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PHYSICS-BASED BALANCING DOMAIN DECOMPOSITION BY1
CONSTRAINTS FOR HETEROGENEOUS PROBLEMS ∗2

SANTIAGO BADIA†‡ AND HIEU NGUYEN‡3

Abstract. In this work, we present a balancing domain decomposition by constraints method4
based on an aggregation of elements depending on the physical coefficients. Instead of imposing5
constraints on purely geometrical objects (faces, edges, and vertices) of the partition interface, we use6
interface objects (subfaces, subedges, and vertices) determined by the variation of the coefficients.7
The new method is easy to implement and does not require to solve any eigenvalue or auxiliary8
problem. When the physical coefficient in each object is constant at every subdomain containing the9
object, we can show both theoretically and numerically that the condition number does not depend10
on the contrast of the coefficient. The constant coefficient condition is possible for multi-material11
problems. However, for heterogeneous problems with coefficient varying across a wide spectrum of12
values in a small spatial scale, such restriction might result in too many objects (a large coarse13
problem). In this case, we propose a relaxed version of the method where we only require that the14
maximal contrast of the physical coefficient in each object is smaller than a predefined threshold.15
The threshold can be chosen so that the condition number is reasonably small while the size of the16
coarse problem is not too large. An extensive set of numerical experiments is provided to support17
our findings.18

Key words. BDDC, heterogeneous problem, adaptive coarse space, parallel solver, parallel19
preconditioner20

AMS subject classifications. 65N55, 65N22, 65F0821

1. Introduction. Many realistic simulations in science and engineering, such22
as subsurface flow simulations in a nuclear waste repository or in an oil reservoir, or23
heat conduction in composites, involve heterogeneous materials. The linear systems24
resulting from the discretization of these problems are hard to solve. The use of direct25
solvers at a sufficiently fine scale can be prohibitively expensive, even with modern26
supercomputers, due to their high complexity and scalability issues. In addition, the27
high contrast of the physical properties significantly increases the condition number28
of the resulting linear systems, posing great challenges for iterative solvers. In this29
work, we will focus on developing a domain decomposition (DD) preconditioner that30
is robust with the variation of the coefficients of the PDEs. For a different but related31
approach, to find reasonably accurate heterogeneous solution on a coarse mesh, we32
refer the interested readers to [19, 1] and references therein.33

DD is one of the most popular approaches to solve large-scale problems on parallel34
supercomputers. It splits a problem into weakly coupled subproblems on smaller35
subdomains and use parallel local solutions on these subdomains to form a parallel36
preconditioner for the original problem [50, 41]. In DD, the coarse space plays an37
important role in achieving scalability as well as robustness w.r.t variations in the38
coefficient. Many early DD methods, such as those in [11, 18, 17, 31, 53], work39
for heterogeneous problems when the subdomain partition is a geometric coarse grid40
that resolves the discontinuities in the properties of the media. This is a strong41
requirement, since the properties of the media might have complicated variations42
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2 S. BADIA AND H. NGUYEN

on many scales and be difficult to capture by a geometric coarse grid. Further, it43
is impractical, since it would not lead to load-balanced partitions with a reduced44
interface.45

Recently, there have been works on coarse grids that do not resolve the hetero-46
geneity in the media [25, 45, 25, 43, 44], and especially automatic coarse spaces that47
adapt to the variation in the properties of the media [22, 23, 42, 47, 15, 49, 48, 28,48
27, 29, 36, 24]. In the latter, the coarse spaces are constructed from eigenfunctions49
associated with small eigenvalues (low-frequency modes) of appropriated generalised50
eigenvalue problems. This approach is backed up by rigorous mathematical theory51
and has been numerically shown to be robust for general heterogeneous problems.52
However, solving eigenvalue problems is expensive and extra implementation effort is53
required as coarse spaces in DD methods are not naturally formulated as eigenfunc-54
tions. Another approach is to use the deluxe scaling technique where local auxiliary55
Dirichlet problems are solved to compute efficient averaging operators [33, 14, 52].56
The approach yields robust DD methods, but extra implementation and computation57
cost incur due to the auxiliary problems. In this paper, we formulate a new balancing58
DD by constraints (BDDC) preconditioner that requires no eigenvalue or auxiliary59
problem and is very robust with the contrast of the coefficient. The main motivation60
behind this work is to achieve such goal while maintaining the simplicity of the BDDC61
preconditioner.62

The BDDC method was introduced by Dohrmann in 2003 [12]. It is an improved63
version of the balancing DD (BDD) method by Mandel [38] and has a close connection64
with the FETI-DP method [21, 20]. In fact, it can be shown that the eigenvalues65
of the preconditioned operators associated with BDDC and FETI-DP are almost66
identical [39, 34, 10]. The BDDC method is particularly well-suited for extreme scale67
simulations, since it allows for a very aggressive coarsening, the computations at68
different levels can be computed in parallel, the subdomain problems can be solved69
inexactly [13, 35] by, e.g., one AMG cycle, and it can straightforwardly be extended70
to multiple levels [51, 40]. All of these properties have been carefully exploited in71
the series of articles [3, 4, 5, 6] where an extremely scalable implementation of these72
algorithms has been proposed, leading to excellent weak scalability on nearly half a73
million cores in its multilevel version.74

Our new BDDC method is motivated from the fact that non-overlapping DD75
methods, such as BDDC and FETI-DP, are robust with the variation and contrast76
of the coefficient if it is constant (or varies mildly) in each subdomain [31, 30, 50].77
This implies that in order to have robustness for BDDC methods one could use a78
physics-based partition obtained by aggregating elements of the same coefficient value.79
However, using this type of partition is impractical as the number of the subdomains80
might be too large and can lead to a poor load balancing among subdomains and81
large interfaces. In order to solve this dilemma, we propose to use a well-balanced82
partition, e.g., one obtained from METIS [26] an automatic graph partitioner, to83
distribute the work load among processors. Then, we consider a sub-partition of sub-84
domains based on the physical coefficients, leading to a physic-based (PB) partition.85
Continuity constraints among subdomains will be defined through the definition of86
objects based on the PB partition. Consequently, the interface objects are adaptively87
defined according to the variation of the coefficient. The resulting BDDC precon-88
ditioner with constraints imposed on subfaces, subedges, and vertices will be called89
PB-BDDC. These ideas can readily be applied to FETI-DP preconditioners.90

We emphasise that the PB-BDDC method does not require to solve any eigenvalue91
or auxiliary problems. Its formulation and implementation are very much the same92
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PHYSICS-BASED BALANCING DOMAIN DECOMPOSITION 3

as for the standard BDDC method. The only difference is in identifying and defining93
BDDC objects to impose constraints. In other words, the simplicity of the standard94
BDDC method is maintained.95

