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Abstract

A Schwarz-type preconditioner is formulated for a class of parallel adaptive finite elements where the local meshes
cover the whole domain. With this preconditioner, the convergence rate of Krylov methods is shown to depend only
on the ratio of the second largest and smallest eigenvalues of the preconditioned system. These eigenvalues can be
bounded independently of the mesh sizes and the number of subdomains, which proves the proposed preconditioner
is optimal. Numerical results are provided to support the theoretical findings.
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1. Introduction

Adaptive finite element method (AFEM) has been a very popular method for solving partial differential equations
in science and engineering [2]. AFEM automatically refines or coarsens meshes to adapt to the computed solutions,
thus offering great reliability, robustness and efficiency. Recently, there has been a great demand to use AFEM on
parallel distributed supercomputers with many processors to tackle large-scale problems. In order to improve the
scalability of AFEM on supercomputers, it is usually combined with a domain decomposition method (DDM). In
DDM, the domain is partitioned into a number of subdomains and smaller problems on these subdomains are solved
in parallel to determine the overall solution [30, 34].

Combining AFEM with DDM, however, introduces challenges that are not present in the traditional version of
AFEM. One of the notable challenges is that AFEM builds its meshes gradually and global or near-neighbour infor-
mation is usually needed. The information can be approximated solutions, error estimates on intermediate meshes
or mesh information utilised in adaptive meshing procedures. Since communication costs are high on distributed
supercomputers, one wants to avoid communicating as much as possible. This can be achieved when each processor
has a mesh of the whole domain and its adaptive enrichment is performed almost independently with those of other
processors. In general, the adaptive enrichment on each processor focus mainly on its subdomain. Consequently,
after the adaptive enrichment phase, each processor has a composite mesh of the whole domain, which is fine in its
subdomain and much coarser elsewhere. The final global mesh is the union of the refined submesh provided by each
processor. Figure 1 shows an example of the meshes before and after adaptive enrichment, and the final global mesh.

The initial idea of using local meshes of the whole domain was first introduced by Mitchell for a parallel multigrid
method [28]. Then it was further developed into parallel adaptive algorithms. The notable ones include the Bank-
Holst algorithm [10, 11] and the local and parallel algorithms based on two-grid discretizations [38, 39, 24]. Several
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Figure 1: A coarse mesh with its partition (left), a local mesh on a processor after adaptive enrichment (middle), and the global fine mesh.

variants of these algorithms are studied in [12, 8, 36, 19, 40]. The two algorithms and their variants have been
demonstrated to work well for many problems in both science and engineering [10, 29, 5, 6, 11, 3, 4, 36, 15, 33, 17, 32].

Different components contribute to their success. For discussions on how to obtain a suitable partition, where
each subdomain contributes roughly the same amount of error, we refer to [10, 11]. For how to regularise the local
meshes to make the global fine mesh conforming, we refer the readers to [16]. In this paper, we focus on solving the
final global linear system. There is no restriction in the type of solvers can be used. However, it would be ideal if the
solver can take advantage of the special formulation of the algorithms. In [14], Bank and Lu developed a dedicated
domain decomposition solver for the Bank-Holst algorithm. The solver is empirically shown to be robust and efficient
for many problems [11, 14, 15, 17]. However, its theoretical convergence can only be fully analysed for a special
case where the global interface system is completely presented on all processors [18]. For this to happen, all elements
attached to the interface, including ones that are far away from the considered subdomain, are required to be refined
to the same level of the corresponding elements in the global fine mesh. In addition, the global iteration matrix of the
solver is not symmetric, even if all of the local matrices are symmetric. Consequently, conjugate gradient acceleration
can not be used.

In this paper, we propose a novel Additive Schwarz (AS) preconditioner that can be combined with Krylov meth-
ods, such as CG, to efficiently solve the global linear system in these parallel adaptive algorithms. Our preconditioner
is formulated using the local meshes after adaptive enrichment. We recall that these are meshes of the whole domain.
They are fine and identical with the global fine mesh in their corresponding subdomains, but generally much coarser
elsewhere. If the adaptive meshes are nested, all the finite element spaces associated with the local meshes contain the
coarse space associated with the starting coarse mesh. Therefore, there is no need to explicitly add a coarse space as
in the traditional two-level AS. However, having the coarse space contained in every subspace introduces the number
of subdomains as the largest eigenvalue, which might damages the scability of the preconditioner. Fortunately, we can
show that this largest eigenvalue is isolated and the convergence rate of the CG method can be bounded by a quantity
that depends only on the ratio of the second largest eigenvalue and the smallest eigenvalue. The ratio is called the
effective condition number. Our main theoretical results lies in the analysis of these eigenvalues.

The estimate for the second largest eigenvalue is obtained by establishing a comparison to the largest eigenvalue in
a related AS method. Our estimate takes advantage of the strengthened Cauchy-Schwarz inequality for the hierarchical
decomposition of local subspaces into a low frequency component and a high frequency component. For estimating
the smallest eigenvalue, we follow the subspace correction framework proposed by Xu [37] and prove the existence
of a stable decomposition associated with the local meshes. Since these meshes are generally very different from one
another and with the global fine mesh outside of their associated subdomains, the classical analysis of AS method (cf.
[21, 34]) does not apply. Our analysis requires new sophisticated interpolation operators based on the work of Scott
and Zhang [31]. These operators are defined in conjunction with a colouring scheme in order to construct the stable
decomposition recursively.

In case exact solvers are employed on all local subspaces, our analysis of the eigenvalues shows that the effective
condition number of the preconditioned system does not depend on the coarse mesh size H, the fine mesh size h and the
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number of subdomains N; thus our method is optimal. Roughly speaking, the proposed method performs comparable
to a traditional AS method with an extremely thick overlap (δ ≈ H). With proper programming, it delivers superior
rate of convergence while demanding about the same amount of computation as with traditional AS methods with a
small overlap.

In some aspects, our result is related to the work of Bank et al. [13]. However, our preconditioner is very different
as we use local subspaces associated with meshes of the whole domain and there is no explicit coarse component.

The rest of this paper is organised as follows. We first state the model problem and introduce key notations in
section 2. The formulation of the preconditioner is presented in section 3. The analysis of the convergence of the CG
method applied to the preconditioned system, as well as the estimates for the second largest and smallest eigenvalue
are carried out in section 4. In section 5, we present some numerical experiments to verify our theoretical results.

2. Preliminaries

For simplicity of exposition, we confine our discussions to Poisson’s equation with homogeneous Dirichlet con-
dition:

−∆u(x) = f (x) in Ω,
u(x) = 0 on ∂Ω

. (1)

Here Ω is a bounded domain with polygonal boundary in Rd, d = 2, 3.
Let {Ωi}

N
i=1 be the subdomains in the partition of Ω. We assume that this is a non-overlapping partition, namely

Ω̄ = ∪N
i=1Ω̄i and Ωi ∩Ω j = ∅ if i , j.

