ) vD(ξ)

=
∑

D̂∈neighΘpb
(ξ)

δ†D̂(ξ) vD̂(ξ) = Ŵv(ξ).

Therefore, Q̂v and Qv are identical on Γ(Θ) and Q̂v is continuous across Γ(Θpb). In
addition, Qv is discrete α-harmonic in each D ∈ Θ and has minimal energy norm
with respect to AΘ. As a consequence,

〈AΘQv,Qv〉 =
∑
D∈Θ
〈AΘ
DQv,Qv〉

≤
∑
D∈Θ
〈AΘ
DQ̂v, Q̂v〉 =

∑
D̂∈Θpb

〈AΘpb

D̂ Q̂v, Q̂v〉 = 〈AΘpbQ̂v, Q̂v〉.

This finishes the proof.
We could stop here and derive the estimate for κ(BA) knowing that the condition

number of the auxiliary BDDC preconditioned operator B̂A is estimated by an upper
bound of the last quantity on the right of (11). However, we will go a bit further to
obtain a stronger result.

Lemma 12. Assume that ΛO is such that Assumption 5 holds. Then we have the
following inequality:

(12) max
v∈Ṽpb

〈AΘpbQ̂v, Q̂v〉
〈AΘpbv, v〉

≤ C max{1,TOL} max
D∈Θ∂pb

(
1 + log

(
H(D)
h(D)

))2
,

where the constant C is independent of the number of subdomains, H(D̂), h(D̂) and
the physical coefficient α.

Proof. By triangle inequality, we have

(13) max
v∈Ṽpb

〈AΘpbQ̂v, Q̂v〉
〈AΘpbv, v〉

≤ 1 + max
v∈Ṽpb

〈AΘpb(Q̂v − v), (Q̂v − v)〉
〈AΘpbv, v〉

.
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Let w = Q̂v − v. Then its component on D̂a, wD̂a , can be explicitly written as

wD̂a
(ξ) =

∑
D̂b∈neighpb(ξ)

δ†
D̂b

(ξ)
(
wD̂a

(ξ)− wD̂b(ξ)
)
.

Given a FE function u ∈ VD̂, we denote by θD̂λ (u) ∈ VD̂ the FE function that
is discrete α-harmonic in D̂ and agrees with u at the FE nodes in the object λ and
vanishes at all the other nodes on ∂D̂. Since Λ(Θpb) is a partition of Γ(Θpb), we can
split w into object and subdomain contributions as follows:

(14) w =
∑

λ∈Λ(Θpb)

∑
D̂∈neighΘpb

(λ)

θD̂λ (w).

By construction of the set of objects Λ̂O = ΛO ∪ Λ̂∗ and the definition of Ṽpb, w van-
ishes at all coarse objects in Λ̂∗, i.e., at all FE nodes in Γ(Θpb) \Γ(Θ). Consequently,
(14) can be simplified as follows:

(15) w =
∑

λ∈Λpb(Θ)

∑
D̂∈Θ∂pb

θD̂λ (w).

When ΛO satisfies Assumption 5, the set of objects in Λ̂O also fulfills [53, As-
sumption 6.27]. Consequently, using the fact that δ†

D̂
is constant in each (PB) coarse

object associated with D̂ and (9), we can perform an analysis similar to that in the
proof [53, Lemma 6.36] (see also [33, Lemma 10]) to obtain

〈AΘpb

D̂ θD̂λ (w), θD̂λ (w)〉

≤ C max{1,TOL}
(

1 + log
(
H(D̂)
h(D̂)

))2 ∑
D̂∈neighΘpb

(λ)

〈AΘpb

D̂ v, v〉,

for any D̂ ∈ Θ∂
pb and λ ∈ Λ(Θpb). Here the constant C is independent of H(D̂), h(D̂)

and the physical coefficient α. We note that the standard analysis in, e.g., [53, Lemma
6.36], assumes that for every face there is at least one primal edge (see Remark 6).
Assumption 5 is weaker, since for every face F we simply assume that there is at
least one edge E on the boundary of this face for which there is an acceptable path.
All the technical analysis for the standard case can easily be generalized for the one
suggested herein. First, we use the bounds for the face term in [53, p. 182], the only
difference being that the mean value of the function on E is not continuous among
subdomains. Next, we have to bound the jump on this edge. Since the edge has an
acceptable path, it can be readily bounded using the analysis in [53, p. 183] for edge
terms.