For multi-material problems, e.g., problems with isolated channels or inclusions,96
it is possible to require the physical coefficient in each PB-subdomain to be constant.97
In this situation, we are able to prove that the new BDDC method is scalable and its98
convergence is independent of the contrast of the coefficient.99

For heterogeneous problems with a wide spectrum of values in a small spatial100
scale this restriction is too strong and might result in too many coarse objects (large101
coarse problem). As a result, we also propose a relaxed definition of the PB partition102
where we only require that the maximal contrast of the physical coefficient in each103
PB-subdomain is smaller than a predefined threshold. The threshold can be chosen104
so that the condition number is reasonably small while the size of the coarse problem105
is not too large. We empirically show that this relaxed version of PB-BDDC, called106
rPB-BDDC, is robust and efficient for different difficult distributions of the coefficient.107

The rest of the paper is organised as follows. In section 2, we introduce the model108
problem, the domain partitions and the BDDC object classification. In section 3, we109
present the formulation of the (r)PB-BDDC methods as well as theirs key ingredients,110
namely coarse degrees of freedom (coarse DOFs), weighting and harmonic extension111
operators. The convergence analysis is also provided in this section. In section 4,112
we provide an extensive set of numerical experiments to demonstrate the robustness113
and efficiency of the (r)PB-BDDC methods. We finally draw some conclusions in114
section 5.115

2. Problem setting. Let Ω ⊂ Rd, with d being the space dimension, be a116
bounded polyhedral domain. For a model problem, we study the Poisson’s equa-117
tion with non-constant diffusion and homogeneous Dirichlet conditions (the non-118
homogeneous case only involves an obvious modification of the right-hand side). Thus,119
the problem at hand is: find u ∈ H1

0 (Ω) such that −α∆u = f in H−1(Ω) sense, with120
f ∈ H−1(Ω) and α ∈ L∞(Ω) strictly positive. The weak form of the problem reads121
as: find u? ∈ H1

0 (Ω) such that122

(1)
∫

Ω
α∇u? · ∇v dx =

∫
Ω
fvdx, for any v ∈ H1

0 (Ω).123

Let T be a shape-regular quasi-uniform mesh of Ω with characteristic size h. It can124
consist of tetrahedra or hexahedra for d = 3, or triangles or quadrilaterals for d = 2.125
For simplicity of exposition, we assume that α is constant on each element τ ∈ T .126

2.1. Domain partitions. We first consider a partition Θ of Ω into non-overlapping127
open subdomains. This partition must be driven by computational efficiency in dis-128
tributed memory platforms, i.e., it should have a reduced interface size and lead to129
a well-balanced distribution of work load among processors. In a parallel implemen-130
tation, each subdomain in Θ is generally assigned to a processor. We further assume131
that every D ∈ Θ can be obtained by aggregation of elements in T and is connected.132
We denote by Γ(Θ) the interface of the partition Θ, i.e., Γ(Θ) .= (∪D∈Θ∂D) \ ∂Ω.133

We also consider a PB subdomain partition. This partition is used latter in the134
new definition of coarse objects and in the analysis. It is, however, not used for work135
distribution. Given a subdomain D ∈ Θ, we can further consider its partition Θpb(D)136
into a set of “sub-subdomains” with constant α. The minimal set is preferred for137
efficiency (it will potentially lead to a smaller coarse space) but it is not a requirement138
(see Remark 5). Clearly, the resulting global PB partitions Θpb

.= {Θpb(D)}D∈Θ139
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Fig. 1. An example of an original partition Θ (left) and a physics-based partition Θpb(right)
of a square domain where different colors represent different values of α. On the left, we have a
Θ = {Ω1,Ω2,Ω3,Ω4}. On the right, we show the corresponding PB-partition for every subdomains
in Θ: Θpb(Ω1) = {Ω̂1, Ω̂2}, Θpb(Ω2) = {Ω̂3, Ω̂4}, Θpb(Ω3) = {Ω̂5, Ω̂6}, and Θpb(Ω4) = {Ω̂7, Ω̂8}.
The complete PB-partition is Θpb = {Ω̂1, . . . , Ω̂8}. Further, we have ω(Ω̂1) = ω(Ω̂2) = Ω1, ω(Ω̂3) =
ω(Ω̂4) = Ω2, ω(Ω̂5) = ω(Ω̂6) = Ω3, ω(Ω̂7) = ω(Ω̂8) = Ω4.

is also a partition of Ω (into PB subdomains). The interface of this partition is140
Γ(Θpb) .= (∪D̂∈Θpb

∂D̂)\∂Ω. For a subdomain D ∈ Θ (analogously for D̂ ∈ Θpb), we141

denote by TD the submesh of T associated with D, TD
.= {τ ∈ T : τ ⊂ D} ⊂ T . For142

any D̂ ∈ Θpb, let ω(D̂) be the only subdomain in Θ that contains D̂. In Figure 1, we143
show an example of the original partition Θ and the PB partition Θpb for a simple144
problem. The meaning of Θpb(D) and ω(D) is also illustrated.145

2.2. Finite element spaces. Let us perform a discretization of (1) by a con-146
tinuous finite element (FE) space V̄ associated with the mesh T . The discontinuous147
Galerkin (DG) case will not be considered in this work, but we refer the reader to148
[16] for more information.149

For every subdomain D ∈ Θ, we consider a FE space VD associated with the150
local mesh TD. Let H(D) be the characteristic length of the subdomain D and h(D)151
be the characteristic length of the FE mesh TD. We define the Cartesian product of152
local FE spaces as V = ΠD∈ΘVD. We note that functions in this space are allowed to153
be discontinuous across the interface Γ(Θ). Clearly, V̄ ⊂ V.154

For a subdomain D ∈ Θ, we also define the subdomain FE operator AD : VD →155
V′D as 〈ADu, v〉

.=
∫
D α∇u · ∇v dx, for all u, v ∈ VD, and the sub-assembled operator156

AΘ : V→ V′ as 〈AΘu, v〉 .=
∑
D∈Θ〈ADu, v〉, for all u, v ∈ V.157

A function u ∈ VD is said to be discrete α-harmonic in D if158

〈ADu, v〉 = 0, for any v ∈ V0,D,159

where V0,D
.= {v ∈ VD : v = 0 on ∂D}. It should be noted that if u is discrete160

α-harmonic in D then it satisfies the energy minimising property, namely161

〈ADu, u〉 ≤ 〈ADv, v〉, ∀v ∈ VD, v|∂D = u|∂D.162

In addition, we consider the assembled operator A : V̄→ V̄′, defined by 〈Au, v〉 =163 ∫
Ω α∇u · ∇v dx, for all u, v ∈ V̄. This operator is the Galerkin projection of AΘ onto164
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V̄. We want to compute a FE approximation u ∈ V̄ of u? in (1) such that165

(2) 〈Au, v〉 = 〈f, v〉, for any v ∈ V̄.166
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Fig. 2. An example of how FE nodes (on the interface of the original partition Θ in Figure 1)
are classified in the standard way (left) using neighΘ, and in the physics-based way (right) using
neighΘpb . Corner nodes are marked with crosses while nodes in edges are marked with small circles.
Using the standard classification, on the left, we obtain Λ(Θ) with one corner and four edges. With
the new classification, on the right, we have Λpb(Θ) with five corners and six edges (eight edges if
we only consider connected objects).

