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In this paper we use the evolving framework of structural abstraction as a theoretical
lens to investigate how mathematics major university students understand the limit
concept of a sequence. To this aim the theoretical framework is outlined and previous
empirical data on one individual’s partial (re-)construction of a convergent sequence
is revisited. In doing so, we provide insights in how students, who consider the formal
definition of a mathematical concept as one of the components of their concept
image, involve it into their overall mathematical discourse when building new
knowledge. Deeper analysis also reveals unsettled issues about structural abstraction
and provides new directions for advancing our understanding of this kind of
abstraction.
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abstraction, theory development.

INTRODUCTION

There has been a growing interest in revisiting the notion of abstraction in
mathematics education. Recent contributions from socio-cultural perspectives on the
learning of mathematics have strengthened our theoretical understanding and framed
our empirical investigation on abstraction in knowing and learning mathematics, as
Hershkowitz, Schwarz, and Dreyfus’ (2001) abstraction in context approach and
Noss and Hoyles’ (1996) situated abstraction approach indicated. With regard to
cognitive approaches on abstraction in mathematics education, Scheiner (2016)
observed that the literature demonstrated substantial progress in explicating the
significance of Piaget’s (1977/2001) reflective abstraction in mathematical concept
construction, the kind of abstraction that is often described in terms of forming a
(structural) concept from an (operational) process (see Dubinsky, 1991; Gray & Tall,
1994; Sfard, 1991). However, in the past, the literature rarely explored differences in
cognitive processes with regard to whether the primary focus is on the actions
(abstraction from actions) or on the objects (abstraction from objects). The former
takes place on the actions on objects, in particular, individual’s reflections on actions
on known objects; the latter takes place on the objects themselves, in particular,
paying attention to the properties and structures inherent in those objects. However,
Piaget considered abstraction from actions as the only form of abstraction for
mathematical epistemology; separating it from abstraction from objects. Given these
historical origins of our field, it is not surprising that the literature reveals a bias
towards abstraction from actions as the dominating form of abstraction in knowing
and learning mathematics.



Only recently, abstraction from objects has attracted attention as a form of abstraction
that provides an account for the complex cognitive processes compatible with
students’ sense-making strategy of ‘giving meaning’ (Scheiner, 2016; Scheiner &
Pinto, 2014). An important contribution within abstraction from objects has been
provided by Mitchelmore and White (2007) who investigated empirical abstraction
in learning elementary mathematics drawing on Skemp’s (1986) conception of
abstraction. Their approach goes beyond Piaget’s idea of empirical abstraction, as
their understanding of abstraction accounts for the similarities of the underlying
structures rather than the superficial (or external) characteristics of objects, as Piaget
did. While Mitchelmore and White (2007) considered physical objects, Scheiner
(2016) described a framework of a kind of abstraction, namely structural abstraction,
that takes place on mental objects, and, even more important, considers
complementarity of diverse features of mathematical objects instead of their
similarity. The notion of structural abstraction has been introduced by Tall (see 2013)
as a form of long term development in mathematical thinking with a focus on the
properties of objects. Scheiner (2016) and Scheiner and Pinto (2014) further
elaborated Tall’s notion of structural abstraction to draw out the cognitive
architecture of this kind of abstraction, accounting for both an objects-structure
perspective and a knowledge-structure perspective. The data of a previous study
(Pinto, 1998) was revisited, offering in the present paper a context for insights into
students’ sense-making of formal mathematics through the lens of the structural
abstraction framework. Reinterpreting the data resulted in, and still contributes to, an
evolving framework that may serve as a potentially useful tool in analyzing cognitive
processes in mathematics learning with students’ particular sense-making strategies
that have not been captured by abstraction-from-actions approaches.