Adding up the estimate for all subdomains D̂ ∈ Θpb, we find that

(16) 〈AΘpbw,w〉 ≤ C max{1,TOL} max
D̂∈Θ∂pb

(
1 + log

(
H(D̂)
h(D̂)

))2

〈AΘpbv, v〉.

This finishes the proof.
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Combining results in Lemma 11 and Lemma 12, we have the final bound for
the PB-BDDC preconditioner, which is both weakly scalable and independent of the
coefficient α.

Theorem 13. If the set of PB-BDDC coarse objects ΛO satisfies Assumption 5,
then the condition number of the PB-BDDC preconditioned operator κ(BA) is bounded
by

κ(BA) ≤ C max{1,TOL} max
D̂∈Θ∂pb

(
1 + log

(
H(D̂)
h(D̂)

))2

,

where the constant C is independent of the number of subdomains, H(D̂), h(D̂) and
the physical coefficient α.

Remark 14. As seen in Lemma 12 and Theorem 13, the condition number asso-
ciated with the PB-BDDC method depends only on the characteristic size and mesh
size of PB subdomains touching the original interface Γ(Θ). Further, the convergence
of the PB-BDDC is independent of variations of the coefficient. The main target of
this work is achieved.

Remark 15. For a fixed number of subdomains, partitions Θ with larger aspect
ratios lead to larger values of maxD̂∈Θ

H(D̂)
h(D̂) (see also [22]). The value of maxD̂∈Θ∂pb

H(D̂)
h(D̂) for the PB partition is equal or less than that for the original partition. However,
in the PB partition, irregular subdomains that do not fulfill [53, Assumption 4.3
(1.)] may arise, affecting the constant in the estimate. Extension of these results to
more complex geometries can be found in [31]. In this sense, we know that (1) the
subdomains interface (in which we allow for discontinuities) remains the same in PB-
BDDC (e.g., flat interfaces in the original partition remain flat in the PB partition),
and (2) the PB-BDDC space is a subspace of the BDDC space, and can never perform
worse whatever geometry we consider for the PB partition.

3.5. Reducing the size of the coarse space in PB-BDDC. If all the con-
straints associated with the PB partition are used, we might end up using too many
constraints and the size of the coarse space can be quite large. This could affect
the overall performance of the PB-BDDC method since the coarse problem is usu-
ally the bottleneck in large scale calculation (cf. [2, 3, 4, 8]). However, according to
Theorem 13, not all the constraints associated with the PB partition are required to
guarantee robustness. We only need to choose the set of PB-BDDC coarse objects ΛO
so that Assumption 5 holds.

Roughly speaking, for any two PB subdomains that share at least one point on
the original subdomain interface, we need at least one acceptable path between them.
From Definition 4, it implies that for any pair of PB subdomains, if one or both of
them have a small coefficient, then the other neighboring PB subdomains with larger
or equal coefficients can be included in the acceptable path without increasing the
tolerance TOL. In other words, one only needs to worry about pairs of connecting
PB subdomains with large coefficients. There can be as many inclusions and channels
as wanted inside a subdomain and not a single extra PB object is required. We note
that these inclusions and channels can touch but not cross the original interface.

In Figure 5, we illustrate some common scenarios of the coefficient and indicate the
number of extra constraints, apart from the ones needed for well-posedness, required
to guarantee the existence of acceptable paths. We only use channels for the clarity
of the illustration even though the procedure can be applied to general scenarios.
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For docking channels that do not cross the subdomain interface as in Figure 5a,
no extra constraint is required provided that the original subdomains are connected,
i.e., there is at least an acceptable path that connects them. For a long channel
crossing the subdomain interface (see Figure 5b), one extra constraint is required.
This constraint can be a vertex, an edge, or a face constraint. For channels that are
connected inside subdomains, as illustrated in Figure 5c, they all belong to the same
PB subdomain and only one extra vertex, edge or face constraint is sufficient (due
to the weaker restriction on face-connected subdomains in Assumption 5). When
channels are disjoint even in one of the subdomains only, we need at least one extra
constraint for each non-connected channel, because every channel of this type leads
to a different PB subdomain. This is illustrated in Figure 5d.