2.3. Object classification. This subsection concerns with objects on subdo-167
main interfaces and their classification. It provides foundations for the definition of168
coarse DOFs in BDDC methods later on.169

Given a subdomain partition Θ, and a point ξ ∈ Γ(Θ), let us denote by neighΘ(ξ)170
the set of subdomains in Θ that contain ξ. We can introduce the concept of objects171
as a classification of points in Γ(Θ). A geometrical object is a maximal set λ of points172
in Γ(Θ) with identical subdomain set. We denote by neighΘ(λ) the set of subdomains173
in Θ containing λ. It should be noted that the set of all geometrical objects, denoted174
by Λ(Θ), is a partition of Γ(Θ).175

Remark 1. Since the set of points in the interface is infinite, the previous classi-176
fication of Γ(Θ) into geometrical objects is performed in practice by the classification177
of vertices, edges, and faces of elements in the mesh T based on their subdomain set.178

Denote by ndof(λ) the number of DOFs belonging to λ. We further consider the179
following standard classification of geometrical objects. In the three-dimensional case,180
λ ∈ Λ(Θ) is a face if |neighΘ(λ)| = 2 and ndof(λ) > 1, is an edge if |neighΘ(λ)| > 2 and181
ndof(λ) > 1, and is a corner if ndof(λ) = 1. In the two-dimensional case, λ ∈ Λ(Θ)182
is an edge if |neighΘ(λ)| = 2 and ndof(λ) > 1, and is a corner if ndof(λ) = 1. In the183
literature, e.g, [31, 50], corners are also referred to as vertices. Analogous definitions184
are also used frequently for FETI-DP methods (see [50]). In Figure 2 (left), an185
illustration of this classification is shown for a simple example.186

In the next step, we define PB objects, which is the main ingredient of the PB-187
BDDC methods proposed herein. We consider the set of objects Λpb(Θ) obtained188
by applying the previous classification of Γ(Θ) into corners/edges/faces but with189
neighΘ(·) replaced by neighΘpb

(·). In other words, we use sets of subdomains in190
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6 S. BADIA AND H. NGUYEN

Θpb to classify geometrical objects on Γ(Θ). Figure 2 (right) shows objects in Λpb(Θ)191
for a simple example.192

Lemma 2. Λpb(Θ) is a refinement of Λ(Θ).193

Proof. The statement holds if for every object λpb ∈ Λpb(Θ) there exists one and194
only one object λ ∈ Λ(Θ) containing it. Since all points in λpb belong to the same set195
of PB subdomains, neighΘpb

(λ), they are in the same set of subdomains in Θ, namely196

{ω(D̂)}D̂∈neighΘpb
(λ). As a result, all these points belong to the same object in Λ(Θ).197

Remark 3. In some cases, the DOF-based classification into corners, edges, and198
faces might need some modification in order to ensure well-posedness of the BDDC199
method with corner constraints only. This usually involves the use of a kernel detection200
mechanism (see, e.g, [46]). A new approach based on perturbations has recently been201
proposed in [8, 7], where the method is well-posed in all cases.202

Remark 4. The PB aggregation (classification) of the interface Γ(Θ) into Λpb(Θ)203
can be relaxed. As it is currently stated, the PB partition is unique and have the min-204
imal number of PB subdomains. However, it might introduces disconnected objects.205
For example, the edge between Ω̂3 and Ω̂7 in Figure 2 (right) is disconnected. Alter-206
natively, one can require that objects must be connected. This leads to two connected207
edges between Ω̂3 and Ω̂7. We adopt this practice for the numerical experiments in208
section 4. However, it should be noted that the use of disconnected objects leads to209
a smaller coarse space and can be beneficial in some cases.210

Remark 5. In practical implementations, one only needs the set of PB geometrical211
objects Λpb(Θ) to define the PB-BDDC preconditioner. When using the approach212
with only connected objects (see Remark 4), one does not need to explicitly define213
the PB partition Θpb. Only a partition of objects in Λ(Θ) (see Figure 2 (left)) into PB214
objects (see Figure 2 (right)) based on the physical coefficients is required. Therefore,215
only a (d − 1)-dimensional PB partition (of the interface Γ(Θ)) is needed. This is216
what we have actually implemented for our numerical experiments in section 4. We217
only use the PB partition Θpb in the analysis in subsection 3.4. In any case, the PB218
partition can easily be implemented if necessary.219

3. Physics-based BDDC preconditioning. In this section, we present our220
new PB-BDDC method. The basic idea behind BDDC methods is first to define a221
sub-assembled operator (no assembling among subdomains), and the global space of222
functions that are fully independent (“discontinuous”) among subdomains. Secondly,223
we have to define the under-assembled space (the BDDC space) of functions for which224
continuity among subdomains is enforced only on a set of coarse DOFs. In order to225
be robust for heterogeneous problems, the PB-BDDC method utilises new definitions226
of the BDDC space (i.e., new coarse DOF continuity among subdomains) and a new227
weighting operator.228

3.1. Coarse degrees of freedom. Similarly to other BDDC methods, in the229
PB-BDDC method, some (or all) of the objects in Λpb(Θ) are associated with a230
coarse DOF. We denote this set of objects by ΛO and call it the set of coarse objects.231
Obviously, ΛO ⊂ Λpb(Θ). Typical choices of ΛO are ΛO

.= ΛC , when only corners232
are considered, ΛO

.= ΛC ∪ ΛE , when corners and edges are considered, or ΛO
.=233

Λpb(Θ), when corners, edges, and faces are considered. These choices lead to three234
variants of the PB-BDDC method, referred to as PB-BDDC(c), PB-BDDC(ce) and235
PB-BDDC(cef), respectively. Figure 2 (right) actually shows the coarse objects of236
PB-BDDC(ce) for a simple 2D problem.237
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Given an object λ ∈ ΛO, we define its coarse DOF as the mean value on λ. The238
rigorous definition is as follows. Assume λ ∈ ΛO is associated with a subdomain239
D ∈ Θ. We define the coarse DOF cDλ corresponding to λ as240

