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PHYSICS-BASED BALANCING DOMAIN DECOMPOSITION BY
CONSTRAINTS FOR HETEROGENEOUS PROBLEMS *

SANTIAGO BADIATf AND HIEU NGUYEN¥

Abstract. In this work, we present a balancing domain decomposition by constraints method
based on an aggregation of elements depending on the physical coefficients. Instead of imposing
constraints on purely geometrical objects (faces, edges, and vertices) of the partition interface, we use
interface objects (subfaces, subedges, and vertices) determined by the variation of the coefficients.
The new method is easy to implement and does not require to solve any eigenvalue or auxiliary
problem. When the physical coefficient in each object is constant at every subdomain containing the
object, we can show both theoretically and numerically that the condition number does not depend
on the contrast of the coefficient. The constant coefficient condition is possible for multi-material
problems. However, for heterogeneous problems with coefficient varying across a wide spectrum of
values in a small spatial scale, such restriction might result in too many objects (a large coarse
problem). In this case, we propose a relaxed version of the method where we only require that the
maximal contrast of the physical coefficient in each object is smaller than a predefined threshold.
The threshold can be chosen so that the condition number is reasonably small while the size of the
coarse problem is not too large. An extensive set of numerical experiments is provided to support
our findings.

Key words. BDDC, heterogeneous problem, adaptive coarse space, parallel solver, parallel
preconditioner

AMS subject classifications. 65N55, 65N22, 65F08

1. Introduction. Many realistic simulations in science and engineering, such
as subsurface flow simulations in a nuclear waste repository or in an oil reservoir, or
heat conduction in composites, involve heterogeneous materials. The linear systems
resulting from the discretization of these problems are hard to solve. The use of direct
solvers at a sufficiently fine scale can be prohibitively expensive, even with modern
supercomputers, due to their high complexity and scalability issues. In addition, the
high contrast of the physical properties significantly increases the condition number
of the resulting linear systems, posing great challenges for iterative solvers. In this
work, we will focus on developing a domain decomposition (DD) preconditioner that
is robust with the variation of the coefficients of the PDEs. For a different but related
approach, to find reasonably accurate heterogeneous solution on a coarse mesh, we
refer the interested readers to [19, 1] and references therein.

DD is one of the most popular approaches to solve large-scale problems on parallel
supercomputers. It splits a problem into weakly coupled subproblems on smaller
subdomains and use parallel local solutions on these subdomains to form a parallel
preconditioner for the original problem [50, 41]. In DD, the coarse space plays an
important role in achieving scalability as well as robustness w.r.t variations in the
coefficient. Many early DD methods, such as those in [11, 18, 17, 31, 53], work
for heterogeneous problems when the subdomain partition is a geometric coarse grid
that resolves the discontinuities in the properties of the media. This is a strong
requirement, since the properties of the media might have complicated variations
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2 S. BADIA AND H. NGUYEN

on many scales and be difficult to capture by a geometric coarse grid. Further, it
is impractical, since it would not lead to load-balanced partitions with a reduced
interface.

Recently, there have been works on coarse grids that do not resolve the hetero-
geneity in the media [25, 45, 25, 43, 44], and especially automatic coarse spaces that
adapt to the variation in the properties of the media [22, 23, 42, 47, 15, 49, 48, 28,
27, 29, 36, 24]. In the latter, the coarse spaces are constructed from eigenfunctions
associated with small eigenvalues (low-frequency modes) of appropriated generalised
eigenvalue problems. This approach is backed up by rigorous mathematical theory
and has been numerically shown to be robust for general heterogeneous problems.
However, solving eigenvalue problems is expensive and extra implementation effort is
required as coarse spaces in DD methods are not naturally formulated as eigenfunc-
tions. Another approach is to use the deluxe scaling technique where local auxiliary
Dirichlet problems are solved to compute efficient averaging operators [33, 14, 52].
The approach yields robust DD methods, but extra implementation and computation
cost incur due to the auxiliary problems. In this paper, we formulate a new balancing
DD by constraints (BDDC) preconditioner that requires no eigenvalue or auziliary
problem and is very robust with the contrast of the coefficient. The main motivation
behind this work is to achieve such goal while maintaining the simplicity of the BDDC
preconditioner.

The BDDC method was introduced by Dohrmann in 2003 [12]. It is an improved
version of the balancing DD (BDD) method by Mandel [38] and has a close connection
with the FETI-DP method [21, 20]. In fact, it can be shown that the eigenvalues
of the preconditioned operators associated with BDDC and FETI-DP are almost
identical [39, 34, 10]. The BDDC method is particularly well-suited for extreme scale
simulations, since it allows for a very aggressive coarsening, the computations at
different levels can be computed in parallel, the subdomain problems can be solved
inexactly [13, 35] by, e.g., one AMG cycle, and it can straightforwardly be extended
to multiple levels [51, 40]. All of these properties have been carefully exploited in
the series of articles [3, 4, 5, 6] where an extremely scalable implementation of these
algorithms has been proposed, leading to excellent weak scalability on nearly half a
million cores in its multilevel version.

Our new BDDC method is motivated from the fact that non-overlapping DD
methods, such as BDDC and FETI-DP, are robust with the variation and contrast
of the coefficient if it is constant (or varies mildly) in each subdomain [31, 30, 50].
This implies that in order to have robustness for BDDC methods one could use a
physics-based partition obtained by aggregating elements of the same coefficient value.
However, using this type of partition is impractical as the number of the subdomains
might be too large and can lead to a poor load balancing among subdomains and
large interfaces. In order to solve this dilemma, we propose to use a well-balanced
partition, e.g., one obtained from METIS [26] an automatic graph partitioner, to
distribute the work load among processors. Then, we consider a sub-partition of sub-
domains based on the physical coefficients, leading to a physic-based (PB) partition.
Continuity constraints among subdomains will be defined through the definition of
objects based on the PB partition. Consequently, the interface objects are adaptively
defined according to the variation of the coefficient. The resulting BDDC precon-
ditioner with constraints imposed on subfaces, subedges, and vertices will be called
PB-BDDC. These ideas can readily be applied to FETI-DP preconditioners.