In summary, we need one extra PB constraint for every non-connected channel
of high coefficient crossing the original interface. This is similar to spectral-based
approaches of adaptive coarse spaces, e.g., [51, 29, 25], where the number of eigen-
functions needed is the same as the number of high coefficient channels crossing the
interface. The conclusion will be numerically verified in subsection 4.1 and subsec-
tion 4.3.

Ω̂1 Ω̂3

Ω̂2

(a) Docking channel: no extra constraint
is required.

Ω̂1

Ω̂3

Ω̂2
Ω̂4

V1

(b) Long channel crossing boundary in-
terface: one extra constraint is sufficient,
e.g., Ω̂2

V1−→ Ω̂4.

Ω̂1 Ω̂5

Ω̂2

Ω̂3

Ω̂4

Ω̂6

Ω̂7

Ω̂8

V1

(c) Channels that are connected: one ex-
tra constraint is sufficient e.g., Ω̂2

V1−→ Ω̂8.

Ω̂1 Ω̂5

Ω̂2

Ω̂3

Ω̂4

Ω̂6

Ω̂8

Ω̂7

V1

V2

V3

(d) Disjoint channels: one extra con-
straint is required for each channel, e.g.,
Ω̂2

V1−→ Ω̂8, Ω̂2
V2−→ Ω̂7, Ω̂2

V3−→ Ω̂6.

Fig. 5: Some scenarios of coefficient distribution and the minimal number of extra
constraints required.

In practice, it can be complicated to select the minimal set of constraints. How-
ever, it is not difficult to choose a reasonably small set of constraints that is sufficient
for PB-BDDC to be α-robust. For example, we can consider only PB subdomains
touching the original interface and having coefficient relatively larger than the small-
est coefficient of the neighboring PB subdomains in the same original subdomain.
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For two PB subdomains that are of this type and belong to two different original
subdomains, we will select a vertex, an edge, or a face constraint to “connect” them
if they share at least a point. For simplicity, vertex constraints only can be used in
2D. This approach is utilized in our numerical experiments in section 4.

3.6. Relaxed PB-BDDC preconditioner. The definition of the coarse ob-
jects for the PB-BDDC preconditioner is based on the requirement that the coefficient
has to be constant in each PB subdomain. This could result in a large coarse space
even after the procedure discussed in subsection 3.5 is used. That is the case for het-
erogeneous problems where the physical coefficient varies across a wide spectrum of
values in a small spatial scale. Variation of coefficient along the interface does affect
the condition number. However, relatively small variation should not have significant
effect on the condition number.

In order to deal with a more general class of problems, we propose the relaxed PB-
BDDC preconditioner (rPB-BDDC) where we only require that the maximal contrast
in each PB subdomain is less than some predefined tolerance r. We consider a relaxed
PB partition Θpb such that

(17) max
τ,τ ′⊂D̂

ατ
ατ ′
≤ r, for any D̂ ∈ Θpb.

Here the threshold r is equal or greater than 1. This way, we can control the size of
the coarse problem and the condition number bounds with the choice of r.

As the coefficient is no longer constant in each PB subdomain, we need to use
a weighted-constraint in the definition of coarse DOFs. More specifically, instead of
using (3), we use

(18) cDλ (u) .=
∫
λ
ᾱ u ds∫

λ
ᾱ 1 ds

, where ᾱ(ξ) .= max
τ∈T , τ3ξ

ατ .

For rPB-BDDC, the weighting defined by (5) can still be used but it requires some
sort of “average” coefficient for each PB subdomain. Therefore, in stead of using (5)
as is, we propose to use the following alternative

(19) Wu(ξ) .=
∑

D∈neighΘ(ξ)

δ†,cD (ξ)uD(ξ), with δ†,cD (ξ) .=
∑
τ∈TD, τ3ξ ατ |τ |∑
τ∈T , τ3ξ ατ |τ |

,

where |τ | denotes the area/volume of element τ . It should be noted that when |τ | is
dropped, the weighting in (19) becomes the weighting defined in (5).