In this study, we will use several finite element meshes. The mesh TH of size H will be the shape regular and
conforming coarse mesh provided to each processor at the beginning. We further assume that each Ωi is a union of
elements in TH . The meshes Ti, 1 ≤ i ≤ N are local meshes on each processor at the end of the adaptive enrichment
phase . They are meshes of the whole domain which are fine with elements of size h � H within Ωi, but coarser
and largely coincide with TH elsewhere. The mesh Ti is required to be conforming inside Ω̄i. However, it can have
hanging nodes outside of Ω̄i. In addition, we assume that Ti are aligned along their fine interface, namely if Ωi and
Ω j are neighbouring subdomains then Ti and T j are matched along the part of interface sharing between Ωi and Ω j.

Denote Th the union of Ti restricted on Ω̄i: Th = ∪N
i=1(Ti|Ω̄i

). This mesh is the globally refined, shape regular and
conforming mesh of size h of Ω. We assume the following nesting property holds

TH ⊂ Ti ⊂ Th, for 1 ≤ i ≤ N.

Now, we extend each Ωi to a larger region Ω
†

i so that all elements of Ti that are outside of Ω
†

i belong to TH (i.e.
there is no refinement in Ti outside of Ω

†

i ). We also require that ∂Ω
†

i does not cut through any elements in Th or
any elements in Ti. The extension can be obtained by repeatedly adding to Ωi layers of elements in Ti. Since the
adaptive meshing on processor i mainly focuses on the inside of the subdomain Ωi, we can assume that only few
layers of elements in TH outside of Ωi get refined in creating Ti. More specifically, we assume that the width of the
regions Ω

†

i \Ωi are of size H (in case there is barely any refinement outside Ωi, some elements in TH |Ωc
i

might need to
be included in Ω

†

i ). Figure 2 shows an example of a subdomain Ωi and its extension Ω
†

i . Lastly, we assume that the
(overlapping) partition {Ω†i }

N
i=1 of Ω can be coloured using at most Nc colours, in such a way that if Ω

†

i and Ω
†

j are of

the same colour and i is different from j, then Ω
†

i ∩Ω
†

j = ∅.
Let V0, Vi, and Vh be the linear finite element spaces (of piecewise linear polynomials) associated with TH , Ti

and Th respectively, i.e.

V0 = {uH(x) ∈ H1
0(Ω)| uH(x)|T ∈ P1(T ), ∀T ∈ TH},

Vi = {uh(x) ∈ H1
0(Ω)| uh(x)|T ∈ P1(T ), ∀T ∈ Ti},

Vh = {uh(x) ∈ H1
0(Ω)| uh(x)|T ∈ P1(T ), ∀T ∈ Th}.

where P1(T ) is the set of linear polynomials defined on element T .
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Figure 2: Subdomain Ωi (left) and its extension Ω
†

i (right) on their associated local mesh Ti.

Also let {ψ j(x)}nj=1 and {ψ(i)
j (x)}ni

j=1 be the sets of linear nodal basis function associated with Th and Ti, i =

0, 1, . . . ,N. Correspondingly, denote {x j}
n
j=1 and {x(i)

j }
ni
j=1 be the sets of nodal points of Th and Ti, i = 0, 1, . . . ,N.

Here, for convenience, we use T0 to refer to TH .
The finite element approximation uh(x) ∈ Vh of u(x) is the solution of the following problem: find uh(x) ∈ Vh such

that
a(uh, vh) =

∫
Ω

f (x) vh(x) dx, for all vh(x) ∈ Vh, (2)

where a(uh, vh) =
∫

Ω
(∇uh · ∇vh)dx.

For uh(x) ∈ Vh, denote u ∈ Rn its coordinate vector, i.e., uh(x) =
∑n

j=1 u( j)ψ j(x). Then the problem (2) becomes

Au = f , (3)

where A ∈ Rn×n, A(k, j) = a(ψ j, ψk), and f ∈ Rn, f (k) =
∫

Ω
f (x)ψk(x) dx. Clearly, A is symmetric positive definite

and a(uh, vh) = vT Au =.. (u, v)A.

3. Preconditioner formulation

We define RT
i ∈ R

n×ni as follows

RT
i =


ψ(i)

1 (x1) ψ(i)
2 (x1) · · · ψ(i)

ni (x1)
ψ(i)

1 (x2) ψ(i)
2 (x2) · · · ψ(i)

ni (x2)
...

... · · ·
...

ψ(i)
1 (xn) ψ(i)

2 (xn) · · · ψ(i)
ni (xn)

 . (4)

We note that RT
i is the matrix representation of the point-wise interpolation operator from Vi, a coarser mesh with the

basis (ψ(i)
1 (x), . . . , ψ(i)

ni (x)), to Vh, the fine mesh with the basis (ψ1(x), . . . , ψn(x)). Unlike the traditional AS method,
the matrix RT

i does not consist of just 0 and 1 entries. For the columns associated with the nodal points outside Ωi,
there could be multiple nonzero entries belong to (0, 1). However, for other columns (the majority), there is only one
nonzero entry (1); and this entry corresponds to a nodal point inside Ωi.

Now we introduce the local stiffness matrix Ai ∈ Rni×ni associated with the bilinear form a(·, ·) restricted on the
subspace Vi, as follows

Ai(k, j) = a(ψ(i)
j , ψ

(i)
k ) = a

 n∑
l1=1

RT
i (l1, j)ψl1 ,

n∑
l2=1

RT
i (l2, k)ψl2

 =

n∑
l2,l1=1

Ri(k, l2)Al2,l1 RT
i (l1, j).

This implies that
Ai = RiART

i . (5)
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Clearly, Ai is symmetric and positive definite.
Next we define Pi = RT

i A−1
i RiA. Since PiA = APi and P2

i = Pi, we see that Pi is an A-orthogonal projection onto
the range of RT

i . Since RT
i represent the basis functions of Vi, cf. (4), Pi corresponds to a projection operator which is

onto Vi.
Now we define our symmetric positive definite preconditioner

P−1 =

N∑
i=1

RT
i A−1

i Ri.

Then the preconditioned system can be written as

P−1A =

N∑
i=1

Pi =

N∑
i=1

RT
i A−1

i RiA.

Remark 1. Although the formulation of Pi and P−1 largely resemble that of the traditional AS methods, we emphasise
that there is a fundamental difference in the subspaces Vi in use. In the current approach, Vi are the finite element
spaces associated with local meshes (Ti) of the whole domain Ω; while in traditional AS methods, Vi are finite element
spaces associated with the fine meshes (Th|Ω†i

) of subdomains (Ω†i ) slightly larger than Ωi (see [34, p. 59]). In addition,
in the current approach, the coarse space V0 is contained in each Vi and there is no explicit coarse component in P−1.
For more information about traditional AS methods, we refer the reader to [34, 30] and references therein.

Remark 2. An advantage of P−1 over traditional AS preconditioners is the local matrix Ai can be assembled locally
on each processor. Consequently, the global matrix A does not need to be assembled (to use in (5)). This is valuable
in real-life applications where the system size is large.