(3) cDλ (uD) .=
∫
λ
uD ds∫
λ

1 ds
, for uD ∈ VD.241

Clearly, cDλ is a functional in V′D. When λ is a corner, cDλ is simply the value at that242
corner. Once we have defined the coarse DOFs, we can define the BDDC space as243
follows244

(4) Ṽ .= {v ∈ V : cDλ (v) = cD
′

λ (v), ∀λ ∈ ΛO, ∀D,D′ ∈ neighΘ(λ)},245

i.e., the subspace of functions in V that are continuous “at” coarse DOFs. Clearly,246
V̄ ⊂ Ṽ ⊂ V.247

For BDDC methods, solving the coarse problem is usually the bottleneck (cf.248
[2, 3, 4, 8]). Therefore, it is of great interest to find a minimal set of coarse objects249
(the number of the coarse objects is the number of the coarse DOFs and also is the250
size of the coarse problem), so that BDDC methods can achieve their potential of251
fast convergence and perfect weak scalability. According to [31, 50], in the case where252
the physical coefficient in each subdomain is constant, the set of coarse objects only253
need to guarantee the existence of the so-called acceptable paths. We need a similar254
concept here for the PB-BDDC method.255

The definition below is modelled after [50, Definition 6.26], [31] and [32].256

Definition 6 (Acceptable path). Let Θ∂
pb be the set of PB subdomains D̂ ∈ Θpb257

touching the interface Γ(Θ), i.e., ∂D̂ ∩ Γ(Θ) 6= ∅. For two subdomains D̂a, D̂b ∈ Θ∂
pb258

that share an edge λ but no face in Λpb(Θ) or share a corner λ but no edge in Λpb(Θ),259
an acceptable path is a sequence {D̂a = D̂1, D̂2, . . . , D̂n = D̂b} of PB subdomains in260
Θ∂

pb, which satisfy the following properties:261
i) they all share the common object λ ∈ Λpb(Θ)262
ii) subdomains D̂k and D̂k+1, k = 1, . . . , n̂− 1, must share, apart from λ, an object263

in ΛO and the type of the shared object (face, edge or corner) must be the same264
for the whole sequence265

iii) their (constant) coefficients satisfy266

TOL αk ≥ R(k, λ) min(αa, αb), 1 ≤ k ≤ n267

where TOL is some predefined tolerance and R(k, λ) = 1 if λ is an edge and268
R(k, λ) = h(D̂k)/H(D̂k) if λ is a corner.269

Assumption 7. We assume that the set of BDDC objects ΛO satisfies the following270
properties:271

1. In the three dimensional case, for each face on Γ(Θ), there is at least one edge272
that is part of its boundary and belongs to ΛO.273

2. For all pairs of subdomains D̂a, D̂b ∈ Θ∂
pb, which have an edge but not a face274

in Λpb(Θ) in common, or a corner but not an edge in Λpb(Θ) in common,275
there exists an acceptable path for a predefined tolerance TOL.276

Remark 8. In Definition 6, if the shared object λ belongs to the set of BDDC277
objects ΛO, then there exists a trivial acceptable path {D̂a, D̂b} with TOL = 1 and278
n = 2. Thus, BDDC(ce) and BDDC(cef) always satisfy Assumption 7 for TOL = 1.279
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3.2. Injection operators. Let us define the projection Q : V → V̄ as some280
weighted average of interface values together with an α-harmonic extension to sub-281
domain interiors (see, e.g., [39]). We define these ingredients as follows.282

For u ∈ V and ξ ∈ Γ(Θ), the weighting operator is defined as283

(5) Wu(ξ) .=
∑

D∈neighΘ(ξ)

δ†D(ξ)uD(ξ), with δ†D(ξ) .=
∑
τ∈TD, τ3ξ ατ |τ |∑
τ∈T , τ3ξ ατ |τ |

,284

where |τ | denotes the volume (area if in 2D) of the element τ .285
The α-harmonic extension operator E taking data on the interface Γ(Θ) and α-286

harmonically extending it to each subdomain D ∈ Θ is formally defined as287

Eu .= (1−A−1
0 A)u,288

where A0 is the Galerkin projection of A onto the bubble space V0
.= {v ∈ V : v =289

0 on Γ(Θ)}.290
We finally define Q = EW.291

3.3. PB-BDDC preconditioner. In this subsection, we present the PB-BDDC292
preconditioner, and describe its set-up and formulation. The PB-BDDC precondi-293
tioner is a BDDC preconditioner in which the set of coarse DOFs enforce continuity294
on a set of PB coarse objects, thus modifying the BDDC space being used. Once one295
has defined the set of PB coarse objects ΛO, the rest of ingredients of the PB-BDDC296
preconditioner are identical to the ones of a standard BDDC preconditioner. In any297
case, the definition of the weighting operator introduced in (5) is new.298

The BDDC preconditioner is a Schwarz-type preconditioner that combines interior299
corrections with corrections in the BDDC space (see, e.g., [9, 50]). In case of the PB-300
BDDC preconditioner, the BDDC correction is expressed asQ(ÃΘ)−1QT , where ÃΘ is301
the Galerkin projection ofAΘ onto Ṽ. More specifically, the PB-BDDC preconditioner302
reads as follows:303

B = A−1
0 +Q(ÃΘ)−1QT .304

Apart from the task of identifying and defining coarse objects, the implementation305
of the PB-BDDC method is identical to that of the standard BDDC method. We306
refer the interested reader to [12, 13, 40, 9] for more details on the formulation of307
BDDC methods and to [2, 4, 6] for an efficient implementation of BDDC methods on308
distributed memory machines, which requires much further elaboration.309

3.4. Condition number estimates. In order to prove condition number esti-310
mates for the PB-BDDC preconditioner, we first need to introduce B̂, an auxiliary311
BDDC preconditioner. The definition of this preconditioner follows verbatim that312
of the PB-BDDC preconditioner above but the PB subdomain partition Θpb is used313
instead of Θ.314

Given the FE mesh T , the FE space type, and the subdomain partition Θpb, one315
can similarly build the FE spaces and operators as in subsection 2.2, leading to the316
sub-assembled space Vpb and operator AΘpb . Further, we can define the injection317
operator Q̂ using the definitions in subsection 3.2 with Θ is replaced by Θpb for the318

weighting Ŵ and harmonic extension Ê operators.319

Lemma 9. For any PB subdomain D̂ ∈ Θpb, the function δ†
D̂

(·) is constant on320

each PB object λ associated with it, i.e,321

(6) δ†
D̂

(ξ) = δ†
D̂

(ξ′), ∀ξ, ξ′ ∈ λ.322
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In addition, the following important inequality, cf. [50, 6.19], holds323