Remark 16. The larger r becomes the smaller the size of the coarse problem
of the rPB-BDDC preconditioner is and the larger its condition number becomes.
When r = 1 the rPB-BDDC preconditioner becomes the PB-BDDC preconditioner.
By tuning the threshold r, one can obtain a right balance between the time spent on
setting up the preconditioner (especially in forming the coarse space) and the time
spent on applying the preconditioner in a Krylov solver. The optimal threshold is of
course problem dependent. However, finding a good threshold is not tricky. This is
illustrated in section 4.

Remark 17. The rPB-BDDC preconditioner makes use of a threshold. This is sim-
ilar to the adaptive coarse space approach where only eigenfunctions associated with
eigenvalues below a predefined threshold are included in the coarse space. However,
the rPB-BDDC preconditioner does not involve any eigenvalue or auxiliary problems
and is far simpler and cheaper.
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Remark 18. In terms of implementation, the PB partition for the rPB-BDDC
method can be defined using element aggregation. In order to define such aggregation,
a breadth-first search of the dual graph associated to the mesh can be performed. For
a given seed element, neighbor elements are only aggregated if it does not involve the
violation of condition (17). Next, we proceed analogously for the neighbors of the
new aggregated elements. If we have not aggregated all elements yet, we start again
with a new seed.

4. Numerical experiments. In this section, we test the robustness and effi-
ciency of the PB-BDDC and rPB-BDDC preconditioners for the system matrix asso-
ciated with (2) for different types of variation in the coefficient α, which are similar
but generally harder than the ones in [45, 29, 38].

We consider the problem (1) with homogeneous Dirichlet boundary condition and
the forcing term f = 1. In most cases, the physical domain is Ω = (0, 1)2. Unless
otherwise stated, we use uniform triangular meshes of size h = 1/72 and a regular
3× 3 subdomain partition. We report the dimension of the coarse space, denoted by
dim, and the number of iterations required for the preconditioned conjugate gradients
method to reduce the residual norm by a factor of 106. We also provide the computed
(not estimated) condition number κ of the preconditioned operator in most examples.

We will compare the performance of BDDC(ce), the standard BDDC method with
all possible subdomain corner and edge coarse objects, with that of PB-BDDC(ce),
PB-BDDC(e) and PB-BDDC([c]), three variants of the PB-BDDC method where all
possible physics-based corner and edge or edge coarse objects, or selected physics-
based corner coarse objects are used. No corner detection mechanism (see, e.g., [49])
has been needed. Alternatively, one might want to consider the perturbed formulation
introduced in [7, 8].

In addition, we will also compare the performance of BDDC(ce) with that of
rPB-BDDC(ce) and rPB-BDDC(e), two variants of the relaxed version of PB-BDDC.

4.1. Two channels. In this test case, we consider two channels of high α cutting
through vertical subdomain edges (see Figure 6). The coefficient in the channels αmax
takes the values {102, 104, 106, 108}, while the coefficient in the rest of the domain is
equal to 1.

From Table 1, we can see that the condition number and the number of iterations
for the standard BDDC preconditioner, BDDC(ce), definitely increase with αmax,
whereas they remain practically constant for the three variants of the PB-BDDC
preconditioner: PB-BDDC(ce), PB-BDDC(e) and PB-BDDC([c]). In other words,
the convergence of the PB-BDDC method is independent of the contrast and the
PB-BDDC method is perfectly robust for this test case.

In addition, we want to emphasize that PB-BDDC([c]) can deliver perfect robust-
ness with a coarse space of the same dimension as the coarse space of the standard
method BDDC(ce). The coarse objects of PB-BDDC(ce) and PB-BDDC([c]) are il-
lustrated in Figure 6 and Figure 7 respectively.

4.2. Channels and inclusions. In this test case, we consider both channels
and inclusions of high coefficient. First, the three channels include all the elements
whose centroids are less than 2 · 10−2 from one of the following three lines:

L1 : x1 − x2 − 0.2 = 0,
L2 : x1 + x2 − 0.7 = 0,
L3 : x1 − 0.7x2 − 0.7 = 0.
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Fig. 6: Two channels test case: the coefficient distribution when αmax = 106. The
coarse objects used by PB-BDDC(ce) are shown on the interface with corners labeled
by stars and DOFs in edges labeled by circles.