Remark 3. Each restriction matrix Ri has more rows than its counterpart in the traditional two-level AS precondi-
tioner P̃−1

AS associated with the partitioning {Ω†i }
N
i=1 and the coarse space V0. In addition, the rows of Ri associated

with the coarse degrees of freedom (dofs) outside Ω
†

i and the corresponding rows of R̃0 in P̃−1
AS are exactly the same.

This suggests an efficient way of computing Ri as follows. Each processor independently computes rows of Ri asso-
ciated with dofs in Ω̄

†

i and part of R̃0 associated with its subdomain. Then the complete Ri can be obtained after an
MPI Alltoall communication that exchanges the information of R̃0. With this implementation, the cost of evaluating
Ri, i = 1, 2, . . . ,N in P−1 is comparable with the cost of computing R̃i, i = 0, 1, . . . ,N in P̃−1

AS .

The preconditioner P−1 can be used to accelerate Krylov methods in solving the systems (3). Since P−1 and A are
both symmetric positive definite the obvious choice is CG, the conjugate gradient method [23, 35].

In the next section, we will study the convergence of the CG method preconditioned by the proposed precondi-
tioner P−1.

4. Convergence analysis

In the first phase of our analysis, we will formulate Euclidean orthogonal projections Qi corresponding to Pi and
study the spectrum of the preconditioned system P−1A =

∑N
i=1 Pi via that of

∑N
i=1 Qi.

Let
{
φ1(x), φ2(x), . . . , φn(x)

}
be an a(·, ·)-orthonormal basis of Vh. Without loss of generality, we can assume that{

φ1(x), φ2(x), . . . , φn0 (x)
}

is an a(·, ·)-orthonormal basis of V0. Denote

U =


φ1(x1) · · · φn(x1)
... · · ·

...
φ1(xn) · · · φn(xn)

 , U0 =


φ1(x1) · · · φn0 (x1)
... · · ·

...
φ1(xn) · · · φn0 (xn)

 ,
It follows that UT AU = In, UT

0 AU0 = In0 .
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Lemma 1. Let Qi = UT APiU = U−1PiU. Then Qi is an Euclidean orthogonal projection and it has block diagonal
structure Qi = diag(In0 , Q̂i), where Q̂i ∈ R(ni−n0)×(ni−n0) is also an Euclidean orthogonal projections. In addition,

σ(P−1A) = σ(
N∑

i=1

Qi) = {N} ∪ σ(
N∑

i=1

Q̂i). (6)

where σ(·) denotes the spectrum.

Proof. Since Q2
i = Qi and QT

i = Qi, Qi is an Euclidean orthogonal projection. In addition, as V0 ⊂ Vi and the columns
of U0 and RT

i represent basis functions of V0 and Vi respectively, we see that range(U0) ⊂ range(RT
i ) = range(Pi).

Therefore, we can write PiU = Pi[U0 ∗] = [PiU0 ∗] = [U0 ∗] and

Qi = UT APiU =

[
UT

0
∗

]
A [U0 ∗] =

[
UT

0 AU0 ∗

∗ ∗

]
=

[
In0 Zi

ZT
i Q̂i

]
.

Since Q2
i = Qi, it implies that ZiZT

i = 0, or Zi = 0. Therefore, Qi = diag(In0 , Q̂i). As Qi is an orthogonal Euclidean
projection, Q̂i is also an orthogonal Euclidean projection. The first part of (6) follows from the fact that

N∑
i=1

Qi = U−1

 N∑
i=1

Pi

 U = U−1(P−1A)U.

The second part of (6) is a consequence of
∑N

i=1 Qi = diag(NIn0 ,
∑N

i=1 Q̂i).

Lemma 2. Let λ̂min and λ̂max be the smallest and largest eigenvalues of
∑N

i=1 Q̂i respectively. Then

σA(P−1A) ⊂ [λ̂min, λ̂max] ∪ {N}, where 0 < λ̂min ≤ λ̂max ≤ N. (7)

Proof. Since Q̂i is a projection, σ(Q̂i) = {0, 1} and σ(
∑N

i=1 Q̂i) ⊂ [0,N]. Because P−1 and A are both positive definite,
λ̂min > 0. Then (7) follows from (6).

Remark 4. The result presented in (7) indicates that λ̂min and λ̂max are actually the smallest and the second largest
eigenvalues of the preconditioned system P−1A. The eigenvalue λ̂max equals N if and only if the local subspace Vi

has common subset strictly larger than V0. This only happens when N is small and local meshes are structured. In
general, N > λ̂max and N is an isolated eigenvalue of P−1A.

In the next step, we will take advantage of the special spectrum decomposition in (6) to study the convergence of
the CG method applied to the preconditioned system P−1A. But first, we quote from [1] the following result

‖ek‖A

‖e0‖A
= inf

q∈Pk

‖q(P−1A)e0‖A

‖e0‖A
≤ inf

q∈Pk
max

λ∈σ(P−1A)
|q(λ)|. (8)

Here ek = uk − u is the exact error at the step n of the CG method, σ(P−1A) denotes the spectrum of P−1A, and Pk is
the set of polynomials q of degree k or less, with q(0) = 1. More details about the CG method can be found in [35, 23]
and the references therein.

Theorem 3. The error of the CG method applied to equation (3) when it is left-preconditioned by P−1 satisfies

‖ek‖A

‖e0‖A
≤

2(N − λ̂min)
N

 √κ̂ − 1
√
κ̂ + 1

k−1

< 2
 √κ̂ − 1
√
κ̂ + 1

k−1

, (9)

where κ̂ = λ̂max/λ̂min is called the effective condition number of P−1A.
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Proof. By (8), it is sufficient to find a polynomial q(x) ∈ Pk whose maximum value for x ∈ [λ̂min, λ̂max] is the second
quantity in (9). Consider the polynomial

q(x) =
Tk−1(γ − 2x

λ̂max−λ̂min
)(N − x)

NTk−1(γ)
, (10)

where γ = (λ̂max + λ̂min)/(λ̂max− λ̂min) > 1 and Tk−1(x) is the Chebyshev polynomial of degree k−1. More information
about Chebyshev polynomials can be found in [27]. Clearly, q has degree k and q(0) = 1.

For x ∈ [λ̂min, λ̂max], the quantity γ − 2x
λ̂max−λ̂min

belongs to [−1, 1] and |N − x| ≤ N − λ̂min. It follows that∣∣∣∣∣∣Tk−1

(
γ −

2x
λ̂max − λ̂min

)
(N − x)

∣∣∣∣∣∣ ≤ N − λ̂min. (11)

We use the standard estimate for Tk−1(x):

Tk−1(γ) =
1
2


√
κ̂ + 1
√
κ̂ − 1

k−1

+

 √κ̂ + 1
√
κ̂ − 1

−(k−1) ≥ 1
2

 √κ̂ + 1
√
κ̂ − 1

k−1

. (12)

More details can be found in [35, p. 300]. The inequalities (9) then follow immediately from (11) and (12).

We have shown in Theorem 3 that the convergence of the CG method with preconditioner P−1 can be bounded by
quantities mainly depend on the ratio of λ̂min and λ̂max, the second largest and smallest eigenvalues of P−1A. In the
next step, we present estimates for these eigenvalues.