We emphasise that the PB-BDDC method does not require to solve any eigenvalue
or auxiliary problems. Its formulation and implementation are very much the same
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PHYSICS-BASED BALANCING DOMAIN DECOMPOSITION 3

93 as for the standard BDDC method. The only difference is in identifying and defining
94 BDDC objects to impose constraints. In other words, the simplicity of the standard
95  BDDC method is maintained.
96 For multi-material problems, e.g., problems with isolated channels or inclusions,
97 it is possible to require the physical coefficient in each PB-subdomain to be constant.
98 In this situation, we are able to prove that the new BDDC method is scalable and its
99 convergence is independent of the contrast of the coefficient.
100 For heterogeneous problems with a wide spectrum of values in a small spatial
I scale this restriction is too strong and might result in too many coarse objects (large
2 coarse problem). As a result, we also propose a relaxed definition of the PB partition
3 where we only require that the maximal contrast of the physical coefficient in each
1 PB-subdomain is smaller than a predefined threshold. The threshold can be chosen
5 so that the condition number is reasonably small while the size of the coarse problem
6 is not too large. We empirically show that this relaxed version of PB-BDDC, called
7 rPB-BDDC, is robust and efficient for different difficult distributions of the coefficient.
8 The rest of the paper is organised as follows. In section 2, we introduce the model
9 problem, the domain partitions and the BDDC object classification. In section 3, we
110 present the formulation of the (r)PB-BDDC methods as well as theirs key ingredients,
111 namely coarse degrees of freedom (coarse DOFs), weighting and harmonic extension
112 operators. The convergence analysis is also provided in this section. In section 4,
113 we provide an extensive set of numerical experiments to demonstrate the robustness
114 and efficiency of the (r)PB-BDDC methods. We finally draw some conclusions in
115 section 5.

116 2. Problem setting. Let Q C RY with d being the space dimension, be a
117  bounded polyhedral domain. For a model problem, we study the Poisson’s equa-
118 tion with non-constant diffusion and homogeneous Dirichlet conditions (the non-
119 homogeneous case only involves an obvious modification of the right-hand side). Thus,
120 the problem at hand is: find u € H}(2) such that —aAu = f in H~1(2) sense, with
121 f € H Q) and a € L>®(9Q) strictly positive. The weak form of the problem reads
122 as: find u* € H}(Q) such that

123 (1) / aVu* - Vudr = / fudx, for any v € Hj(Q).
Q Q

124 Let T be a shape-regular quasi-uniform mesh of Q2 with characteristic size h. It can
125 consist of tetrahedra or hexahedra for d = 3, or triangles or quadrilaterals for d = 2.
126 For simplicity of exposition, we assume that « is constant on each element 7 € 7.

127 2.1. Domain partitions. We first consider a partition © of (2 into non-overlappingli
128 open subdomains. This partition must be driven by computational efficiency in dis-
129 tributed memory platforms, i.e., it should have a reduced interface size and lead to
130 a well-balanced distribution of work load among processors. In a parallel implemen-
131 tation, each subdomain in © is generally assigned to a processor. We further assume
132 that every D € © can be obtained by aggregation of elements in T and is connected.
133 We denote by T'(©) the interface of the partition O, i.e., I'(©) = (UpcodD) \ 9.

134 We also consider a PB subdomain partition. This partition is used latter in the
135 new definition of coarse objects and in the analysis. It is, however, not used for work
136 distribution. Given a subdomain D € ©, we can further consider its partition ©p, (D)
137 into a set of “sub-subdomains” with constant o. The minimal set is preferred for
138 efficiency (it will potentially lead to a smaller coarse space) but it is not a requirement
139 (see Remark 5). Clearly, the resulting global PB partitions Op, = {Opu(D)}peco
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4 S. BADIA AND H. NGUYEN

~ ~

04 Q3 0 Qs

FIG. 1. An example of an original partition © (left) and a physics-based partition ©py, (right)
of a square domain where different colors represent different values of a. On the left, we have a
= {Q1,Q2,Q3, Q4} On the right, we show the corresponding PB- partztzon for every subdomains

in ©: Opp(Q1) = {Ql,QQ} Opp(Q2) = {93,94} O,5(Q23) = {Qs,QG} and G)pb(Q4) = {97,93}
The complete PB- partztwn s Opp, = {91, .. Qg} Further, we have w(Ql) = w(Qz) Q4, w(Qg)
w(Q1) = a2, w(s) = w(@6) = U3, W(Q7) = w(Qs) =

is also a partition of Q (into PB subdomains). The interface of this partition is
[(Opb) = (Upeo,, 9D)\dN. For a subdomain D € © (analogously for D € O,), w

denote by Tp the bubmebh of T associated with D, Tp ={r €T :7C D} CT. For
any D € Opb, let w(@) be the only subdomain in © that contains D. In Figure 1, we
show an example of the original partition © and the PB partition Oy, for a simple
problem. The meaning of O,,(D) and w(D) is also illustrated.

2.2. Finite element spaces. Let us perform a discretization of (1) by a con-
tinuous finite element (FE) space V associated with the mesh 7. The discontinuous
Galerkin (DG) case will not be considered in this work, but we refer the reader to
[16] for more information.

For every subdomain D € ©, we consider a FE space Vp associated with the
local mesh Tp. Let H(D) be the characteristic length of the subdomain D and h(D)
be the characteristic length of the FE mesh Tp. We define the Cartesian product of
local FE spaces as V = IIpcgVp. We note that functions in this space are allowed to
be discontinuous across the interface I'(0). Clearly, V C V.

For a subdomain D € ©, we also define the subdomain FE operator Ap : Vp —
Vp as (Apu,v) = [, aVu-Vudz, for all u,v € Vp, and the sub-assembled operator
A® V=V as (A%u,v) = 3 o (Apu,v), for all u,v € V.