Fig. 7: Two channels test case: only a small number of critical corners, and subdomain
corners are required by PB-BDDC([c]) to have perfect robustness. These corners are
shown on the interface as stars.

The coefficient αmax in these channels takes the values {102, 104, 106, 108}. Secondly,
the inclusions are defined as the regions of elements whose all vertices x satisfy

mod
(

floor(10xi), 2
)

= 1, for i = 1, 2.
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Table 1: Comparison of the iteration count and condition number in the two channels
test case.

BDDC(ce) PB-BDDC(ce) PB-BDDC(e) PB-BDDC([c])
dim 16 64 36 16
αmax # it. (κ) # it. (κ) # it. (κ) # it. (κ)
102 9(8.68e2) 4 (1.38e0) 5 (3.01e0) 6 (3.77e0)
104 13(1.83e5) 4 (1.36e0) 5 (2.92e0) 5 (2.25e0)
106 15(1.85e7) 4 (1.36e0) 5 (2.92e0) 5 (2.24e0)
108 20(1.89e9) 4 (1.36e0) 5 (2.92e0) 5 (2.24e0)

For an element τ that belongs to one of the inclusions and is not in the channels, its
coefficient is defined as

(20) α|τ = (αmax/10)1/5∗floor(0.5∗floor(10 x1(cτ ))+1, where cτ is the centroid of τ.

The coefficient in (20) is: a) constant in each inclusion; b) increasing from left to
right; c) increasing as αmax increases; and d) always belongs to (1, αmax). For the rest
of the domain, we set α = 1. The maximal contrast ratio in this experiment is 108.
The coefficient distribution when α = 106 is shown in Figure 8.

Fig. 8: Channels and inclusions test case: the coefficient distribution when αmax =
106. The coarse objects used by PB-BDDC(ce) are shown on the interface with corners
labeled by stars and DOFs in edges labeled by circles.

We can see from Table 2 that as αmax becomes larger the condition number and
the number of iterations associated with the standard BDDC(ce) method increases
significantly. In contrast, both variants of the PB-BDDC method, PB-BDDC(ce) and
PB-BDDC(e), are perfectly robust with respect to the changes of the coefficient in
the channels and in the inclusions. Especially, PB-BDDC(e) maintains its robustness
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Fig. 9: Channels and inclusions test case: only a small number of critical corners,
and subdomain corners are required by PB-BDDC([c]) to have α-robustness. These
corners are shown on the interface as stars.

with a reasonably small coarse space (see also Figure 9).

Table 2: Comparison of the iteration count and condition number in the channels and
inclusions test case.

BDDC(ce) PB-BDDC(ce) PB-BDDC(e) PB-BDDC([c])
dim 16 89 39 19
αmax # it. (κ) # it. (κ) # it. (κ) # it. (κ)
102 10(2.57e5 ) 6 (1.91e0) 10 (4.84e1) 12 (2.25e2)
104 24(1.79e7 ) 6 (1.99e0) 10 (7.00e1) 13 (3.44e2)
106 36(1.54e9 ) 6 (2.04e0) 11 (7.03e1) 14 (3.49e2)
108 61(1.47e11) 6 (2.04e0) 11 (7.03e1) 14 (3.50e2)

4.3. Complex channels. In this test case, we demonstrate the importance of
having acceptable paths. We consider a distribution with multiple channels of high
coefficient αmax taking values in {102, 104, 106, 108} (see Figure 10 for the case when
αmax = 106).

From Table 3, we can see that PB-BDDC(ce) is perfectly robust. On the other
hand, the condition number and number of iterations of the PB-BDDC(e) precon-
ditioner increase significantly as αmax increases. The reason is that there are some
pairs of channels sharing a corner but not an edge. In PB-BDDC(e), none of these
corners are selected as a coarse object. Consequently, there is no acceptable path
with TOL independent of the contrast between the associated paired of channels (PB
subdomains) and Assumption 5 does not hold. By using a small number of these
critical corners in order to satisfy Assumption 5 and the subdomain corners to guar-
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Fig. 10: Complex channels test case: the coefficient distribution when αmax = 106.
Only few corners are required by PB-BDDC([c]) to guarantee perfect robustness (to
have acceptable paths). These corners are shown on the interface as stars.

antee invertibility, the resulting preconditioner, PB-BDDC([c]), is perfectly robust
with respect to changes in the contrast of the coefficient (see Table 3).