4.1. Second largest eigenvalue estimate
Our plan to estimate λ̂max is to seek an explicit formula for Q̂i and compare the largest eigenvalue of

∑N
i=1 Q̂i with

that of the related traditional AS method. We begin with some preparation.
Let V̂i be the subspace of Vi spanned by nodal basis functions associated with nodal points which are in Ti but are

not in TH . With a slight abuse of notation we can write

V̂i = span
{
ψ(i)

j (x), ∀ j s.t x j < TH
}

Clearly, Vi = V0⊕V̂i. This is a hierarchical decomposition of Vi into subspace V0 of coarse basis functions and subspace
V̂i of fine basis functions. We quote from [7] (see also [22]) the following well-known result of the strengthened
Cauchy-Schwarz inequality for hierarchical bases.

Lemma 4. Given the finite element hierarchical decomposition Vi = V0⊕V̂i. Then for all v0(x) ∈ V0 and all v̂i(x) ∈ V̂i:

|a(v0, v̂i)| ≤ γ ‖v0‖A ‖v̂i‖A, i = 1, . . . ,N. (13)

Here the constant γ, 0 < γ < 1, (the maximum of all the constants associated with local meshes Ti) depends on the
shape regularity quality of the meshes TH , Ti, but is otherwise independent of the mesh sizes h and H.

Now let mi = ni − n0 and
{
ω(i)

1 (x), · · · , ω(i)
mi (x)

}
be an a(·, ·)-orthonormal basis of V̂i. Denote

Wi =


ω(i)

1 (x1) · · · ω(i)
mi (x1)

... · · ·
...

ω(i)
1 (xn) · · · ω(i)

mi (xn)

 .
We note that the columns of U0 and the columns of Wi represent bases of V0 and V̂i respectively. Therefore,
range(Pi) = range(RT

i ) = range([U0 Wi]) since V0 ⊕ V̂i = Vi.

Lemma 5. Let UT AWi = [XT
i YT

i ]T , where Xi ∈ Rn0×mi , Yi ∈ Rn−n0×mi . Then Q̂i = Yi(YT
i Yi)−1YT

i , for i = 1, . . . ,N.
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Proof. Since Qi = UT APiU and U is non-singular, we have

range(Qi) = UT A(range(Pi)) = UT A(range([U0 Wi])) = range(UT A[U0 Wi])

= range
([

I Xi

0 Yi

])
= range

([
I 0
0 Yi

])
= range(Ei), (14)

where Ei = diag(I,Yi). So Qi is an projection onto the range of Ei. In addition,

ni = dim(Vi) = rank([U0 Wi]) = rank
([

I Xi

0 Yi

])
= rank

([
I 0
0 Yi

])
.

Therefore, rank(Yi) = ni − n0 = mi. In other words, the matrix Yi has full rank. It follows that the columns of Ei are
linearly independent. This together with (14) imply

Qi = Ei(ET
i Ei)−1ET

i =

[
I 0
0 Yi(YT

i Yi)−1YT
i

]
.

Then the desired equality follows from the fact that Qi = diag(In0 , Q̂i).

Lemma 6. For Xi,Yi defined in Lemma 5, we have

(1 − γ2)I � YT
i Yi, (15)

where 0 < γ < 1 is the constant introduced in Lemma 4. The notation � denotes the positive semi-definite ordering
(cf. [25]). In addition,

N∑
i=1

YiYT
i � Nc In−n0 . (16)

Proof. Using the definitions of Xi,Yi and the fact that Wi has A-orthonormal columns, we have

XT
i Xi + YT

i Yi = [XT
i YT

i ]
[
Xi

Yi

]
= WT

i AUUT AWi = WT
i AWi = Imi . (17)

Therefore, in order to show (15) we will bound XT
i Xi from above.

For v0(x) ∈ V0 and v̂i(x) ∈ V̂i, their coordinate vectors are of the following forms

v0 = U
[
y
0

]
, v̂i = [U0 Wi]

[
0
z

]
, y ∈ Rn0 , z ∈ Rmi .

Now the inequality (13) can be written in the matrix form as follows

[yT 0]UT A[U0 Wi]
[
0
z

]
≤ γ

(
[yT 0]UT AU

[
y
0

]) (
[0 zT ]

[
UT

0
WT

i

]
A[U0 Wi]

[
0
z

])
.

Equivalently for any y ∈ Rn0 and z ∈ Rmi : [yT 0]
[
I Xi

0 Yi

] [
0
z

]
= yT Xiz ≤ γ ‖y‖2 ‖z‖2. This implies that ‖Xi‖2 ≤ γ and

‖XT
i Xi‖2 ≤ γ

2. In other words, XT
i Xi � γ

2Imi . Then (15) follows immediately from (17).
Next we are going to prove (16). Let V†i = Vh|Ω†i

, i = 1, . . . ,N. We note that V†i are the local spaces in the related

traditional AS method (see [34, p. 59]). Since all elements in Ti that are outside of Ω
†

i belong to TH , V̂i is a subset of
V†i . Consequently, there is an orthonormal basis of V†i in the form of

{
ω(i)

1 , . . . , ω
(i)
mi , ω

(i)
mi+1, . . . , ω

(i)
m̃i

}
. Let W̃i ∈ Rn×m̃i

be defined as follows

W̃i =


ω(i)

1 (x1) · · · ω(i)
m̃i

(x1)
... · · ·

...

ω(i)
1 (xn) · · · ω(i)

m̃i
(xn)

 .
8



Denote [X̃T
i ỸT

i ] = UT AW̃i, where X̃i ∈ Rn0×m̃i , Yi ∈ Rn−n0×m̃i . Then the first mi columns of Ỹi form Yi. Assume
Yi = [yi

1 · · · yi
mi

] and Ỹi = [yi
1 · · · yi

mi
yi

mi+1 · · · yi
m̃i

]. For any z ∈ Rn−n0 we have

zT

 N∑
i=1

YiYT
i

 z =

N∑
i=1

mi∑
j=1

(yi
j
T

z)2 ≤

N∑
i=1

m̃i∑
j=1

(yi
j
T

z)2 = zT

 N∑
i=1

ỸiỸT
i

 z. (18)

Therefore,
N∑

i=1

YiYT
i �

N∑
i=1

ỸiỸT
i . (19)

Now let Q̃i be the Euclidean orthogonal projection corresponding to the Schwarz projection P̃i associated with Ω
†

i
in the traditional AS method (see [34, chapter 2]). Similar to (14), we have range(Q̃i) = range(UT AW̃i). In addition,
Fi = UT AW̃i = [X̃T

i ỸT
i ] has orthonormal columns. Thus the projection Q̃i can be written as

Q̃i = FiFT
i =

[
X̃iX̃T

i X̃iỸT
i

ỸiX̃T
i ỸiỸT

i

]
.

Therefore, for any z ∈ Rn−n0

zT
N∑

i=1

ỸiỸT
i z = [0 zT ]

N∑
i=1

Q̃i

[
0
z

]
≤ ρ(

N∑
i=1

Q̃i) zT z = ρ(
N∑

i=1

P̃i) zT z,

where ρ denote the spectral radius. On the other hand, according to [21, Theorem 4.1], ρ(
∑N

i=1 P̃i) ≤ Nc. Consequently,

ỸiỸT
i � Nc In−n0 . (20)

The ordering (16) then follows from (19) and (20).