(7) αD̂a

(
δ†
D̂b

(ξ)
)2
≤ Cδ† min

(
αD̂a

, αD̂b

)
, ∀D̂a, D̂b ∈ neighΘpb

(ξ),324

where Cδ† . max
(
1, Nmax−1

4
)
with Nmax is the maximal number of elements in T325

sharing at least one point.326

Proof. The identity (6) follows from (5), the fact that α is constant in each sub-327
domain in Θpb and neighΘpb

(ξ) = neighΘpb
(ξ′) = neighΘpb

(λ).328
Now we need to verify (7). Since α is constant in each PB subdomain, we can329

rewrite and bound δ†
D̂

(ξ) as follows330

(8) δ†
D̂b

(ξ) =
αD̂b

AD̂b∑
D̂∈neighpb(ξ) αD̂ AD̂

<
αD̂b

AD̂b
αD̂a

AD̂a
+ αD̂b

AD̂b
,331

where AD̂ > 0 denotes the volume (area) of the patch of elements in D̂ containing ξ.332

Clearly, δ†
D̂

(ξ) ≤ 1. Therefore, αD̂a(δ†
D̂b

(ξ))2 ≤ αD̂a . Now we need to prove that333

(9) αD̂a

(
δ†
D̂b

(ξ)
)2
≤ Cδ† αD̂b

.334

Using (8), it is sufficient to show335

(10) αD̂a
αD̂b

A2
D̂b
≤ Cδ† (αD̂aAD̂a + αD̂b

AD̂b
)2.336

Since the mesh T is quasi-uniform, elements sharing at least a point have roughly the337
same volume (area). Consequently, AD̂b . (Nmax− 1)AD̂a (the worst case scenario is338

when D̂b has Nmax − 1 elements and D̂a has 1 element). Using this, we have339

αD̂a
αD̂b

A2
D̂b

. (Nmax − 1)αD̂aαD̂bAD̂aAD̂b ≤
Nmax − 1

4 (αD̂aAD̂a + αD̂b
AD̂b

)2.340

This implies (10) and we finish the proof.341

The definition of the set of coarse objects of B̂ requires further elaboration. The342
set of objects Λ(Θpb) obtained by applying the classification in subsection 2.3 for the343
PB subdomain partition Θpb provides a classification of Γ(Θpb) ⊃ Γ(Θ). We have the344
following relation between the PB objects Λpb(Θ) and the (standard) objects of the345
PB partition Λ(Θpb).346

Lemma 10. All the objects in Λpb(Θ) are also in Λ(Θpb), i.e., Λpb(Θ) ⊂ Λ(Θpb).347

Proof. Let us consider an object λpb ∈ Λpb(Θ). In both object partitions Λpb(Θ)348
and Λ(Θpb), we are using the same criteria, i.e., neighΘpb

(·), to classify points. The349
difference is that Λpb(Θ) is the result of a classification of points in Γ(Θ) whereas350
Λ(Θpb) is obtained from a classification of points in Γ(Θpb). Since Γ(Θ) ⊂ Γ(Θpb),351
all points in λpb belong to the same object λ′ ∈ Λ(Θpb). Since λpb is on the in-352
terface Γ(Θ), there exist at least two subdomains D̂, D̂′ ∈ neighΘpb

(λpb) such that353

ω(D̂) 6= ω(D̂′). Let us assume there is a point ξ ∈ λ′ such that ξ /∈ λpb. Then,354
ξ ∈ Γ(Θpb)\Γ(Θ), i.e., it only belongs to one subdomain in Θ. As a result, ω(D̂) is355
the same for all D̂ ∈ neighΘpb

(ξ). Thus, we have a contradiction, since neighΘpb
(ξ)356

cannot be the same as neighΘpb
(λpb).357
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10 S. BADIA AND H. NGUYEN

With the theoretical support from Lemma 10, we can define the set of coarse ob-358
jects Λ̂O of B̂ as a classification of Γ(Θpb) as follows. On Γ(Θ), we consider the359
same set of objects ΛO used in the PB-BDDC preconditioner, i.e., ΛC , or ΛC ∪360
ΛE , or Λpb(Θ). For the rest of the interface Γ(Θpb)\Γ(Θ), we enforce full conti-361
nuity among PB subdomains. It can be understood as treating all FE nodes on362
Γ(Θpb)\Γ(Θ) as corners. Denote this set of objects by Λ̂∗, we have Λ̂O = ΛO ∪ Λ̂∗.363
Figure 3 illustrates the partitions and coarse objects of B and B̂ when ΛO = ΛC ∪ΛE .364

365

Remark 11. By construction, the BDDC space Ṽpb of the auxiliary BDDC pre-366
conditioner B̂ is identical to the BDDC space Ṽ, defined in (4), of the PB-BDDC367
preconditioner.368

Ω1

Ω2

Ω3

Ω4

Ω̂1

Ω̂2

Ω̂3

Ω̂4

Ω̂5

Ω̂6

Ω̂8

Ω̂7

Fig. 3. Partitions and coarse objects of the PB-BDDC preconditioner B (left) and the auxiliary
BDDC preconditioner B̂ (right) when ΛO = ΛC ∪ ΛE : corner objects are labeled with crosses while
nodes of other objects are labeled with circles.

Lemma 12. The condition number κ(BA) of the PB-BDDC preconditioned oper-369
ator is bounded by370

(11) κ(BA) ≤ max
v∈Ṽpb

〈AΘpbQ̂v, Q̂v〉
〈AΘpbv, v〉

.371

Proof. According to [39, Theorem 15], κ(BA) is bounded by372

(12) κ(BA) ≤ max
v∈Ṽ

〈AΘQv,Qv〉
〈AΘv, v〉

.373

Now we only need to bound the right-hand-side in (12) by the one in (11).374
On the one hand, using the fact that Ṽ = Ṽpb, we have 〈AΘv, v〉 = 〈AΘpbv, v〉

for all v ∈ Ṽ because any v ∈ Ṽ is continuous in each subdomain of Θ. On the other
hand, let us prove that the weighting operator Ŵ defined by (5) for Θpb restricted
to V is identical to the weighting operator W defined by (5) for Θ. Let us consider a
subdomain D ∈ Θ and its PB partition Θpb(D). We have

δ†D(ξ) =
∑

D̂∈Θpb(D), D̂3ξ

δ†D̂(ξ),
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by the definition in (5). For an arbitrary function v ∈ V ⊂ Vpb, we find that375