Table 3: Comparison of the iteration count and condition number in the complex
channels test case.

BDDC(ce) PB-BDDC(ce) PB-BDDC(e) PB-BDDC([c])
dim 16 78 46 13
αmax # it. (κ) # it. (κ) # it. (κ) # it. (κ)
102 16 (2.40e3) 6 (2.75e0) 14 (1.42e3) 10 (8.79e1)
104 26 (4.22e5) 6 (2.82e0) 19 (1.96e5) 10 (9.83e1)
106 38 (4.25e7) 6 (2.82e0) 25 (1.97e7) 10 (9.84e1)
108 55 (4.93e9) 6 (2.82e0) 29 (1.97e9) 10 (9.84e1)

4.4. Sinusoidal variation. In this experiment, we consider a coefficient that
varies like a sinusoid. We use a finer uniform triangular mesh of size h = 1/144. For
an element τ ∈ T , the coefficient ατ is defined by

log10(ατ ) = κ sin(wπ(x1(cτ ) + x2(cτ ))) + αshift,

where κ = 3, w = 14, and cτ is the the centroid of τ . We note that when κ and/or
w become larger the problem is more difficult. The distribution when αshift = 0 is
shown in Figure 11. It is as if there are many channels going through subdomain
edges at the same time.

In this test case, the coefficient varies very rapidly. We test the standard BDDC
method and the rPB-BDDC method introduced in subsection 3.6, by allowing the



22 S. BADIA, A. F. MARTÍN, AND H. NGUYEN

Fig. 11: Distribution of the coefficient mimicking sin function. The coarse objects of
rPB-BDDC(ce) with r = 103 are shown on the interface with corners labeled by stars
and DOFs in edges labeled by circles.

upper bound r for the maximal contrast in each PB subdomain to vary among
{101, 102, 103}. Only iteration counts are reported as computing (not estimating)
condition numbers becomes too expensive for the mesh being used.

This is a difficult problem and the standard BDDC(ce) method requires 43 itera-
tions to converge (see Table 4). The relaxed physics-based methods, rPB-BDDC(ce)
and rPB-BDDC(e), are able to significantly reduce the number of iterations. That
comes with the cost of solving larger coarse problems. However, by using a suitable
threshold r, we can obtain a decent preconditioner, e.g., rPB-BDDC(e) with r = 103,
which requires only 8 iterations using a reasonably small coarse space of size 64.

In addition, the rPB-BDDC method is also perfectly robust with shifting in the
value of the coefficient. The iteration count does not change when αshift takes values
in {0, 6}.

Table 4: Comparison of the iteration count in the continuous sin test case.

BDDC(ce) rPB-BDDC(ce) rPB-BDDC(e)
r 10 102 103 10 102 103

dim 16 474 292 188 212 116 64
αshift = 0 # it. 43 4 5 5 7 8 8
αshift = 6 # it. 43 4 5 5 7 8 8

4.5. Log-Normal. In this test case, we test the performance of the rPB-BDDC
method for a log-normal distribution of the coefficient. This type of distribution is
particularly important for geoscience and petroleum engineering applications. We
consider αcont(x,w) = 10Z(x,w), where Z(x,w) is a Gaussian random field with zero



PHYSICS-BASED BALANCING DOMAIN DECOMPOSITION 23

Fig. 12: Distribution of the coefficient in the log-normal test case. The coarse objects
of rPB-BDDC(ce) with r = 102 are shown on the interface with corners labeled by
stars and DOFs in edges labeled by circles.

mean and Gaussian covariance

C(x, y) = σ2 exp
(
−‖x− y‖

2

`2

)
, with σ = 1.5, `2 = 1e-3.