In this paper, we build upon previous research using the evolving framework of
structural abstraction in providing insights in students’ mathematical concept
construction compatible with their sense-making strategy of ‘giving meaning’
(Scheiner, 2016; Scheiner & Pinto, 2014). Particularly, we take the revision of a case
study of a student, called Chris, as a point of reference (Scheiner & Pinto, 2014) — a
first-year undergraduate mathematics student, who “consistently understood [the
formal concept] by just reconstructing it from the concept image” (Pinto, 1998). The
object of consideration in this paper is another student, called Colin, who — similar to
Chris — ‘gave meaning’ to the formal content. We begin this paper by sketching the
structural abstraction framework and the research methodology of our project. The
selected instances from Colin’s case do not only highlight the analytical power of the
structural abstraction framework but also indicate profitable directions for its
advancement. It is important to note that the overall agenda in developing a
theoretical framework of structural abstraction is not to challenge or explain ideas
presented in an original work or to contrast and compete with recent approaches in
mathematics education but to theorize about, to provide deeper meaning to older
ideas, and to take them forward in ways not conceived yet.



THEORETICAL BACKGROUND

Structural abstraction is proposed as embedded in a cognitive architecture that takes
place both on the objects-structures and on the knowledge-structures. It has a dual
nature: (1) complementarizing the meaningful aspects and the structure underlying
specific objects falling under a particular mathematical concept, and (2) promoting
the growth of coherent and complex knowledge structures through restructuring of
the knowledge system gained through the former process.

From the objects-structure perspective, we assume that the meaning of a concept is
almost always contained in a unity of meaningful components of a variety of specific
objects that fall under the particular concept. For the (socially constructed) meaning
of a mathematical concept we draw on Frege’s (1892) observation that the meaning is
not directly accessible through the concept itself but through objects that fall under
the concept. In this sense, we cannot take as absolute the ‘complete construction’ of
the meaning of the concept. Rather than trying to draw a sharp line between whether
an individual has (or has not) constructed the whole meaning of a mathematical
concept, or to elaborate stages of objects-structure development, we pay particular
attention to partial constructions of the concept that students develop, and how they
make use of them in constructing new knowledge. In our view of the structural
abstraction framework, a concretizing process is demanded to particularize
meaningful components and the underlying structure of an object falling under the
mathematical concept. Concretizing may occur through contextualization that is,
placing object(s) in different specific contexts. Structural abstraction, then, means
(mentally) structuring aspects and the underlying structure of these specific objects.
In contrast to an empiricist view whose conceptual unity relies on the commonality of
elements, it is the interrelatedness of diverse elements that creates unity. Thus, the
core mechanism of structural abstraction is complementarizing rather than seeking
for similarity. In addition, we suggest that, in the complementarizing process, a
representation may be developed that is used generically for several other instances,
and, in doing so, may provide a theoretical structure in constructing the meaningful
components of the objects. Here we draw on Yopp and Ely’s (2016) insightful
contribution indicating that what makes an example generic has not only to do with
whether the example is a carrier of the general but also with the actions performed on
it — a lesson that Balacheff (1988) tried to teach long ago.

For students who ‘give meaning’ such ‘representations of’ are used generically as
‘representations for’ sense-making in mathematics. This shift from establishing a
representation of a concept to using this representation generically for constructing
and reconstructing the concept in new contexts, could be described in terms of
shifting from a ‘model of” to a ‘model for’ (Streefland, 1985). Models are, in this
sense, intermediate in abstractness between ‘the abstract’ and ‘the concrete’. This
means that in the beginning of a learning process a model is constituted that supports
the ‘ascending from the abstract to the concrete’ as described by Davydov (see
1972/1990). Davydov’s strategy of ascending from the abstract to the concrete draws



the transition from the general to the particular in the sense that learners initially seek
out a primary general structure, and, in further progress, deduce multiple particular
features of objects using that structure as their mainstay. The crucial aspect in this
approach is Ilyenkov’s (1982) observation that “the concrete is realized in thinking
through the abstract” (p. 37). The key feature within the objects-structure perspective,
however, lays in the idea that specific objects falling under a particular concept
mutually complement each other, so that the abstractness of each of them, taken
separately, 1s overcome. In this sense, and in line with a dialectical perspective
described by Ilyenkov (1982) but different from empiricist approaches, structural
abstraction 1s a movement towards complementarity of diverse aspects that creates
conceptual unity among objects.