Wv(ξ) =
∑

D∈neighΘ(ξ)

δ†D(ξ) vD(ξ) =
∑

D∈neighΘ(ξ)

∑
D̂∈Θpb, D̂3ξ

δ†D̂(ξ) vD(ξ)376

=
∑

D̂∈neighΘpb
(ξ)

δ†D̂(ξ) vD̂(ξ) = Ŵv(ξ).377

378

Therefore, Q̂v and Qv are identical on Γ(Θ) and Q̂v is continuous across Γ(Θpb). In379
addition, Qv is discrete α-harmonic in each D ∈ Θ and have minimal energy norm380
w.r.t AΘ. As a consequence,381

〈AΘQv,Qv〉 =
∑
D∈Θ
〈AΘ
DQv,Qv〉382

≤
∑
D∈Θ
〈AΘ
DQ̂v, Q̂v〉 =

∑
D̂∈Θpb

〈AΘpb

D̂ Q̂v, Q̂v〉 = 〈AΘpbQ̂v, Q̂v〉.383

384

This finishes the proof.385

We could stop here and derive the estimate for κ(BA) knowing that the condition386
number of the auxiliary BDDC preconditioned operator B̂A is estimated by an upper387
bound of the last quantity on the right of (12). However, we will go a bit further to388
obtain a stronger result.389

Lemma 13. Assume that ΛO is such that Assumption 7 holds. Then we have the390
following inequality:391

(13) max
v∈Ṽpb

〈AΘpbQ̂v, Q̂v〉
〈AΘpbv, v〉

≤ C max{1,TOL} max
D∈Θ∂pb

(
1 + log

(
H(D)
h(D)

))2
,392

where the constant C is independent of the number of subdomains, H(D̂), h(D̂) and393
the physical coefficient α.394

Proof. By triangle inequality, we have395

(14) max
v∈Ṽpb

〈AΘpbQ̂v, Q̂v〉
〈AΘpbv, v〉

≤ 1 + max
v∈Ṽpb

〈AΘpb(Q̂v − v), (Q̂v − v)〉
〈AΘpbv, v〉

.396

Let w = Q̂v− v. Given a FE function u ∈ VD̂, we denote by θD̂λ (u) ∈ VD̂ the FE397
function that is discrete α-harmonic in D̂ and agrees with u at the FE nodes in the398
object λ and vanishes at all the other nodes on ∂D̂. Since Λ(Θpb) is a partition of399
Γ(Θpb), we can split w into object and subdomain contributions as follows:400

(15) w =
∑

λ∈Λ(Θpb)

∑
D̂∈neighΘpb

(λ)

θD̂λ (w).401

By the construction of the set of object Λ̂O = ΛO ∪ Λ̂∗ and the definition of Ṽpb, w402
vanishes at all coarse objects in Λ̂∗, i.e, at all FE nodes in Γ(Θpb)\Γ(Θ). Consequently,403
(15) can be simplified as follows:404

(16) w =
∑

λ∈Λpb(Θ)

∑
D̂∈Θ∂pb

θD̂λ (w).405
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When ΛO satisfies Assumption 7, the set of objects in Λ̂O also fulfils [50, Assump-406
tion 6.27]. Consequently, using Lemma 9, we can perform an analysis similar to that407
in the proof [50, Lemma 6.36] (see also [31, Lemma 10]) to obtain408

〈AΘpb

D̂ θD̂λ (w), θD̂λ (w)〉409

≤ C max{1,TOL}
(

1 + log
(
H(D̂)
h(D̂)

))2 ∑
D̂∈neighΘpb

(λ)

〈AΘpb

D̂ v, v〉410

411

for any D̂ ∈ Θ∂
pb and λ ∈ Λ(Θpb). Here the constant C is proportional to Cδ† in412

Lemma 9, but is otherwise independent of H(D̂), h(D̂) and the physical coefficient α.413
Adding up the estimate for all subdomain D̂ ∈ Θpb, we find that414

(17) 〈AΘpbw,w〉 ≤ C max{1,TOL} max
D̂∈Θ∂pb

(
1 + log

(
H(D̂)
h(D̂)

))2

〈AΘpbv, v〉.415

This finishes the proof.416

Combining results in Lemma 12 and Lemma 13, we have the final bound for417
the PB-BDDC preconditioner, which is both weakly scalable and independent of the418
coefficient α.419

Theorem 14. The condition number of the PB-BDDC preconditioned operator420
κ(BA) is bounded by421

κ(BA) ≤ C max{1,TOL} max
D̂∈Θ∂pb

(
1 + log

(
H(D̂)
h(D̂)

))2

,422

where the constant C is independent of the number of subdomains, H(D̂), h(D̂) and423
the physical coefficient α.424

Remark 15. As seen in the Lemma 13 and Theorem 14, the condition number425
associated with the PB-BDDC method depends only on the characteristic size and426
mesh size of PB subdomains touching the original interface Γ(Θ). Further, the con-427
vergence of the PB-BDDC is independent of variations of the coefficient. The main428
target of this work is achieved.429

3.5. Relaxed physics-based BDDC. The definition of the coarse objects for430
the PB-BDDC preconditioner, based on the requirement that the coefficient has to431
be constant in each PB subdomain, can result in a large coarse space. That is the432
case for heterogeneous problems where the physical coefficient varies across a wide433
spectrum of values in a small spatial scale.434

In order to deal with a more general class of problems, we propose the relaxed PB-435
BDDC preconditioner (rPB-BDDC) where we only require that the maximal contrast436
in each PB subdomain is less than some predefined tolerance r. We consider a relaxed437
PB partition Θpb such that438

(18) max
τ,τ ′⊂D̂

ατ
ατ ′
≤ r, for any D̂ ∈ Θpb.439

Here the threshold r is equal or greater than 1. This way, we can control the size of440
the coarse problem and the condition number bounds with the choice of r.441
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As the coefficient is no longer constant in each PB subdomain, we need to use442
a weighted-constraint in the definition of coarse DOFs. More specifically, instead of443
using (3), we use444

(19) cDλ (u) .=
∫
λ
ᾱ u ds∫

λ
ᾱ 1 ds

, where ᾱ(ξ) .= max
τ∈T , τ3ξ

ατ .445

446

Remark 16. The larger r becomes the smaller the size of the coarse problem of the447
rPB-BDDC preconditioner is and the larger its condition number grows to. When448
r = 1 the rPB-BDDC preconditioner becomes the PB-BDDC preconditioner. By449
tuning the threshold r, one can obtain a right balance between the time spent on450
setting up the preconditioner (especially in forming the coarse space) and the time451
spent on applying the preconditioner in a Krylov solver. The optimal threshold is of452
course problem dependent. However, finding a good threshold is not tricky. This is453
illustrated in section 4.454