A function v € Vp is said to be discrete a-harmonic in D if

(Apu,v) =0, for any v € Vg p,

where Vop = {v € Vp : v = 0 on 0D}. It should be noted that if u is discrete
a-harmonic in D then it satisfies the energy minimising property, namely

(Apu,u) < (Apv,v), Yv € Vp, vlgp = ulap.

In addition, we consider the assembled operator A : V — V', defined by (Au,v) =
fQ aVu - Vo dz, for all u,v € V. This operator is the Galerkin projection of A® onto
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PHYSICS-BASED BALANCING DOMAIN DECOMPOSITION 5

V. We want to compute a FE approximation u € V of v* in (1) such that

(2) (Au,v) = (f,v), forany veV.

Qy

Q0 i Q3

Fi1G. 2. An example of how FE nodes (on the interface of the original partition © in Figure 1)
are classified in the standard way (left) using neighg, and in the physics-based way (right) using
neigh@pb. Corner nodes are marked with crosses while nodes in edges are marked with small circles.

Using the standard classification, on the left, we obtain A(©) with one corner and four edges. With
the new classification, on the right, we have Ay (©) with five corners and sixz edges (eight edges if
we only consider connected objects).

2.3. Object classification. This subsection concerns with objects on subdo-
main interfaces and their classification. It provides foundations for the definition of
coarse DOFs in BDDC methods later on.

Given a subdomain partition ©, and a point £ € I'(0), let us denote by neighg (£)
the set of subdomains in © that contain £&. We can introduce the concept of objects
as a classification of points in I'(0). A geometrical object is a maximal set \ of points
in T'(©) with identical subdomain set. We denote by neighg () the set of subdomains
in © containing A. It should be noted that the set of all geometrical objects, denoted
by A(©), is a partition of I'(©).

Remark 1. Since the set of points in the interface is infinite, the previous classi-
fication of I'(©) into geometrical objects is performed in practice by the classification
of vertices, edges, and faces of elements in the mesh 7 based on their subdomain set.

Denote by ndof(A) the number of DOFs belonging to A. We further consider the
following standard classification of geometrical objects. In the three-dimensional case,
A € A(O) isa face if |neighg (A)| = 2 and ndof(A\) > 1, is an edge if |neighg (N)| > 2 and
ndof(A) > 1, and is a corner if ndof(A) = 1. In the two-dimensional case, A € A(O)
is an edge if |neighg(A)| = 2 and ndof(A) > 1, and is a corner if ndof(A) = 1. In the
literature, e.g, [31, 50], corners are also referred to as vertices. Analogous definitions
are also used frequently for FETI-DP methods (see [50]). In Figure 2 (left), an
illustration of this classification is shown for a simple example.

In the next step, we define PB objects, which is the main ingredient of the PB-
BDDC methods proposed herein. We consider the set of objects App(©) obtained
by applying the previous classification of I'(©) into corners/edges/faces but with
neighg(+) replaced by neigh@pb(~). In other words, we use sets of subdomains in

This manuscript is for review purposes only.
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6 S. BADIA AND H. NGUYEN

Opp, to classify geometrical objects on I'(©). Figure 2 (right) shows objects in App(O)
for a simple example.

LEMMA 2. AL, (0©) is a refinement of A(©).

Proof. The statement holds if for every object Ay, € Apb(©) there exists one and
only one object A € A(©) containing it. Since all points in Ay, belong to the same set
of PB subdomains, neighg (M), they are in the same set of subdomains in ©, namely

{w(f))}@eneigh@ (n)- As aresult, all these points belong to the same object in A(©).0
pb

Remark 3. In some cases, the DOF-based classification into corners, edges, and
faces might need some modification in order to ensure well-posedness of the BDDC
method with corner constraints only. This usually involves the use of a kernel detection
mechanism (see, e.g, [46]). A new approach based on perturbations has recently been
proposed in [8; 7], where the method is well-posed in all cases.

Remark 4. The PB aggregation (classification) of the interface I'(©) into A, (©)
can be relaxed. As it is currently stated, the PB partition is unique and have the min-
imal number of PB subdomains. However, it might introduces disconnected objects.
For example, the edge between Q3 and Q7 in Figure 2 (right) is disconnected. Alter-
natively, one can require that objects must be connected. This leads to two connected
edges between Q3 and ;. We adopt this practice for the numerical experiments in
section 4. However, it should be noted that the use of disconnected objects leads to
a smaller coarse space and can be beneficial in some cases.

Remark 5. In practical implementations, one only needs the set of PB geometrical
objects Ap(©) to define the PB-BDDC preconditioner. When using the approach
with only connected objects (see Remark 4), one does not need to explicitly define
the PB partition ©,,. Only a partition of objects in A(©) (see Figure 2 (left)) into PB
objects (see Figure 2 (right)) based on the physical coefficients is required. Therefore,
only a (d — 1)-dimensional PB partition (of the interface I'(0)) is needed. This is
what we have actually implemented for our numerical experiments in section 4. We
only use the PB partition O}, in the analysis in subsection 3.4. In any case, the PB
partition can easily be implemented if necessary.

3. Physics-based BDDC preconditioning. In this section, we present our
new PB-BDDC method. The basic idea behind BDDC methods is first to define a
sub-assembled operator (no assembling among subdomains), and the global space of
functions that are fully independent (“discontinuous”) among subdomains. Secondly,
we have to define the under-assembled space (the BDDC space) of functions for which
continuity among subdomains is enforced only on a set of coarse DOFs. In order to
be robust for heterogeneous problems, the PB-BDDC method utilises new definitions
of the BDDC space (i.e., new coarse DOF continuity among subdomains) and a new
weighting operator.