From the knowledge-structure perspective, we take the view that knowledge is a
complex system of many kinds of knowledge elements and structures. Structural
abstraction implies a process of restructuring and expanding the knowledge system,
consisting of such ‘pieces of knowledge’ that have been constructed through the
processes described above. The cognitive function of structural abstraction is to
facilitate the assembly of more complex knowledge structures. The guiding
philosophy of this approach is rooted in the assumption that learners acquire
mathematical concepts initially on their backgrounds of existing domain-specific
conceptual knowledge through progressive integration of previous concept images
and/or by the insertion of a new discourse alongside existing concept images.

The reanalysis of empirical data gained from Pinto’s (1998) study has shown that
students, who give meaning, build a representation of the concept and, at the same
time, use it generically for reconstructing the concept in other contexts — such as in
verbal recovering the formal definition. The analysis also showed that students
generically used representations of the concept to build pieces of knowledge. To put
it in other words, the representations are actively taken as representations for
producing new knowledge and sense-making of mathematics. This mental shift from
‘representations of” to ‘representations for’ may indicate a degree of awareness of the
meaningful components and a level of complexity of the knowledge system (Scheiner
& Pinto, 2014). In this paper, we discuss one students’ non-linear knowing and
learning development of the limit concept of a sequence.

RESEARCH PURPOSE

The purpose of the paper is twofold: (a) refining and extending the theoretical
framework through paying particular attention to eventually unsettled issues about
structural abstraction, and (b) providing further insights in its potential power for the
analysis of an individual’s partial construction of the limit concept of a sequence,
consistent with his sense-making strategy. In doing so, we focus on those aspects of
the learning phenomena that are illuminated by using the structural abstraction
framework (and that have not been noticed before). Thus, the framework functions
both as a tool for research and as an object of research, a distinction already made by



Assude, Boero, Herbst, Lerman, and Radford (2008). Our agenda is driven by re-
examining an earlier study (Pinto, 1998) that identified a sense-making strategy of
formal mathematics that has not fully been captured by abstraction-from-actions
approaches in the literature on knowing and learning mathematics. The original data
were collected taking an inductive approach throughout two academic terms during
students’ first-year at a university in England, through classroom observation field
notes and transcriptions of semi-structural individual interviews. Interviews took
place every two weeks with eleven students in total. A cross-sectional analysis of
three pairs of students resulted in an identification of two prototypical sense-making
strategies: ‘extracting meaning’ and ‘giving meaning’.

“Extracting meaning involves working within the content, routinizing it, using it, and
building its meaning as a formal construct. Giving meaning means taking one’s personal
concept imagery as a starting point to build new knowledge.” (Pinto, 1998, pp. 298-299)

The latter strategy is the object of our study. In this paper, we selected instances from
the available data of the case study of a particular student, called Colin.

SELECTED INSTANCES FROM A CASE STUDY

At the beginning of his first course on real analysis, Colin expressed, in his first
interview, the formal definition of the limit of a sequence as follows:
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(Pinto, 1998, p. 201)

His partial reconstruction of the formal concept definition of limit is a productive
formulation (in a sense that it works in various contexts) of a property of a
convergent sequence. His sense-making is coherent with his written definition:

Umm ... it means that the difference between ... umm ... the terms in sequence a, and the

limit gets very very small indeed and it gets below a certain umm pre-determined value.