Remark 17. The rPB-BDDC preconditioner makes use of a threshold. This is sim-455
ilar to the adaptive coarse space approach where only eigenfunctions associated with456
eigenvalues below a predefined threshold are included in the coarse space. However,457
the rPB-BDDC preconditioner does not involve any eigenvalue or auxiliary problems458
and is far simpler and cheaper.459

4. Numerical experiments. In this section, we test the robustness and effi-460
ciency of the PB-BDDC and rPB-BDDC preconditioners for the system matrix asso-461
ciated with (2) for different types of variation in the coefficient α, which are similar462
but generally harder than the ones in [42, 28, 36].463

Due to the difficulty of heterogeneous problems, in PB-BDDC and rPB-BDDC464
methods, we tend to use a large number of objects. Many of them are not corners. In465
all tested cases, these objects are enough to make the local Neumann problems and466
global coarse problem well-posed and we can optionally drop corner objects. No corner467
detection mechanism (see, e.g, [46]) has been needed in any tested case. Alternatively,468
one might want to consider the perturbed formulation introduced in [7, 8]. However,469
this approach has not been extended to heterogeneous problems yet.470

In all of the experiments, we consider the physical domain Ω = (0, 1)2. Unless471
stated otherwise, we use the uniform triangular meshes of size h = 1/72 and the472
regular 3 × 3 subdomain partition. In all cases, we report the dimension of the473
coarse space, denoted by dim, and the number of iterations required for the conjugate474
gradient method to reduce the residual norm by a factor of 106. We also provide the475
condition number κ in most examples.476

4.1. Two channels. In this test case, we consider two channels of high α cutting477
through vertical subdomain edges (see Figure 4). The coefficient in the channels αmax478
takes the values {102, 104, 106, 108}, while the coefficient in the rest of the domain is479
equal to 1.480

From Table 1, we can see that the condition number and the number of iter-481
ations for the standard BDDC preconditioner (BDDC(ce)) definitely increase with482
αmax, whereas they remain practically constant for both variants of the PB-BDDC483
preconditioners (PB-BDDC(ce) and PB-BDDC(e)). In other words, the convergence484
of the PB-BDDC method is independent of the contrast and the PB-BDDC method is485
perfectly robust for this test case. Figure 4 shows the coarse objects of PB-BDDC(ce)486
on the interface of the partition.487
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14 S. BADIA AND H. NGUYEN

Table 1
Comparison of the iteration count and condition number in the two channels test case.

BDDC(ce) PB-BDDC(ce) PB-BDDC(e)
dim→ 16 64 36
αmax # it. κ # it. κ # it. κ

102 21 2.12e3 10 5.47e0 13 1.20e1
104 28 2.87e5 10 5.31e0 14 1.21e1
106 44 2.89e7 10 5.31e0 15 1.21e1
108 64 3.88e9 10 5.31e0 15 1.21e1

Fig. 4. Distribution of the coefficient in the two-channels test case when αmax = 106. The
coarse objects of PB-BDDC(ce) are shown on the interface with corners labeled by stars and DOFs
in edges labeled by circles.

4.2. Channels and inclusions. In this test case, we consider both channels488
and inclusions of high coefficient. First, the three channels include all the elements489
whose centroids are less than 2 · 10−2 from one of the following three lines:490

L1 : x1 − x2 − 0.2 = 0,491

L2 : x1 + x2 − 0.7 = 0,492

L3 : x1 − 0.7x2 − 0.7 = 0.493494

The coefficient αmax in these channels takes the values {102, 104, 106, 108}. Secondly,495
the inclusions are defined as the regions of elements whose all vertices x satisfy496

mod
(

floor(10xi), 2
)

= 1, for i = 1, 2.497

For an element τ that belongs to one of the inclusions and is not in the channels, its498
coefficient is defined as499

(20) α|τ = (αmax/10)1/5∗floor(0.5∗floor(10 x1(cτ ))+1, where cτ is the centroid of τ.500
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Fig. 5. Distribution of the coefficient for the channels and inclusions test case when αmax =
106. The coarse objects of PB-BDDC(ce) are shown on the interface with corners labeled by stars
and DOFs in edges labeled by circles.

The coefficient in (20) is: a) constant in each inclusion b) increasing from left to right501
c) increasing as αmax increases and d) always belongs to (1, αmax). For the rest of the502
domain, we set α = 1. The maximal contrast ratio in this experiment is 108.503

We can see from Table 2 that as αmax becomes larger the condition number and504
the number of iterations associated with the standard BDDC(ce) method increases505
significantly. In contrast, both variant of the PB-BDDC methods, PB-BDDC(ce) and506
PB-BDDC(e), are perfectly robust with respect to the changes of the coefficient in507
the channels and in the inclusions. Especially, PB-BDDC(e) maintains its robustness508
with a reasonably small coarse space.509

Table 2
Comparison of the iteration count and condition number in the channels and inclusions test case.

BDDC(ce) PB-BDDC(ce) PB-BDDC(e)
dim→ 16 89 39
αmax # it. κ # it. κ # it. κ

102 23 1.48e3 13 1.01e1 14 5.71e1
104 45 8.33e4 13 8.93e0 15 8.08e1
106 82 6.02e6 13 8.79e0 15 8.15e1
108 97 5.30e8 13 8.76e0 15 8.15e1

4.3. Complex channels. In this test case, we demonstrate the importance of510
having acceptable paths. We consider a distribution with multiple channels of high511
coefficient αmax taking values in {102, 104, 106, 108} (see Figure 6 for the case when512
αmax = 106).513

From Table 3, we can see that PB-BDDC(ce) is perfectly robust. On the other514
hand, the condition number and number of iterations of the PB-BDDC(e) precon-515
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16 S. BADIA AND H. NGUYEN

Fig. 6. Distribution of the coefficient in the complex channels test case. The coarse objects of
PB-BDDC([c]e) are shown on the interface with corners labeled by stars and DOFs in edges labeled
by circles. Only few corners are required to guarantee perfect robustness (to have acceptable paths).

ditioner increase significantly as αmax increases. The reason is that there are some516
pairs of channels share a corner but not an edge. In PB-BDDC(e), none of these517
corners are selected as a coarse objects. Consequently, there is no acceptable path518
with TOL independent of the contrast between the associated paired of channels (PB519
subdomains) and Assumption 7 does not hold. By including a small number of these520
critical corners (represented by stars in Figure 6) in order to satisfy Assumption 7, the521
resulting preconditioner, labeled PB-BDDC([c]e), is perfectly robust w.r.t changes in522
the contrast of the coefficient (see Table 3).523

Table 3
Comparison of the iteration count and condition number in the complex channels test case.