For this experiment, a uniform triangular mesh of size h = 1/128 is utilized. Using the
spectral decomposition method described in [39], we are able to obtain a realization
of αcont(x,w) at mesh vertices. The piecewise coefficient ατ on an element τ is then
defined as the average of αcont(x,w) at the three vertices. The distribution of α with
a partition obtained from METIS [27] is shown in Figure 12. The contrast ratio in
this test case is nearly 1010. The upper bound r for the maximal contrast in each PB
subdomain varies among {101, 5 × 101, 102}. The coarse objects of rPB-BDDC(ce)
when r = 102 are also illustrated.

In Table 5, we can see that, compared to the standard BDDC(ce) method, rPB-
BDDC(ce) and rPB-BDDC(e) preconditioners require much fewer iterations to con-
verge. They, however, have a larger coarse space. By adjusting the threshold for the
maximal contrast in each PB subdomain, we can reduce the size of the coarse space
while maintaining a reasonably fast convergence. This is clearly illustrated in Table 5.

Table 5: Comparison of the iteration count in the log-normal test case.

BDDC(ce) rPB-BDDC(ce) rPB-BDDC(e)
r 101 5× 101 102 101 5× 101 102

dim 49 438 265 228 187 112 98
# it. 25 9 11 13 13 15 17
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Fig. 13: 3D channels problem.

4.6. 3D channels. Next, we analyze the robustness and performance of the
PB-BDDC preconditioner when applied to a 3D problem. We consider the unit cube
[0, 1]3. Its volume is filled with two different materials, a matrix with diffusion α = 1.0
and a set of fibers (see Figure 13a) with α = 10`, for ` = 2, 4, 6, 8. In Figure 13b, we
compare the number of PCG iterations using the standard BDDC preconditioner and
the PB-BDDC (both equipped with corner, edge, and face constraints) with a fixed
mesh. Clearly, the PB-BDDC preconditioner is robust with respect to the jump of
the diffusion between materials while the standard BDDC preconditioner is not.

We want to analyze the scalability of the PB-BDDC preconditioner for the prob-
lem at hand on a supercomputer. The experiments reported in the following have been
obtained on a large-scale multicore-based distributed-memory machine, Marenostrum
III, located at the Barcelona Supercomputing Center (BSC-CNS). The Marenostrum
III is a FDR10 Infiniband interconnected cluster with 36 IBM System x iDataPlex
racks devoted to computations. Each rack is composed of 84 IBM dx360 M4 compute
nodes, each equipped with two Intel Xeon E5-2670 EightCore processors running at
2.6 GHz (16 computational cores in total) and 32 GBytes of DDR3 memory (2 GBytes
per core), and runs a full-featured Linux OS. The codes were compiled using the GNU
Fortran compiler (6.1.0) with recommended optimization flags and we used OpenMPI
(2.0.1) tools and libraries for message-passing. The codes were linked against the
BLAS/LAPACK and PARDISO available on the Intel MKL library (included in Intel
Parallel Studio XE 2017). All floating-point calculations were performed in IEEE
double precision.

The PB-BDDC preconditioner has been implemented in FEMPAR, developed by
the members of the LSSC team at CIMNE, which is a parallel hybrid OpenMP/MPI,
object-oriented software package for the massively parallel Finite Element (FE) simu-
lation of multiphysics problems governed by PDEs. Among other features, it provides
the basic tools for the efficient parallel distributed-memory implementation of sub-
structuring DD solvers [3]. The parallel codes in FEMPAR heavily use standard com-
putational kernels provided by (highly-efficient vendor implementations of) the BLAS
and LAPACK. Besides, through proper interfaces to several third party libraries, the
local Dirichlet and constrained Neumann problems at each intermediate level of the
hierarchy, and the global coarsest-grid problem at the last level, can be solved via
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Fig. 14: Weak scalability in (a) wall clock time in seconds (of both preconditioner
set-up and PCG stages) and (b) number of PCG iterations of the PB-BDDC(ce/cef)
algorithm compared to those of the standard BDDC(ce/cef) solver when applied to
the 3D channels problem (` = 8) on Marenostrum III.

sparse direct solvers. FEMPAR is released under the GNU GPL v3 license, and is
more than 200K lines of Fortran03/08 code long. The FEMPAR library includes
a highly scalable implementation of the BDDC-PCG parallel linear solver based on
overlapping fine-grid/coarse-grid duties in time. The global set of MPI tasks is split
into those that have fine-grid duties and those that have coarse-grid duties. Next,
the different computations and communications arising in the BDDC-PCG algorithm
are scheduled and mapped in such a way that the maximum degree of overlapping is
achieved. We refer to [4] for the presentation of such implementation. The use of inex-
act solvers within this library has been presented in [5] and a recursive implementation
of multilevel BDDC preconditioners is described in [6].