We now present one of our main results, the estimate for the second largest eigenvalue.

Theorem 7. The second largest eigenvalue of the preconditioned system P−1A is bounded as follows

λ̂max ≤
Nc

(1 − γ2)
. (21)

Proof. From (5), we have λ̂max = ρ(
∑N

i=1 Q̂i) = ρ
(∑N

i=1 Yi(YT
i Yi)−1YT

i

)
. On the other hand, it follows from (16) and

(15) that
N∑

i=1

Yi(YT
i Yi)−1YT

i �
1

(1 − γ2)

N∑
i=1

YiYT
i �

Nc

(1 − γ2)
In−n0 .

Then the equality (21) follows immediately.

4.2. Smallest eigenvalue estimate

Our estimate of λ̂min follows the standard approach where a stable decomposition is constructed [37, 21, 34].
However, as the local meshes Ti are meshes of the whole domain and they are very different from one another and
from the global fine mesh Th outside of their associated subdomains, the stable decomposition in [21, 34] is no longer
valid. In order to adapt to the situation, we build our stable decomposition inductively on the colouring defined in
section 2. In our construction, the partition of unity is replaced by a set of cut-off functions, and the point-wise
interpolation is replaced by a special interpolation inspired by [31].
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Cut-off functions. Denote Ck the set of indices of subdomains coloured by colour ck, 1 ≤ ck ≤ Nc. Then for each
subdomain Ωi, i ∈ Ck, we define the cut-off function θ(ck)

i (x) as follows:

θ(ck)
i (x) =


1 if x ∈ Ω̄i

0 if x < Ω̄
†

i
dist(x,∂Ω

†

i \∂Ω)

dist(x,∂Ω
†

i \∂Ω)+dist(x,∂Ωi\∂Ω)
if x ∈ Ω

†

i \Ωi,

(22)

Clearly, θ(ck)
i is well-defined, continuous on Ω̄ and satisfies

0 ≤ θ(ck)
i (x) ≤ 1, for all x ∈ Ω̄. (23)

In addition,
supp(θ(ck)

i ) ⊂ Ω̄
†

i , supp(θ(ck)
i ) ∩ supp(θ(ck

j ) = ∅, i, j ∈ Ck, i , j. (24)

Since the width of Ω
†

i \Ωi is of size H, according to [34, Lemma 3.4], there exists constant Cθ does not depend on i
and H such that

‖∇θ(ck)
i ‖∞ ≤ Cθ/H. (25)

In the next step, we present the framework to construct the modified Lagrange type interpolation operator intro-
duced by Scott and Zhang in [31]. Some stability properties for this type of interpolation will also be provided for
later use.

Modified Lagrange interpolations. Let T ◦ be a finite element mesh of Ω with its set of nodal points N◦ = {x j
◦}n

◦

j=1.
Denote V◦ the finite element space associated with T ◦ and let {ψ◦j}

n◦
j=1 be the set of linear nodal basis functions of V◦

corresponding toN◦. For any node x◦j , we fix an edge e◦j in T ◦ that has x◦j as one of its vertex. Let {x◦j,k}
2
k=1 be the two

nodal points in N◦ associated with e◦j . Without lost of generality, we choose x◦j,1 = x◦j . For the nodal basis {ψ◦j,k}
2
k=1

associated with {x◦j,k}
2
k=1, we have an L2(e◦j)-dual basis {η◦j,k}

2
k=1 defined by

∫
e◦j
η◦j,k ψ

◦
j,l = δkl, k, l = 1, 2, where δk,l is

the Kronecker delta. For simplicity, we let η◦j ≡ η
◦
j,1, for x◦j ∈ Ni. Then, we have∫

e◦j

η◦j ψ
◦
k = δ jk, k, j = 1, 2, . . . , n◦. (26)

Now we can define the interpolation operator,

I◦ = I
{e◦j }
T ◦

: H1(Ω)→ V◦,

I◦u(x) =

ni∑
j=1

ψ◦j(x)
∫

e◦j

η◦j(ξ)u(ξ) dξ. (27)

Here, the notation I
{e◦j }
T ◦

is used to emphasise that the interpolation operator depends on the mesh T ◦ and the choice of
edges {e◦j}

n◦
j=1. However, for simplicity I◦ is used in other places.

The following Lemma is useful when we want to consider I◦u on a subset of Ω.

Lemma 8. Let u be a function in H1(Ω) and Ωs be a subset of Ω. Assume that Ωs is also an union of elements in T ◦.
Then following statement holds

I◦u(x) =
∑

j, x◦j∈Ω̄
s

ψ◦j(x)
∫

e◦j

η◦j(ξ)u(ξ) dξ, for all x ∈ Ω̄s.

Proof. The proof is obvious as the basis functions ψ◦j(x) associated with x◦j < Ω̄s vanish in Ω̄s.

Let {x(i)
j }

ni
j=1 be the set of nodal points of the finite element mesh Ti, 0 ≤ i ≤ N. For each mesh Ti, 0 ≤ i ≤ N we

will choose a set of edges {e(i)
j }

ni
j=1 in Ti corresponding to {x(i)

j }
ni
j=1 that satisfies the following conditions:

10



(i) e(i)
j contains x(i)

j

(ii) e(i)
j ∈ ∂Ω, if x(i)

j ∈ ∂Ω

(iii) e(i)
j ∈ ∂Ωi\∂Ω, if x(i)

j ∈ ∂Ωi\∂Ω, i , 0

(iv) e(i)
j ∈ ∂Ωk, if x(i)

j < ∂Ω ∪ ∂Ωi is shared by two or more subdomains in the partition {Ωl}
N
l=1. Here Ωk is the

subdomain with smallest colour that contains x(i)
j .

For each mesh Ti, we fix a choice of edges {e(i)
j }

ni
j=1 satisfying the four conditions above. Then we let

Ih,H
i = I

{e(i)
j }

Ti
: H1(Ω)→ Vi, 1 ≤ i ≤ N

IH = I
{e(0)

j }

T0
: H1(Ω)→ V0,

be the modified Lagrange interpolation operators associate with Ti and {e(i)
j }

ni
j=1, and with T0 and {e(0)

j }
n0
j=1 respectively.

According to [31], there exist a constant CI depend only on the shape regularity of the associated meshes such that

‖Ih,H
i u‖H1(K) ≤ CI |u|H1(ωK ), K, ωK ∈ Ti, (28)

‖u − IHu‖L2(K) ≤ CI H|u|H1(ωK ), K, ωK ∈ TH , (29)

‖IHu‖H1(K) ≤ CI |u|H1(ωK ), K, ωK ∈ TH . (30)

where ωK = interior
(⋃
{K̄ j | K̄ j ∩ K̄ , ∅, Ki ∈ T

◦}
)
.