3.1. Coarse degrees of freedom. Similarly to other BDDC methods, in the
PB-BDDC method, some (or all) of the objects in App(©) are associated with a
coarse DOF. We denote this set of objects by Ao and call it the set of coarse objects.
Obviously, Ao C App(O). Typical choices of Ap are Ao = Ac, when only corners
are considered, Ao = A¢c U Ag, when corners and edges are considered, or Ap =
Apb(©), when corners, edges, and faces are considered. These choices lead to three
variants of the PB-BDDC method, referred to as PB-BDDC(c), PB-BDDC(ce) and
PB-BDDC(cef), respectively. Figure 2 (right) actually shows the coarse objects of
PB-BDDC(ce) for a simple 2D problem.

This manuscript is for review purposes only.
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PHYSICS-BASED BALANCING DOMAIN DECOMPOSITION 7

Given an object A € Ap, we define its coarse DOF as the mean value on A. The
rigorous definition is as follows. Assume A € Ag is associated with a subdomain
D € O. We define the coarse DOF ¢ corresponding to A as

d
(3) X (up) = M for up € Vp.

[i1lds’

Clearly, CZ\D is a functional in V,. When A is a corner, CZ\D is simply the value at that
corner. Once we have defined the coarse DOFs, we can define the BDDC space as
follows

(4) V={veV:R) = ), YA € Ao, VD, D’ € neighg(\)},

i.e., the subspace of functions in V that are continuous “at” coarse DOFs. Clearly,
Vcvcw.

For BDDC methods, solving the coarse problem is usually the bottleneck (cf.
[2, 3, 4, 8]). Therefore, it is of great interest to find a minimal set of coarse objects
(the number of the coarse objects is the number of the coarse DOFs and also is the
size of the coarse problem), so that BDDC methods can achieve their potential of
fast convergence and perfect weak scalability. According to [31, 50], in the case where
the physical coeflicient in each subdomain is constant, the set of coarse objects only
need to guarantee the existence of the so-called acceptable paths. We need a similar
concept here for the PB-BDDC method.

The definition below is modelled after [50, Definition 6.26], [31] and [32].

DEFINITION 6 (Acceptable path). Let @gb be the set of PB subdomains D € Oy,

touching the interface T(0), i.e., 9D NT(O) # 0. For two subdomains Dy, Dy € @gb
that share an edge A but no face in App(0©) or share a corner X but no edge in App(©),
an acceptable path is a sequence {25& = 251,252, ...,Dn = f)b} of PB subdomains in
@gb, which satisfy the following properties:
i) they all share the common object A € Ap,(O)
it) subdomains f)k and ﬁk+1, k=1,...,7—1, must share, apart from X\, an object
in Ao and the type of the shared object (face, edge or corner) must be the same
for the whole sequence
iii) their (constant) coefficients satisfy

TOL oy > R(k,A) min(ag, o), 1<k<n

where TOL is some predefined tolerance and R(k,A\) = 1 if XA is an edge and
R(k,\) = h(Dy)/H(Dg) if X is a corner.

Assumption 7. We assume that the set of BDDC objects Ao satisfies the following
properties:
1. In the three dimensional case, for each face on I'(©), there is at least one edge
that is part of its boundary and belongs to Ap.
2. For all pairs of subdomains Dy, Dy € @gb, which have an edge but not a face
in App(©) in common, or a corner but not an edge in Ap,(©) in common,
there exists an acceptable path for a predefined tolerance TOL.

Remark 8. In Definition 6, if the shared object A beAlongAs to the set of BDDC
objects Ao, then there exists a trivial acceptable path {D,, Dy} with TOL = 1 and
n = 2. Thus, BDDC(ce) and BDDC(cef) always satisfy Assumption 7 for TOL = 1.
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3.2. Injection operators. Let us define the projection Q : V — V as some
weighted average of interface values together with an a-harmonic extension to sub-
domain interiors (see, e.g., [39]). We define these ingredients as follows.

For u € V and £ € T(©), the weighting operator is defined as

(5) Wu(f) = Z (S;)(E) ’U/D(f), with 5;8(5) - ZTETD7TB§ aT‘T|

)
Deneighg (€) ZTET77—9£ Ol.,—|T|

where |7| denotes the volume (area if in 2D) of the element 7.
The a-harmonic extension operator £ taking data on the interface I'(©) and a-
harmonically extending it to each subdomain D € O is formally defined as

Eu=(1- Ay A)u,

where A, is the Galerkin projection of A onto the bubble space Vo = {v € V:v =
0onT(O)}.
We finally define @ = EW.

3.3. PB-BDDC preconditioner. In this subsection, we present the PB-BDDC
preconditioner, and describe its set-up and formulation. The PB-BDDC precondi-
tioner is a BDDC preconditioner in which the set of coarse DOFs enforce continuity
on a set of PB coarse objects, thus modifying the BDDC space being used. Once one
has defined the set of PB coarse objects Ao, the rest of ingredients of the PB-BDDC
preconditioner are identical to the ones of a standard BDDC preconditioner. In any
case, the definition of the weighting operator introduced in (5) is new.

The BDDC preconditioner is a Schwarz-type preconditioner that combines interior
corrections with corrections in the BDDC space (see, e.g., [9, 50]). In case of the PB-
BDDC preconditioner, the BDDC correction is expressed as Q(fl@)fl QT where A° is
the Galerkin projection of A® onto V. More specifically, the PB-BDDC preconditioner
reads as follows:

B=A;'+Q(A°) Q.

Apart from the task of identifying and defining coarse objects, the implementation
of the PB-BDDC method is identical to that of the standard BDDC method. We
refer the interested reader to [12, 13, 40, 9] for more details on the formulation of
BDDC methods and to [2, 4, 6] for an efficient implementation of BDDC methods on
distributed memory machines, which requires much further elaboration.

3.4. Condition number estimates. In order to prove condition number esti-
mates for the PB-BDDC preconditioner, we first need to introduce B, an auxiliary
BDDC preconditioner. The definition of this preconditioner follows verbatim that
of the PB-BDDC preconditioner above but the PB subdomain partition ©y, is used
instead of ©.