[...]. Err ... yes, after you go far enough out in the sequence. (Colin, first interview)
(Pinto, 1998, p. 203)

A dynamic view of a sequence as a process, implicit in evoked images such as ‘you
may go far enough out’, and of the limit concept in terms of ‘getting very small’ are
both indicated. Images such as ‘arbitrarily small quantities’, or ‘infinitesimals’, which
are common in secondary school learning settings, are recalled with the use of the
dynamic language of ‘gets very very small indeed’. This is consistent with results in
Martinez-Planell, Gonzalez, DiCristina, and Acevedo (2012) on students’
understanding of series. The authors focused on whether students were seeing series



as a process without an end or as a sequence of partial sums, as stated by definition;
and referred to Arnon et al.’s (2014) APOS theory to respond how students may
construct the notion, by considering a distinction amongst the understandings of the
concept of a sequence as a list of numbers or as a function defined in natural numbers
(McDonald, Mathews, & Strobel, 2000). Martinez-Planell et al. (2012) concluded
that even after formal training, students often think of sequences and series as an
infinite unending process, and evoke dynamical aspects, as Colin did.

We approach the phenomena from the perspective of the structural abstraction
framework and understand that, in line with his personal concept definition, the result
of Colin’s contextualizing processes resulted in a representation of the limit of a
sequence as that of a descending curve (see Fig.1):

... umm, [I] sort of imagine the curve just coming down like this and dipping below a
point which is epsilon... and this would be N. So as soon as they dip below this point then
... the terms bigger than this [pointing from N to the right] tend to a certain limit, if you
make this small enough [pointing to the value of epsilon]. (Colin, first interview)

(Pinto, 1998, p. 202).
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Fig. 1: Colin’s first picture Fig. 2: Colin’s second picture

Colin accentuated the image of a decreasing sequence by saying ‘““as soon as they dip
below the point then”. The second picture he drew (see Fig. 2) is based on the idea
that “convergence could happen from above and below”. In other words, it seems that
he evoked images of a convergent sequence identifying it with monotonic ones. He
was able to explore his representations dynamically, interpreting and exploring the
actions involved in his written definition relying on partial constructions that are
specific and productive to some familiar contexts. In this light, it seems that Colin has
interpreted (in the sense of Piaget’s notion of assimilation) new concepts in terms of
his prior knowledge:

Umm ... in A’ level we used to ... umm ... plot sequences and generally you might get a
sequence like this and ... it would tend down to a value or something. ... the little bit I had
done at A-level I just sort of settled into it quite well... (Colin, first interview)

(Pinto, 1998, p. 203)

Thus, from the objects-structure perspective, Colin’s partial reconstruction of a
convergent sequence still related to a descending function or sequence, in a context



where a formal discourse is inserted. From the knowledge-structure perspective, his
representation of a convergent sequence was generically used as a representation for
constructing knowledge, as those students who ‘give meaning’ did. On the one hand,
his representation of a convergent sequence was productive, as many times he sensed
when results and claims were true. On the other hand, many statements became self-
evident for Colin while his earlier mathematical discourse still was not
recontextualized within the formal experience, as when he was asked to prove:

If a, —1 , prove that there exists N € IN such that a >3 forall n>IN.

Colin said: ‘It seemed to be a silly question that ... if @ tends to 1 then if you question
when a is greater than 2 ...this is a bound, it seems ... I don’t know why.” (Colin, third

interview)
(Pinto, 1998, p. 221)

Colin’s representation of a convergent sequence and its limit, which was coherent
with his sense-making and his written definition, is a potential conflict factor (Tall &
Vinner, 1991) concerning its use and the formal discourse. It did not enable him to
produce a formal proof. Here, other than seeing the formal content as demanding, it is
its complementary aspect that matters. Colin eventually noticed the new discourse
introduced by the formalism as increasingly conflicting with his sense-making of the
theory. In many occasions he ignored it and simply added it as an information:

There are certain things that ... I think they’re okay and I just learn that, it’s sort of that’s
defined to be that ... ... (Colin, seventh interview)
(Pinto, 1998, p. 205)

In synthesis, in many contexts and situations, students may activate the various
partial constructions productively. Such an attitude could be common; but in Colin’s
case, various issues related to recontextualization of his concept image seem to miss.