Lemma 9. The interpolation operator Ih,H
i preserves fine functions in the regions where the mesh Ti is fine. In other

words,
Ih,H
i u|Ω̄i

= u|Ω̄i
,

for any function u(x) satisfies u(x)|Ω̄i
∈ Vh|Ω̄i

.

Proof. Let x(i)
j be a nodal point of Ti, x(i)

j ∈ Ω̄i. Since Ti|Ωi ≡ Th|Ωi , this nodal point also presents in Th. In addition,

the two nodal basis functions associated with x(i)
j in Vi and Vh are identical on Ω̄i, namely

ψ(i)
j |Ωi = ψ ji |Ωi . (31)

On the other hand, by (iii) the chosen edge e(i)
j ∈ Ti for the nodal point x(i)

j should also be an edge in Th if x(i)
j ∈ Ω̄i.

Therefore, by (26) we have ∫
e(i)

j

η j(ξ) u(ξ) dξ = u(x j), for all x(i)
j ∈ Ω̄i. (32)

Using (27), Lemma 8, (32) and (31), we have

Ih,H
i u(x) =

ni∑
j=1

ψ(i)
j (x)

∫
e(i)

j

η(i)
j (ξ)u(ξ) dξ =

∑
j, x j∈Ω̄i

ψ(i)
j (x)

∫
e(i)

j

η(i)
j (ξ)u(ξ) dξ =

∑
j, x j∈Ω̄i

ψ(i)
j (x) u(x j) = u(x).

We are now in a position to estimate the smallest eigenvalue of the preconditioned system P−1A. The idea is to
construct local functions colour by colour. The proposed interpolations will ensure that residual functions vanish on
all considered subdomains, and stay zero there in later induction steps. The following Lemma lays the foundation for
our construction of local functions in a stable decomposition.
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Lemma 10. Assume u(x) ∈ Vh. Let u(0)(x) := u(x). Then our inductive construction of residual functions u(k)(x) is as
follows

w(k) = IHu(k−1), (w(k) ∈ VH) (33)

v(k) = u(k−1) − w(k), (v(k) ∈ Vh) (34)

v(k)
i = Ih,H

i θ(ck)
i v(k), (v(k)

i ∈ Vi). (35)

u(k) = v(k) −
∑
i∈Ck

v(k)
i = v(k) −

∑
i∈Ck

Ih,H
i θ(ck)

i v(k), (u(k) ∈ Vh) (36)

where k = 1, 2, . . . ,Nc. Then the following equalities hold

u(k)|Ω̄i
≡ 0, for all i ∈ Cki , ki ≤ k, (37)

u =

Nc−1∑
k=0

w(k) +

Nc∑
k=1

∑
i∈Ck

v(k)
i , (38)

∣∣∣∣∣∣∣∑i∈Ck

v(k)
i

∣∣∣∣∣∣∣
2

H1(Ω)

=
∑
i∈Ck

∣∣∣v(k)
i

∣∣∣2
H1(Ω) . (39)

Proof. Substituting k = 1 into (36) gives u(1) = v(1)−
∑

i∈C1
Ih,H
i θ(c1)

i v(1). For i, j ∈ C1, i , j, according to (22), θ(c1)
i = 1

on Ω̄i, and θ(c1)
j = 0 on Ω̄i. Therefore, Ih,H

i θ(c1)
i v(1) = Ih,H

i v(1) = v(1) on Ω̄i, i ∈ C1 as a consequence of Lemma 9. In

addition, Ih,H
j θ(c1)

j v(1) ≡ Ih,H
j 0 = 0 on Ω̄i. Combining these together, we have

u(1)|Ω̄i
≡ 0, for all i ∈ C1. (40)

For any x ∈ Ω̄i, i ∈ C1 from (33) and Lemma 8, it follows that

w(2)(x) = IHu(1)(x) =
∑

j, x(0)
j ∈Ω̄i

ψ(0)
j (x)

∫
e(0)

j

η(0)
j (ξ) u(1)(ξ) dξ (41)

By condition (iv), e(0)
j ∈ Ω̄i for all x(0)

j ∈ Ω̄i, i ∈ C1. This together with (40) imply

w(2)|Ω̄i
≡ 0, for all i ∈ C1. (42)

Then from (34), (40) and (42), it follows that

v(2)|Ω̄i
≡ 0, for all i ∈ C1. (43)

Substituting k = 2 into (36), we obtain u(2) = v(2) −
∑

i∈C2
Ih,H
i θ(c2)

i v(2). Similarly, we have

u(2)|Ω̄i
≡ 0, for all i ∈ C2. (44)

Now assume l ∈ C1. For any x ∈ Ω̄l, i ∈ C2 according to Lemma 8,

Ih,H
i θ(c2)

i v(2)(x) =
∑

j, x(i)
j ∈Ω̄l

ψ(i)
j (x)

∫
e(i)

j

η(i)
j (ξ)(θ(c2)

i v(2))(ξ) dξ. (45)

On the right hand side of (45), if x(i)
j ∈ Ω̄l\∂Ωi then by condition (iv), e(i)

j ∈ ∂Ωl ⊂ Ω̄l. This together with (43) imply∫
e(i)

j
η(i)

j (ξ)(θ(c2)
i v(2))(ξ) dξ = 0. If x(i)

j ∈ Ω̄l ∩ ∂Ωi then by condition (iii), e(i)
j ∈ ∂Ωi. From (26), (22), (43) and the fact
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that x(i)
j ∈ Ω̄l, we have

∫
e(i)

j
η(i)

j (ξ)(θ(c2)
i v(2))(ξ) dξ = θ(c2)

i v(2)(x(i)
j ) = v(2)(x(i)

j ) = 0. In summary, Ih,H
i θ(c2)

i v(2) = 0 on Ω̄l, for

all l ∈ C1, i ∈ C2. This together with (43) imply u(2)|Ω̄l
≡ 0, for all l ∈ C1. From (44), it follows that

u(2)|Ω̄i
≡ 0, for all i ∈ C1 ∪ C2.

Continuing this process for k = 3, . . . ,Nc, we obtain (37).
Since {Ω̄i}

N
i=1 covers Ω, (37) implies u(Nc)|Ω ≡ 0. Tracing backward, we have

0 = u(Nc) = u(Nc−1) − w(Nc) −
∑

i∈CNc

v(Nc)
i = u(Nc−2) − w(Nc−1) − w(Nc) −

∑
i∈CNc−1

v(Nc−1)
i −

∑
i∈CNc

v(Nc)
i

= u(0) −

Nc∑
k=1

w(k) −

Nc∑
k=1

∑
i∈Ck

v(k)
i .

This implies (38) because u(0)(x) = u(x).
Since θ(ck)

i has support on Ω̄
†

i , the functions θ(ck)
i v(k) and consequently v(k)

i = Ih,H
i θ(ck)

i v(k) also have support on Ω̄
†

i .
Therefore, v(k)

i have disjoint supports, and (39) follows immediately.

Now we are ready to state the main result of this subsection.