Given the FE mesh 7, the FE space type, and the subdomain partition Oy, one
can similarly build the FE spaces and operators as in subsection 2.2, leading to the
sub-assembled space VPP and operator A®r>. Further, we can define the injection
operator @ using the definitions in subsection 3.2 with © is replaced by Oy for the

weighting W and harmonic extension & operators.

LEMMA 9. For any PB subdomain D € Opb, the function (5%(~) is constant on
each PB object A associated with it, i.e,

(6) 65(€) = 6L(¢), V&€ e

This manuscript is for review purposes only.
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PHYSICS-BASED BALANCING DOMAIN DECOMPOSITION 9

In addition, the following important inequality, cf. [50, 6.19], holds

2 ~ o~
(M ap, (05 ©) <Comin(apag ). ¥Da,Ds € neighe,, (€),

where Cs+ < max (1, Nmz"_l) with Npax 98 the mazimal number of elements in T

~

sharing at least one point.

Proof. The identity (6) follows from (5), the fact that « is constant in each sub-
domain in Oy}, and neighg | () = neighg , (') = neighg_, (A).

Now we need to verify (7). Since « is constant in each PB subdomain, we can
rewrite and bound 5%(5 ) as follows

o~ Ax s Ax
(8) INGE e o

D —~ ~ A~ —~ —~ ~ A~
b ZDeneighpb(g) az Az @z, ADQ +ag, ADb

where A5 > 0 denotes the volume (area) of the patch of elements in D containing ¢.
Clearly, 5%(5) < 1. Therefore, az (6% (€)2 < az . Now we need to prove that
o Dy o

2
(9) ag, (64 (©)) < Cyr ag,.

Using (8), it is sufficient to show

2 2
(10) aﬁaaabABb < Cyy (aﬁaAﬁa + as Aﬁh) .
Since the mesh T is quasi-uniform, elements sharing at least a point have roughly the
same volume (area). Consequently, Aﬁb S (Nmax —1) A5 (the worst case scenario is

when ﬁb has Nyax — 1 elements and ﬁa has 1 element). Using this, we have

1\Imx_1
an as AL < (Npax — Das as Ax As < 25—

2
D.9D, "D, ~ 2.2, DD, =T 4 (ap, A5, +ap, Ap, )"

This implies (10) and we finish the proof. o

The definition of the set of coarse objects of B requires further elaboration. The
set of objects A(©pp) obtained by applying the classification in subsection 2.3 for the
PB subdomain partition ©, provides a classification of I'(O,,) D I'(©). We have the
following relation between the PB objects App(©) and the (standard) objects of the
PB partition A(Opp).

LEMMA 10. All the objects in Ap,(©) are also in A(Opp), i.e., App(©) C A(Opb).

Proof. Let us consider an object Ap, € App(©). In both object partitions Ay, (©)
and A(Opp), we are using the same criteria, i.e., neighg  (-), to classify points. The
difference is that App(0) is the result of a classification of points in I'(©) whereas
A(©pp) is obtained from a classification of points in I'(©,). Since I'(O) C I'(Opy),
all points in App belong to the same object X' € A(Opp). Since App, is on the in-

terface I'(©), there exist at least two subdomains D, D’ € neighg  (App) such that
w(D) # w(D'). Let us assume there is a point & € ) such that & ¢ Ap,. Then,
£ € T(Op)\I'(®), i.c., it only belongs to one subdomain in ©. As a result, w(D) is
the same for all D e neighg (). Thus, we have a contradiction, since neighg_ (£)
cannot be the same as neighg  (App).

This manuscript is for review purposes only.
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Wlth the theoretical support from Lemma 10, we can define the set of coarse ob-
jects Ao of B as a classification of I'(©pp) as follows. On I'(0), we consider the
same set of objects Ap used in the PB-BDDC preconditioner, i.e., Ag, or Ag U
Ag, or Aph(©). For the rest of the interface I'(O,,)\I'(©), we enforce full conti-
nuity among PB subdomains. It can be understood as treating all FE nodes on
I'(O,,)\I'(O) as corners. Denote this set of objects by A*, we have Ao = Ao U A*.
Figure 3 illustrates the partitions and coarse objects of B and B when Ao = AcUAE.

Remark 11. By construction, the BDDC space VPP of the auxiliary BDDC pre-
conditioner B is identical to the BDDC space V, defined in (4), of the PB-BDDC

preconditioner.

Fic. 3. Partitions and coarse objects of the PB-BDDC preconditioner B (left) and the auziliary

BDDC preconditioner B (right) when Ao = Ac U Ag: corner objects are labeled with crosses while
nodes of other objects are labeled with circles.

LEMMA 12. The condition number k(BA) of the PB-BDDC preconditioned oper-
ator is bounded by

(A® Qv, Qu)

11 BA) <
- WBA < e A8 )
Proof. According to [39, Theorem 15|, k(B.A) is bounded by
e
(12) k(BA) < max Mgw.
veV <~A 1),11>
Now we only need to bound the right-hand-side in (12) by the one in (11).

On the one hand, using the fact that V = VP we have (A%v,v) = (A9, v)

for all v € V because any v € V is continuous in each subdomain of ©. On the other
hand, let us prove that the weighting operator W defined by (5) for O, restricted
to V is identical to the weighting operator W defined by (5) for ©. Let us consider a
subdomain D € © and its PB partition Oy, (D). We have

he= > aL©,

DO, (D), D3¢
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by the definition in (5). For an arbitrary function v € V C VPP we find that

Wo(©) = > L©vE)= > sL©) ()
Deneighg (€) Deneighg (§) DeO,,, D3E
= Y 8L©vp(e) =Wu(9).