BDDC(ce) PB-BDDC(ce) PB-BDDC(e) PB-BDDC([c]e)
dim 16 84 46 56
αmax # it. (κ) # it. (κ) # it. (κ) # it. (κ)
102 22 (2.99e3) 12 (6.09e0) 19 (1.25e3) 13 (1.21e1)
104 43 (3.82e5) 12 (5.94e0) 34 (1.62e5) 13 (1.27e1)
106 70 (3.83e7) 12 (5.94e0) 51 (1.63e7) 13 (1.27e1)
108 95 (6.45e9) 12 (5.94e0) 99 (1.63e9) 13 (1.27e1)

4.4. Sinusoidal variation. In this experiment, we consider a coefficient that524
varies like a sinusoid. We use a finer uniform triangular mesh of size h = 1/144. For525
an element τ ∈ T , the coefficient ατ is defined by526

log10(ατ ) = κ sin(wπ(x1(cτ ) + x2(cτ ))) + αshift,527

where κ = 3, w = 14, and cτ is the the centroid of τ . We note that when κ and/or528
w become larger the problem is more difficult. The distribution when αshift = 0 is529
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Fig. 7. Distribution of the coefficient mimicking sin function. The coarse objects of rPB-
BDDC(ce) with r = 103 are shown on the interface with corners labeled by stars and DOFs in edges
labeled by circles.

shown in Figure 7. It is as if there are many channels going through subdomain edges530
at the same time.531

In this test case, the coefficient varies very rapidly. We test the standard BDDC532
method and the rPB-BDDC method introduced in subsection 3.5, by allowing the533
upper bound r for the maximal contrast in each PB subdomain to vary among534
{101, 102, 103}. Only iteration counts are reported as the condition number estimation535
becomes too expensive for the mesh being used.536

This is a difficult problem and the standard BDDC(ce) method requires almost537
a hundred iterations to converge (see Table 4). The relaxed physics-based methods,538
rPB-BDDC(ce) and rPB-BDDC(e), are able to significantly reduce the number of539
iterations. That comes with the cost of solving larger coarse problems. However, by540
using a suitable threshold r, we can obtain a decent preconditioner, e.g, rPB-BDDC(e)541
with r = 103, which requires only 11 iterations using a reasonably small coarse space542
of size 64. In addition, the rPB-BDDC method is also perfectly robust with shifting543
in the value of the coefficient. The iteration count does not change when αshift takes544
values in {0, 6}.545

Table 4
Comparison of the iteration count in the continuous sin test case.

BDDC(ce) rPB-BDDC(ce) rPB-BDDC(e)
r 10 102 103 10 102 103

dim 16 474 292 188 212 116 64
αshift = 0 # it. 92 7 10 11 10 12 11
αshift = 6 # it. 99 7 10 11 10 12 11
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Fig. 8. Distribution of the coefficient in the log-normal test case. The coarse objects of rPB-
BDDC(ce) with r = 102 are shown on the interface with corners labeled by stars and DOFs in edges
labeled by circles.

4.5. Log-Normal. In this test case, we test the performance of the rPB-BDDC546
method for a log-normal distribution of the coefficient. This type of distribution is547
particularly important for geoscience and petroleum engineering applications. We548
consider αcont(x,w) = 10Z(x,w), where Z(x,w) is a Gaussian random field with zero549
mean and Gaussian covariance550

C(x, y) = σ2 exp
(
−‖x− y‖

2

`2

)
, with σ = 1.5, `2 = 1e-3.551

For this experiment, a uniform triangular mesh of size h = 1/128 is utilized. Using the552
spectral decomposition method described in [37], we are able to obtain a realization553
of αcont(x,w) at mesh vertices. The piecewise coefficient ατ on an element τ is then554
defined as the average of αcont(x,w) at the three vertices. The distribution of α with555
a partition obtained from METIS [26] is shown in Figure 8. The contrast ratio in this556
test case is nearly 1010. The coarse objects of rPB-BDDC(ce) when r = 102 are also557
illustrated.558

In Table 5, we can see that, compared to the standard BDDC(ce) method, rPB-559
BDDC(ce) and rPB-BDDC(e) preconditioners require much fewer iterations to con-560
verge. They, however, have a larger coarse space. By adjusting the threshold for the561
maximal contrast in each object, we can reduce the size of the coarse space while562
maintaining a reasonably fast convergence. This is clearly illustrated in Table 5.563

5. Conclusions. In this work, we have proposed a novel type of BDDC pre-564
conditioners that are robust for heterogeneous problems with high contrast. The565
underlying idea is to modify the continuity constraints enforced among subdomains566
making use of the knowledge about the physical coefficients. In order to do that, we567
rely on a physically motivated partition of standard coarse objects (corners, edges, and568
faces) into coarse sub-objects. The motivation for that is the well-known robustness569
of DD methods when there are only jumps of physical coefficients across the interface570
between subdomains. All these ideas can also be used in the frame of FETI methods.571
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Table 5
Comparison of the iteration count in the log-normal test case.

BDDC(ce) rPB-BDDC(ce) rPB-BDDC(e)
r 10 102 5 · 103 10 102 5 · 103

dim 49 488 284 239 204 127 105
# it. 77 16 25 28 25 29 33

In cases where the physical coefficient is constant in each coarse sub-object, we572
are able to prove that the associated condition number can be bounded independent573
of the number of the subdomains and the contrast of the physical coefficient. In other574
words, the new preconditioner is scalable and robust for heterogeneous problems.575

Apart from the new set of coarse objects and a new weighting operator, the (r)PB-576
BDDC preconditioners are very much the same as the standard BDDC preconditioner.577
As a result, the implementation of the new preconditioners involve a very simple578
modification of the standard BDDC implementation. In all of our experiments, the579
new preconditioners deliver fast, robust and contrast-independent convergence while580
maintaining the simplicity of BDDC methods at a reasonable computational cost.581
Compared to the other robust DD solvers for heterogeneous problems currently avail-582
able, such as the ones in [25, 45, 25, 43, 44, 22, 23, 42, 47, 15, 49, 48, 28, 27, 29, 36, 24],583
our new methods do not involve any type of eigenvalue or auxiliary problems.584

For further work, we want to implement the new preconditioners in the extremely585
scalable BDDC code in FEMPAR [3, 4, 5, 6]. The multilevel extension and the task-586
overlapping implementation are particularly interesting in the (r)PB-BDDC case due587
to generally larger coarse problem. With such extremely scalable implementation, we588
are interested in applying our new preconditioners to realistic 3D problems, e.g., in589
geoscience applications.590
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