Theorem 11. For any u(x) ∈ Vh there exists a decomposition

u =

N∑
i=1

ui, ui(x) ∈ Vi, 1 ≤ i ≤ N,

that satisfies
N∑

i=1

a(ui, ui) ≤ Cm a(u, u),

where Cm is a constant independent of H, h and N but not Nc. In addition, the smallest eigenvalue of the precondi-
tioned system P−1A can be bounded from below as follows

λ̂min ≥ C−1
m .

Proof. In this proof, for simplicity, we use x . y to denote x ≤ C y, where the constant C might depend on the
interpolation constant, the constant in bounding the gradients of cut-off functions and the number of colours in the
colouring (CI , Cθ and Nc respectively) but does not depend on the mesh sizes (h, H) and the number of subdomains
in the partition (N).

Based on (38) in Lemma 10, we define

u =

N∑
i=1

ui, where ui =

{
w(ki) + v(ki)

i , if i = min(Cki )
v(ki)

i , otherwise
. (46)

We will show that this is a stable decomposition.
First, from the definition of w(k) in (33) and the stability properties of IH in (30), it follows that |w(k)|H1(K) ≤

CI |u(k−1)|H1(ωK ), for K and ωK ∈ T0. Squaring and summing over all K ∈ T0, we have

|w(k)|2H1(Ω) . |u(k−1)|2H1(Ω). (47)

Then it follows from (34), Young’s inequality, and (47) that

|v(k)|2H1(Ω) ≤ 2
(
|u(k−1)|2H1(Ω) + |w(k)|2H1(Ω)

)
. |u(k−1)|H1(Ω). (48)
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On the other hand, from (34), (33) and (29), we have

‖v(k)‖L2(K) =
∥∥∥u(k−1) − IHu(k−1)

∥∥∥
L2(K) ≤ CI H |u(k−1)|H1(ωK ), K, ωK ∈ T0.

Squaring and summing over all K ∈ T0, we obtain

‖v(k)‖2L2(Ω) . H2 |u(k−1)|2H1(Ω). (49)

For i ∈ Ck, from (35) and (28) it follows that

|v(k)
i |H1(K) = |Ih,H

i (θ(ck)
i v(k))|H1(K) ≤ CI |θ(ck)

i v(k)|H1(K), K,K ∈ Ti. (50)

Squaring and summing over all K ∈ Ti, we find that

|v(k)
i |

2
H1(Ω) . |θ

(ck)
i v(k)|2H1(Ω). (51)

For 1 ≤ k ≤ Nc, using (39), (51) and Young’s inequality, we have∣∣∣∣∣∣∣∑i∈Ck

v(k)
i

∣∣∣∣∣∣∣
2

H1(Ω)

=
∑
i∈Ck

∣∣∣v(k)
i

∣∣∣2
H1(Ω) .

∑
i∈Ck

∣∣∣θ(ck)
i v(k)

∣∣∣2
H1(Ω) =

∣∣∣∣∣∣∣v(k)
∑
i∈Ck

θ(ck)
i

∣∣∣∣∣∣∣
2

H1(Ω)

≤ 2
∫

Ω

∇v(k)(
∑
i∈Ck

θ(ck)
i )

2

dx + 2
∫

Ω

v(k)∇(
∑
i∈Ck

θ(ck)
i )

2

dx. (52)

The first term on the right hand side of (52) can be estimated using the fact that θ(ck)
i have disjoint supports (see (24))

and uniformly bounded by 1 (see (22)):∫
Ω

∇v(k)(
∑
i∈Ck

θ(ck)
i )

2

dx ≤
∫

Ω

(
∇v(k)

)2
dx = |v(k)|2H1(Ω). (53)

The second term of (52) is estimated using the fact that ∇θ(ck)
i are uniformly bounded (see (25)) and have disjoint

supports (implied from (24)), and (49). :∫
Ω

v(k)∇(
∑
i∈Ck

θ(ck)
i )

2

dx ≤

∣∣∣∣∣∣∣∇(
∑
i∈Ck

θ(ck)
i )

∣∣∣∣∣∣∣
2

∞

∫
Ω

(
v(k)

)2
dx . H−2‖v(k)‖L2(Ω) . |v

(k)|2H1(Ω). (54)

Combining (52) and (53) and (54), we have ∣∣∣∣∣∣∣∑i∈Ck

v(k)
i

∣∣∣∣∣∣∣
2

H1(Ω)

. |v(k)|2H1(Ω). (55)

Using (36), Young’s inequality, (55) and (48), it yields

|u(k)|2H1(Ω) =

∣∣∣∣∣∣∣v(k) −
∑
i∈Ck

v(k)
i

∣∣∣∣∣∣∣
2

H1(Ω)

≤ 2

|v(k)|2H1(Ω) +

∣∣∣∣∣∣∣∑i∈Ck

v(k)
i

∣∣∣∣∣∣∣
2

H1(Ω)

 . |v(k)|2H1(Ω)) . |u(k−1)|2H1(Ω).

Consequently,
|u(k)|2H1(Ω) . |u

(0)|2H1(Ω) = |u|2H1(Ω). (56)

Using (46), Young’s inequality, (47), (39), (55) and (48), we have

N∑
i=1

a(ui, ui) =

Nc∑
k=1

∑
i∈Ck

|u(k)
i |

2
H1(Ω) ≤ 2

Nc∑
k=1

|w(k)|2H1(Ω) +
∑
i∈Ck

|v(k)
i |

2
H1(Ω)

 . |u(k−1)|2H1(Ω). (57)

14



Then it follows from (57) and (56) that there exist Cm independent of h, H and N such that

N∑
i=1

a(ui, ui) ≤ Cm |u|2H1(Ω) = Cm a(u, u). (58)

The lower bound for the smallest eigenvalue λ̂min is followed immediately by [37] (see also [34, Chapter 2]).

Combining Theorems 7 and 11, we find a bound for the effective condition number of the proposed method.

Theorem 12. In case exact solvers are employed on all subspaces, the effective condition number of the precondi-
tioned system P−1A satisfies

κ̂ =
λ̂max

λ̂min
≤

Cm Nc

(1 − γ2)
.

5. Numerical Experiments

In this section, we present two numerical experiments to support the theory formulated in section 4. A vectorised
Matlab code which allows hanging nodes is developed for this study. The finite element codes iFEM [20] and PLTMG
[9] are also used extensively in early testing.

5.1. L-shaped Domain

In this experiment, we consider the problem described in (1), where Ω is the L-shaped domain obtained from the
unit square by removing the lower right quarter (see Figure 3).

Figure 3: L-shaped domain: The coarse mesh with partition (left), a local mesh (middle) and the global mesh (right) when L = 0, N = 4 and l = 2

We will study the changes of λ̂max and λ̂min when h, H and N vary. According to Theorem 7 and Theorem 11, we
expect λ̂max and λ̂min do not depend on h and H, but weakly depend on N.