ﬁEHeigh@pb &)

Therefore, Qu and Qu are identical on I'(©) and Qv is continuous across I'(©pp). In
addition, Qu is discrete a-harmonic in each D € © and have minimal energy norm
w.r.t A®. As a consequence,

(A°Qu, Qu) = Y (AP Qv, Qu)
Deo
< D (ABQu.Qu)y= 7 (A2 Qv Qu) = (A% Qu, Qu).
DeO DeO,,
This finishes the proof. ]

We could stop here and derive the estimate for «(B.A) knowing that the condition
number of the auxiliary BDDC preconditioned operator BA is estimated by an upper
bound of the last quantity on the right of (12). However, we will go a bit further to
obtain a stronger result.

LEMMA 13. Assume that Ao is such that Assumption 7 holds. Then we have the
following inequality:

(A% Qu, Qu) HD)\Y’
(13) g%i (AP0, 0) < C max{1,TOL} Dne%)g(b 1+ log "D )

where the constant C is independent of the number of subdomains, H(ﬁ), h(ﬁ) and
the physical coefficient c.

Proof. By triangle inequality, we have

(A% Qu, Qv) (A9 (Qu — ), (Qv — v))
TS S S 7 )

Let w = Qv —v. Given a FE function u € V5, we denote by 9?(@ € Vp the FE

function that is discrete a-harmonic in D and agrees with u at the FE nodes in the
object A and vanishes at all the other nodes on 9D. Since A(Oyp) is a partition of
I'(Bpp), we can split w into object and subdomain contributions as follows:

(15) w= Y S 62(w).

AEA(Opb) ﬁEneigh@pb ()

By the construction of the set of object JA\O =Ao U A* and the definition of @pb, w
vanishes at all coarse objects in A*, i.e, at all FE nodes in I'(O,;,)\I'(©). Consequently,
(15) can be simplified as follows:

(16) w= >3 W)

XeAn(©) Dee?,
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12 S. BADIA AND H. NGUYEN

When Ao satisfies Assumption 7, the set of objects in Ko also fulfils [50, Assump-
tion 6.27]. Consequently, using Lemma 9, we can perform an analysis similar to that
in the proof [50, Lemma 6.36] (see also [31, Lemma 10]) to obtain

(A 07 (w), 0F (w))

< C max{1,TOL} (1 + log <IZ((§))>> Z (Ag"bv,w

ﬁeneigh@pb \)

for any D € ng and A € A(Opp). Here the constant C' is proportional to Csi in

Lemma 9, but is otherwise independent of H (75)1 h(D) and the physical coefficient a.
Adding up the estimate for all subdomain D € Oy, we find that

oo o (EONY o
(7)  (A%w,w) < C max{1, TOL} max <1+lg<h(b)>> (A9%by, ).

pb
This finishes the proof. 0

Combining results in Lemma 12 and Lemma 13, we have the final bound for
the PB-BDDC preconditioner, which is both weakly scalable and independent of the
coefficient a.

THEOREM 14. The condition number of the PB-BDDC' preconditioned operator
k(BA) is bounded by

. 2
H(D)
k(BA) < C max{1, TOL} ﬁnelg)éb (1 + log ( hD) >> ,

where the constant C is independent of the number of subdomains, H(D), h(D) and
the physical coefficient a.

Remark 15. As seen in the Lemma 13 and Theorem 14, the condition number
associated with the PB-BDDC method depends only on the characteristic size and
mesh size of PB subdomains touching the original interface I'(®). Further, the con-
vergence of the PB-BDDC is independent of variations of the coefficient. The main
target of this work is achieved.

3.5. Relaxed physics-based BDDC. The definition of the coarse objects for
the PB-BDDC preconditioner, based on the requirement that the coefficient has to
be constant in each PB subdomain, can result in a large coarse space. That is the
case for heterogeneous problems where the physical coefficient varies across a wide
spectrum of values in a small spatial scale.

In order to deal with a more general class of problems, we propose the relaxed PB-
BDDC preconditioner (rPB-BDDC) where we only require that the maximal contrast
in each PB subdomain is less than some predefined tolerance r. We consider a relaxed
PB partition ©P" such that

(18) max — <7, for any D € OPP.

T,T’Cﬁ At

Here the threshold r is equal or greater than 1. This way, we can control the size of
the coarse problem and the condition number bounds with the choice of r.
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As the coefficient is no longer constant in each PB subdomain, we need to use
a weighted-constraint in the definition of coarse DOFs. More specifically, instead of
using (3), we use

o ud
= hauds where a(§) = max a,.

19 D =
(19) ex (u) [yalds’ €T, T3¢

Remark 16. The larger r becomes the smaller the size of the coarse problem of the
rPB-BDDC preconditioner is and the larger its condition number grows to. When
r = 1 the rPB-BDDC preconditioner becomes the PB-BDDC preconditioner. By
tuning the threshold r, one can obtain a right balance between the time spent on
setting up the preconditioner (especially in forming the coarse space) and the time
spent on applying the preconditioner in a Krylov solver. The optimal threshold is of
course problem dependent. However, finding a good threshold is not tricky. This is
illustrated in section 4.

Remark 17. The rPB-BDDC preconditioner makes use of a threshold. This is sim-
ilar to the adaptive coarse space approach where only eigenfunctions associated with
eigenvalues below a predefined threshold are included in the coarse space. However,
the rPB-BDDC preconditioner does not involve any eigenvalue or auxiliary problems
and is far simpler and cheaper.

4. Numerical experiments. In this section, we test the robustness and effi-
ciency of the PB-BDDC and rPB-BDDC preconditioners for the system matrix asso-
ciated with (2) for different types of variation in the coefficient «, which are similar
but generally harder than the ones in [42, 28, 36].

Due to the difficulty of heterogeneous problems, in PB-BDDC and rPB-BDDC
methods, we tend to use a large number of objects. Many of them are not corners. In
all tested cases, these objects are enough to make the local Neumann problems and
global coarse problem well-posed and we can optionally drop corner objects. No corner
detection mechanism (see, e.g, [46]) has been needed in any tested case. Alternatively,
one might want to consider the perturbed formulation introduced in [7, 8]. However,
this approach has not been extended to heterogeneous problems yet.