We consider a weak scalability analysis of PB-BDDC and standard BDDC meth-
ods when applied to the 3D channels problem with ` = 8, a set uniform meshes with
32m × 32m × 32m hexahedra, and regular partitions of this mesh into m ×m ×m
subdomains, for m = 2, 4, 6, 8, 10 (the local problem size per processor is independent
of m). The largest test case has more than 260 million unknowns. The wall clock time
(in seconds) associated to both the setup of the preconditioner and the solution of
the linear system using PB-BDDC versus standard BDDC-preconditioned conjugate
gradients are reported in Figure 14a. The number of iterations required to converge
is reported in Figure 14b. We can observe excellent weak scalability and robustness
of PB-BDDC (bottom row of Figure 14), especially, when compared to those of the
standard BDDC algorithm (top row of Figure 14). The use of the overlapped im-
plementation within FEMPAR is essential to provide such results, because it masks
the CPU time at the coarse solver level with embarrassingly parallel fine level duties.
The number of iterations for the standard case has a very rough behavior, related to
the fact that the method is not α-robust and the different situations encountered at
different core counts. On the contrary, the PB-BDDC method is robust and has a
very smooth behavior.

5. Conclusions. In this work, we have proposed a novel type of BDDC pre-
conditioners that are robust for heterogeneous problems with high contrast. The
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underlying idea is to modify the continuity constraints enforced among subdomains
making use of the knowledge about the physical coefficients. In order to do that, we
rely on a physically motivated partition of standard coarse objects (corners, edges, and
faces) into coarse sub-objects. The motivation for that is the well-known robustness
of DD methods when there are only jumps of physical coefficients across the interface
between subdomains. All these ideas can also be used in the frame of FETI methods.

In cases where the physical coefficient is constant in each PB subdomain, we are
able to prove that the associated condition number can be bounded independent of
the number of the subdomains and the contrast of the physical coefficient. In other
words, the new preconditioner is scalable and robust for heterogeneous problems. In
addition, not all but any set of PB objects satisfying a mild condition on acceptable
paths is sufficient to guarantee robustness.

Apart from the new set of coarse objects and a new weighting operator, the (r)PB-
BDDC preconditioners are very much the same as the standard BDDC preconditioner.
As a result, the implementation of the new preconditioners involve a very simple
modification of the standard BDDC implementation. In all of our experiments, the
new preconditioners deliver fast, robust and contrast-independent convergence while
maintaining the simplicity of BDDC methods at a reasonable computational cost.
Compared to the other robust DD solvers for heterogeneous problems currently avail-
able, such as the ones in [26, 48, 26, 46, 47, 23, 24, 45, 50, 15, 52, 51, 29, 28, 30, 38, 25],
our new methods do not involve any type of eigenvalue or auxiliary problems.

The use of (r)PB-BDDC methods for heterogeneous problems lead to generally
larger coarse problems than in the homogeneous case. In order to cope this problem,
we have considered two remedies. First, we provide a simple procedure to find small
and close to minimal coarse spaces which guarantee robustness. Second, we have
implemented the algorithms in the extremely scalable BDDC code in FEMPAR [3,
4, 5, 6], which exploits an inter-level task-overlapping implementation to efficiently
deal with the coarse space computation in weak scalability analyses. We have shown
excellent scalability results up to 8000 cores and more than 260 million unknowns on
a supercomputer. Future work will include the multilevel extension of the present
approach for the overlapped recursive multilevel implementation in FEMPAR, which
will be particularly interesting in the rPB-BDDC case, and the application of the
preconditioner to real 3D applications, e.g., in geosciences.
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