By serial adaptivity, we create a conforming triangular mesh of 293 elements and 129 vertices. The mesh is
partitioned into N = 4, 8, . . . , 64 subdomains using METIS [26]. Then, we perform L = 0, 1, 2 globally uniform
refinements to create coarse meshes of different sizes (different H). These coarse meshes of the whole domain are
then broadcast to N processors where they are adaptively refined by l = 1, 2, 3 cycles of adaptive refinements (vary
h) in parallel. The adaptive refinement on each processor focuses on the associated local subdomain. However, there
might be refinement outside to keep the final mesh on each processor conforming across the interface with the local
meshes in the neighbouring subdomains . The global fine mesh is the union of the refined submeshes provided by all
processors. The meshes at different stages of the experiment for L = 0, N = 4 and l = 2 is shown in Figure 3.
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Table 1: Smallest and second largest eigenvalues (λ̂min, λ̂max) of the preconditioned system P−1A for meshes of different sizes and partitions.

L = 0 L = 1 L = 2

l = 1 l = 2 l = 3 l = 1 l = 2 l = 3 l = 1 l = 2 l = 3

N = 4

λ̂min 0.980 0.962 0.945 0.973 0.948 0.935 0.973 0.948 0.935

λ̂max 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000

N = 8

λ̂min 0.977 0.961 0.945 0.973 0.949 0.935 0.971 0.949 0.935

λ̂max 3.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000

N = 16

λ̂min 0.980 0.963 0.945 0.973 0.948 0.935 0.971 0.948 0.935

λ̂max 4.039 4.041 4.041 4.000 4.000 4.000 4.000 4.000 4.000

N = 32

λ̂min 0.981 0.967 0.950 0.975 0.951 0.937 0.972 0.951 0.937

λ̂max 5.007 5.0079 5.007 5.000 5.000 5.000 5.000 5.000 5.000

N = 64

λ̂min 0.985 0.968 0.953 0.976 0.954 0.939 0.972 0.954 0.939

λ̂max 6.033 6.035 6.035 6.000 6.000 6.000 6.000 6.000 6.000

From Table 1, we can see that there is little or no change in λ̂min when N and H (effectively L) vary. When h
(effectively l) varies, there are changes in λ̂min. However, these changes are not significant and we can safely say that
λ̂min is bounded independently of N, H and h.

There are almost no change in λ̂max when H and h (effectively L and l ) vary especially when the coarse meshes are
sufficiently fine (L = 1 and L = 2). We do see that λ̂max increase consistently as N increases. However, the increase is
modest and is at most proportional to the number of color Nc which is much smaller than the number of subdomain
N when N is sufficiently large.

In conclusion, the behavior of λ̂max and λ̂min in this experiment agrees with the estimates in Theorem 7 and
Theorem 11.

5.2. Seepage Under Dam

In the second experiment, we study seepage under a dam. The problem is modeled as the stationary state of
groundwater flowing through porous media, which has the following governing equation:

−∇ · (k(x, y)∇h(x, y)) = 0 in Ω,

h = gD on ∂DΩ,

∂h
∂n

= gN on ∂NΩ,

where h(x, y) is the total hydraulic head and k(x, y) is the hydraulic permeability coefficient. Here, we assume the
hydraulic head is constant across the z direction and only work with two dimensional space.
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Figure 4: Geometry of the computational domain

Figure 5: Seepage under a dam: a coarse mesh with partition

Figure 6: Seepage under a dam: a local adaptive mesh on a processor
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Table 2: Numbers of iterations required to reduced the residual by a factor of 106 using the proposed preconditioner and two-level AS preconditioner
(in parentheses).

n0 = 608 n0 = 1042

N l = 1 n = 2 l = 3 l = 4 l = 1 l = 2 l = 3 l = 4

4 4(10) 4(10) 4(10) 4(10) 4(10) 4(10) 4(10) 4(10)

8 6(11) 7(11) 7(11) 7(13) 7(11) 7(11) 7(12) 6(15)

16 8(13) 9(13) 9(13) 8(13) 8(12) 9(11) 9(12) 8(14)

32 11(13) 12(13) 11(13) 11(17) 11(13) 11(12) 11(12) 11(15)

64 13(15) 13(13) 13(13) 12(16) 12(14) 13(13) 13(15) 13(17)

The simulation domain Ω, which is under the dam (in solid color), is illustrated in Figure 4. The upstream
and downstream water level is assumed to be 10 and 1, respectively. This implies the Dirichlet boundary condition
h|D1 = gD1 = 10 and h|D2 = gD2 = 1. In addition, we assume that the dam is made of impermeable material and there
is no flow coming through the bottom, the left, the right boundary of the domain. Therefore, zero Neumann condition
(∂h/∂n = gN = 0) is imposed on associated boundary components. In our experiment, k = 10−5.

We will study the convergence of the CG method in solving (3) with the proposed preconditioner P−1. According
to Theorem 3 and Theorem 12, we expect that the number of iterations required to reduced the residual below a fixed
relative tolerance does not depend on the mesh sizes (H, h) and the number of subdomains (N) but on the number of
colours (Nc).

Our construction of the experiment is similar to that of the first experiment. We create, by serial adaptivity, two
unstructured conforming triangular meshes of n0 = 608 and n0 = 1042 vertices. These two coarse meshes, which has
different mesh sizes (different H), are partitioned into N = 4, 8, . . . , 64 subdomains. For each combination of meshes
and partitions, we apply l = 1, 2, 3, 4 levels of refinement locally on each subdomain to create local adaptive meshes
of the whole domain. These local meshes are used to formulate the proposed preconditioner P−1. The traditional
two-level AS preconditioner P̃−1

AS with the minimal overlap (δ = h) is also formulated for comparison. Table 2 reports
the number of CG iterations required to reduce the residual by a factor of 106 using P−1 and P̃−1

AS (in parentheses).
Except for a few cases where the two preconditioners require the same number of iterations, P−1 clearly out-

performs P̃−1
AS , especially for large problems (large number of refinements l). With P−1, the iteration number barely

changes when l (effectively h) or n0 (effectively H) vary. However, when l increases the overlap in P̃−1
AS (δ = h)

decreases while the size of the subdomains remains the same. As the conditioned number with the two-level AS is
proportional to (1 + H/δ) [21, 34], we see increase in the iteration number associated with P̃−1

AS when l increases. In
order for P̃−1

AS to be competitive with P−1, the overlap δ need to be at least l layers of elements. This implies more
computational and communication cost associated with the overlap when l increases.

For both preconditioners, the iteration number increases as N increases. However, the increase is modest and is at
most proportional to Nc, the number of colours.

This experiment clearly demonstrates that our preconditioner is more efficient than the traditional two-level AS
preconditioner, especially for large problems requiring many levels of refinement. The experiment also confirms that
the performance of our preconditioner is independent of the mesh sizes and the number of subdomains.

6. Conclusion

We have introduced a new additive Schwarz preconditioner to use in parallel finite elements where local meshes
are meshes of the whole domain. From a practical point of view, it has the advantage of being able to obtain local
matrices through assembling without communication and without forming the global matrix. It is proved to be optimal
in the sense that the effective condition number of the preconditioned system can be bounded independently of the
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coarse mesh size, fine mesh size and the number of subdomains. In comparison with the traditional two-level AS
preconditioner, it does not require extra cost associated with the overlap to maintain the optimal convergence when
the mesh is refined. The theoretical findings have been confirmed by numerical experiments.
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