In all of the experiments, we consider the physical domain Q = (0,1)2. Unless
stated otherwise, we use the uniform triangular meshes of size h = 1/72 and the
regular 3 x 3 subdomain partition. In all cases, we report the dimension of the
coarse space, denoted by dim, and the number of iterations required for the conjugate
gradient method to reduce the residual norm by a factor of 10°. We also provide the
condition number x in most examples.

4.1. Two channels. In this test case, we consider two channels of high « cutting
through vertical subdomain edges (see Figure 4). The coefficient in the channels apax
takes the values {10%,10%, 105,108}, while the coefficient in the rest of the domain is
equal to 1.

From Table 1, we can see that the condition number and the number of iter-
ations for the standard BDDC preconditioner (BDDC(ce)) definitely increase with
O'max, Whereas they remain practically constant for both variants of the PB-BDDC
preconditioners (PB-BDDC(ce) and PB-BDDC(e)). In other words, the convergence
of the PB-BDDC method is independent of the contrast and the PB-BDDC method is
perfectly robust for this test case. Figure 4 shows the coarse objects of PB-BDDC(ce)
on the interface of the partition.

This manuscript is for review purposes only.
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TABLE 1
Comparison of the iteration count and condition number in the two channels test case.

BDDC(ce) PB-BDDC(ce) PB-BDDC(e)
dim — 16 64 36
Qmax # it. K # it. K # it. K
102 21 2.12e3 10 5.47e0 13 1.20el
10% 28 2.87eb 10 5.31e0 14 1.21el
106 44 2.89e7 10 5.31e0 15 1.21el
108 64 3.88e9 10 5.31e0 15 1.21el

F1G. 4. Distribution of the coefficient in the two-channels test case when amax = 105. The
coarse objects of PB-BDDC(ce) are shown on the interface with corners labeled by stars and DOFs
in edges labeled by circles.

488 4.2. Channels and inclusions. In this test case, we consider both channels
489 and inclusions of high coefficient. First, the three channels include all the elements
190 whose centroids are less than 2 - 1072 from one of the following three lines:

491 Ll:21—29—0.2=0,
492 L2: x4+ 22— 0.7=0,
493 L3:xz1 —0.729 — 0.7 =0.

195  The coefficient aupax in these channels takes the values {102,10%,10%,108}. Secondly,
496  the inclusions are defined as the regions of elements whose all vertices x satisfy

497 mod (ﬂoor(lO xi),2) =1, fori=1,2.

198 For an element 7 that belongs to one of the inclusions and is not in the channels, its
499  coefficient is defined as

500 (20)  alr = (Qmax/10)/ 5 floor(05floor(0@i(en))+1 = where ¢, is the centroid of 7.

This manuscript is for review purposes only.
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Fic. 5. Distribution of the coefficient for the channels and inclusions test case when amax =
106, The coarse objects of PB-BDDC(ce) are shown on the interface with corners labeled by stars
and DOF's in edges labeled by circles.

The coefficient in (20) is: a) constant in each inclusion b) increasing from left to right
¢) increasing as .y increases and d) always belongs to (1, amayx). For the rest of the
domain, we set o = 1. The maximal contrast ratio in this experiment is 108.

We can see from Table 2 that as apax becomes larger the condition number and
the number of iterations associated with the standard BDDC(ce) method increases
significantly. In contrast, both variant of the PB-BDDC methods, PB-BDDC(ce) and
PB-BDDC(e), are perfectly robust with respect to the changes of the coefficient in
the channels and in the inclusions. Especially, PB-BDDC(e) maintains its robustness
with a reasonably small coarse space.

TABLE 2
Comparison of the iteration count and condition number in the channels and inclusions test case.

BDDC(ce) PB-BDDC(ce) PB-BDDC(e)
dim — 16 89 39
Omax # it. K 7 it. K 7 it. K
102 23 1.48e3 13 1.0lel 14 5.71lel
10% 45  8.33e4 13 8.93e0 15  8.08el
106 82  6.02e6 13 8.79¢0 15  8.15el
108 97  5.30e8 13 8.76e0 15  8.15el

4.3. Complex channels. In this test case, we demonstrate the importance of
having acceptable paths. We consider a distribution with multiple channels of high
coefficient aunax taking values in {10%,10%,105,108} (see Figure 6 for the case when
Qmax = 109).

From Table 3, we can see that PB-BDDC(ce) is perfectly robust. On the other
hand, the condition number and number of iterations of the PB-BDDC(e) precon-
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FiG. 6. Distribution of the coefficient in the complex channels test case. The coarse objects of
PB-BDDC(]c]e) are shown on the interface with corners labeled by stars and DOFs in edges labeled
by circles. Only few corners are required to guarantee perfect robustness (to have acceptable paths).

ditioner increase significantly as auax increases. The reason is that there are some
pairs of channels share a corner but not an edge. In PB-BDDC(e), none of these
corners are selected as a coarse objects. Consequently, there is no acceptable path
with TOL independent of the contrast between the associated paired of channels (PB
subdomains) and Assumption 7 does not hold. By including a small number of these
critical corners (represented by stars in Figure 6) in order to satisfy Assumption 7, the
resulting preconditioner, labeled PB-BDDC([c|e), is perfectly robust w.r.t changes in
the contrast of the coefficient (see Table 3).

TABLE 3
Comparison of the iteration count and condition number in the complex channels test case.