DISCUSSION

In this paper, we presented data showing that a student, called Colin, built partial
constructions of a convergent sequence that he used as representations of the concept.
Such use was productive to particular contexts, but remained unproductive in others;
for instance, to deal with formal mathematics. Colin could perceive that a statement is
true, based on the properties of the concept he observed and concretized in a
representation that he used generically (see Yopp & Elly, 2016), as a representation
for building knowledge. Using his representation of the limit concept as a ‘definition’
Colin was able to evoke formal results, although he was unable to make deductions.
Colin’s awareness of the formal requirements in the new context at university was not
immediate. His description of the natural flow of his transition from school to
university, expressed during his first interview, indicates that he did not perceive that
the concretized knowledge he learned at school and the formal context at university
were already in conflict. As the course progressed, he was gradually conscious of



conflicting aspects in his understanding; though he added new knowledge as
information rather than (re-)structuring the prior mathematical experience. There are
students whose sense-making of the mathematics is detached from their learning of
the institutional knowledge. They deal with those as if sense-making and institutional
knowledge were compartmentalized knowledge structures (see Vinner, 1991, p. 70).
What strikes us in the selected instances of Colin’s case study was the cohesion in his
sense-making and in learning the formal mathematics concept. Coherence amongst
students’ sense-making and their (re-)construction of the formal content has been
proven to be a central characteristic of those students who ‘give meaning’.

From the objects-structures perspective of the structural abstraction framework, the
aspect of ‘complementarizing’ meaningful components reflects the idea that whether
an individual has ‘grasped’ the meaning of a concept can only be considered in
specific contexts. This makes clear that “the subjective nature of understanding [...]
is not [...] an all-or-nothing state” (Skemp, 1986, p. 43). A comparison with Chris’
case (Scheiner & Pinto, 2014), another student who ‘gave meaning’, shows that
although Chris did not ‘have’ all relevant meaningful components at hand, he was
able — using his ‘generic representation’ — to generate some of them at need. The
growing complexity of his representation of the convergence of a sequence, gradually
constructed in particular settings, served as a representation for reconstructing and
recontextualizing the limit concept in the formal context. We argue that Colin’s
understanding of a convergent sequence must increase in complexity and
complementarity, which could be achieved through contextualizing as well as
integrating various constructions; the latter may be promoted by the insertion of new
mathematical discourses alongside earlier concept images.

From the knowledge-structures perspective, structural abstraction is a process of
restructuring the ‘pieces of knowledge’ constructed through contextualizing and
complementarizing. In using the structure of the representation, some meaningful
components of the concept may be productively activated in diverse contexts. Such
use may even allow to generate new knowledge pieces. In both cases, Chris and
Colin, a shift from a representation of (the convergente sequence) to a representation
for generating knowledge can be documented. The shift does not result in knowledge
restructuring per se, as we could identify in Colin’s case. On the other hand, Chris’
case suggested that even a ‘representation for’ may be complementarized by new
knowledge elements, and such a process becomes recursive (Scheiner & Pinto, 2014).

CONCLUDING REMARKS

The structural abstraction framework takes the view that knowledge is an evolving,
complex, and dynamic system of many kinds of knowledge elements and structures.
Abstraction is seen as a movement across levels of complementarity and complexity
(Scheiner, 2016). The case study in Scheiner and Pinto (2014) and the one provided
in this paper raise directions for advancing our understanding of structural
abstraction. Both cases reveal (1) a cohesion amongst their sense-making strategy of



giving meaning, and (2) a generic use of their constructed representations to
reconstruct the limit concept in other and new contexts. Contrasting the two cases
shows that the two students differed in the degree of complementarity and complexity
of the representations used. Chris’ representation could be considered as being
generic in terms of being a carrier of the general (Mason & Pimm, 1984) that he used
to reconstruct meaningful components at need. Colin’s representation did not allow
him to do so — maybe due to its degree of complexity and complementarity. Other
questions to be addressed are raised by the use of representations in knowledge
structuring — as a tool to reconstruct knowledge, as Chris did, or as an object in place
of the definitions, maintaining the earlier mathematical discourse, as in Colin’s case.
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