BDDC(ce) PB-BDDC(ce) PB-BDDC(e) PB-BDDC([cle)

dim 16 84 46 56

Qmax # it. (k) # it. (k) # it. (k) # it. (k)
102 22 (2.99¢3) 12 (6.09¢0) 19 (1.25¢3) 13 (1.21el)
10* 43 (3.82¢5) 12 (5.94¢0) 34 (1.62e5) 13 (1.27e1)
10° 70 (3.83€7) 12 (5.94¢0) 51 (1.63€7) 13 (1.27¢1)
108 95 (6.45¢9) 12 (5.94e0) 99 (1.63¢9) 13 (1.27el)

4.4. Sinusoidal variation. In this experiment, we consider a coefficient that
varies like a sinusoid. We use a finer uniform triangular mesh of size h = 1/144. For
an element 7 € T, the coefficient .- is defined by

log,o(ar) = ksin(wn(z1(cr) + x2(cr))) + Qshites

where k = 3, w = 14, and ¢, is the the centroid of 7. We note that when x and/or
w become larger the problem is more difficult. The distribution when agpire = 0 is
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Fic. 7. Distribution of the coefficient mimicking sin function. The coarse objects of rPB-
BDDC(ce) with r = 103 are shown on the interface with corners labeled by stars and DOFs in edges
labeled by circles.

shown in Figure 7. It is as if there are many channels going through subdomain edges
at the same time.

In this test case, the coeflicient varies very rapidly. We test the standard BDDC
method and the rPB-BDDC method introduced in subsection 3.5, by allowing the
upper bound r for the maximal contrast in each PB subdomain to vary among
{10',10%,10}. Only iteration counts are reported as the condition number estimation
becomes too expensive for the mesh being used.

This is a difficult problem and the standard BDDC(ce) method requires almost
a hundred iterations to converge (see Table 4). The relaxed physics-based methods,
rPB-BDDC(ce) and rPB-BDDC(e), are able to significantly reduce the number of
iterations. That comes with the cost of solving larger coarse problems. However, by
using a suitable threshold r, we can obtain a decent preconditioner, e.g, rPB-BDDC(e)
with 7 = 103, which requires only 11 iterations using a reasonably small coarse space
of size 64. In addition, the rPB-BDDC method is also perfectly robust with shifting
in the value of the coefficient. The iteration count does not change when agp;s takes
values in {0,6}.

TABLE 4
Comparison of the iteration count in the continuous sin test case.

BDDC(ce) rPB-BDDC(ce) rPB-BDDC(e)

r 10 102 10° 10 102 103

dim 16 474 292 188 212 116 64

Qgnite = 0 # it. 92 7 10 11 10 12 11
Qgnite = 6 # it. 99 7 10 11 10 12 11
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Fic. 8. Distribution of the coefficient in the log-normal test case. The coarse objects of rPB-
BDDC(ce) with r = 102 are shown on the interface with corners labeled by stars and DOFs in edges
labeled by circles.

4.5. Log-Normal. In this test case, we test the performance of the rPB-BDDC
method for a log-normal distribution of the coefficient. This type of distribution is
particularly important for geoscience and petroleum engineering applications. We
consider ront(z, w) = 104(*®) where Z(x,w) is a Gaussian random field with zero
mean and Gaussian covariance

_ 2 Nz —yl? . B >
C(z,y) = 0° exp —E ) with o = 1.5, 2 = 1e-3.

For this experiment, a uniform triangular mesh of size h = 1/128 is utilized. Using the
spectral decomposition method described in [37], we are able to obtain a realization
of acont (2, w) at mesh vertices. The piecewise coefficient a,; on an element 7 is then
defined as the average of aeont(,w) at the three vertices. The distribution of o with
a partition obtained from METIS [26] is shown in Figure 8. The contrast ratio in this
test case is nearly 1019, The coarse objects of rPB-BDDC(ce) when r = 10? are also
illustrated.

In Table 5, we can see that, compared to the standard BDDC(ce) method, rPB-
BDDC(ce) and rPB-BDDC(e) preconditioners require much fewer iterations to con-
verge. They, however, have a larger coarse space. By adjusting the threshold for the
maximal contrast in each object, we can reduce the size of the coarse space while
maintaining a reasonably fast convergence. This is clearly illustrated in Table 5.

5. Conclusions. In this work, we have proposed a novel type of BDDC pre-
conditioners that are robust for heterogeneous problems with high contrast. The
underlying idea is to modify the continuity constraints enforced among subdomains
making use of the knowledge about the physical coefficients. In order to do that, we
rely on a physically motivated partition of standard coarse objects (corners, edges, and
faces) into coarse sub-objects. The motivation for that is the well-known robustness
of DD methods when there are only jumps of physical coefficients across the interface
between subdomains. All these ideas can also be used in the frame of FETI methods.

This manuscript is for review purposes only.
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TABLE 5
Comparison of the iteration count in the log-normal test case.

BDDC(ce) rPB-BDDC(ce) rPB-BDDC(e)
r 10 102 5-10° 10 102 5-10°
dim 49 488 284 239 204 127 105
# it. r 16 25 28 25 29 33

In cases where the physical coefficient is constant in each coarse sub-object, we
are able to prove that the associated condition number can be bounded independent
of the number of the subdomains and the contrast of the physical coefficient. In other
words, the new preconditioner is scalable and robust for heterogeneous problems.

Apart from the new set of coarse objects and a new weighting operator, the (r)PB-
BDDC preconditioners are very much the same as the standard BDDC preconditioner.
As a result, the implementation of the new preconditioners involve a very simple
modification of the standard BDDC implementation. In all of our experiments, the
new preconditioners deliver fast, robust and contrast-independent convergence while
maintaining the simplicity of BDDC methods at a reasonable computational cost.
Compared to the other robust DD solvers for heterogeneous problems currently avail-
able, such as the ones in [25, 45, 25, 43, 44, 22, 23, 42, 47, 15, 49, 48, 28, 27, 29, 36, 24],
our new methods do not involve any type of eigenvalue or auxiliary problems.

For further work, we want to implement the new preconditioners in the extremely
scalable BDDC code in FEMPAR (3, 4, 5, 6]. The multilevel extension and the task-
overlapping implementation are particularly interesting in the (r)PB-BDDC case due
to generally larger coarse problem. With such extremely scalable implementation, we
are interested in applying our new preconditioners to realistic 3D problems, e.g., in
geoscience applications.
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