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Ways in which engaging in someone else’s reasoning is productive 
Chris Rasmussen1, Naneh Apkarian1, Tommy Dreyfus², and Matthew Voigt1  

1San Diego State University, United States, chris.rasmussen@sdsu.edu, ²Tel Aviv 
University, Israel  

Typical goals for inquiry-oriented mathematics classrooms are for students to 
explain their reasoning and to make sense of others’ reasoning. In this paper we offer 
a framework for interpreting ways in which engaging in the reasoning of someone 
else is productive for the person who is listening. The framework, which captures the 
relationship between engaging with another’s reasoning, decentering, elaborating 
justifications, and refining/enriching conceptions, is the result of analysis of 10 
individual problem-solving interviews with 10 mathematics education graduate 
students enrolled in a mathematics content course on chaos and fractals. The 
theoretical grounding for this work is that of the emergent perspective (Cobb & 
Yackel, 1996). 
Keywords: Decentering, Argumentation, Social Norms, Fractals, Paradox. 

INTRODUCTION 
Typical goals for inquiry-oriented mathematics classrooms are to foster particular 
social norms, such as students explaining their reasoning, listening to others’ 
reasoning, and making sense of that reasoning (Yackel & Cobb, 1996). Indeed, such 
goals for student participation have been central to a long line of recommendations in 
the United States (National Council of Teachers of Mathematics, 2000; National 
Governors Association Center for Best Practices & Council of Chief State School 
Officers, 2010). The purpose of this paper is to offer a framework for understanding 
the various ways in which engaging in the reasoning of someone else is productive 
for the person who is listening to and attempting to make sense of this reasoning. 
Prior research has documented ways in which teachers can initiate and sustain such 
norms for participation (e.g., Lampert, 1990; Stephan & Whitenack, 2003), but most 
research into the benefits of such engagement focuses on the students’ thinking, not 
that of the one engaging in the other’s reasoning (e.g., Teuscher, Moore, & Carlson, 
2015). While there has been some research into mutual intellectual benefit stemming 
from peer-to-peer engagements (e.g., Kieran & Dreyfus, 1998), it has not been at the 
collegiate level. Our work contributes to this surprisingly sparse literature, extends 
notions identified in disparate settings, and adds nuance to existing notions of 
engaging and decentering. 
The theoretical grounding for this work is that of the emergent perspective (Cobb & 
Yackel, 1996), which coordinates the individual cognitive perspective of 
constructivism (von Glasersfeld, 1995) and the sociocultural perspective based on 
symbolic interactionism (Blumer, 1969). A primary assumption from this point of 
view is that mathematical progress is a process of active individual construction and a 
process of mathematical enculturation. The interpretive framework, shown in Figure 



  
1, lays out the central constructs in the emergent perspective. The within row 
relationships between respective collective and individual constructs is said to be 
reflexive, meaning that they are mutually constitutive, evolving together in a dynamic 
system. For example, Yackel and Rasmussen (2002) analyze individual students’ 
evolving beliefs about their and others’ role in relation to evolving classroom social 
norms. This work speaks to one way in which engaging in the reasoning of others (a 
social norm) is productive for the individual; namely doing so positively shapes 
beliefs.  

Collective Perspective Individual Perspective 
Classroom social norms Beliefs about own role, others’ roles, 

and the general nature of mathematical 
activity 

Sociomathematical norms Mathematical beliefs and values 
Classroom mathematical practices Mathematical conceptions and activity 

Figure 1: The interpretive framework 

In furthering the relationships between the constructs in Figure 1, we argue for across 
row relationships. In particular, we take the stance that classroom social norms are 
also inextricably intertwined with individual mathematical conceptions and activity. 
In so doing we make an empirically grounded argument for a theoretical connection 
between the upper left hand cell of the interpretive framework and the bottom right 
hand cell.  
In our broader research program (Hershkowitz, Tabach, Rasmussen, & Dreyfus, 
2014; Tabach, Rasmussen, Hershkowitz, & Dreyfus, 2015), we are investigating the 
coordination between individual and collective processes. In this report, however, we 
focus on analyzing individual mathematical conceptions and activity in an individual 
interview setting, with the subsequent goal of coordinating this analysis with an 
analysis of classroom video-recordings. This report lays a foundation for this 
subsequent analysis, but the framework for ways of engaging in someone else’s 
reasoning is potentially significant on its own.  

METHODOLOGY 
The methodological approach for the larger study falls under the genre of  “design-
based research” (Cobb, 2000; Design-Based Research Collective, 2003). The study 
took place in an intact graduate level mathematics course about chaos and fractals 
with 11 students (10 of whom agreed to participate in individual interviews). Students 
were (or intended to be) secondary school teachers or community college instructors 
and all had a bachelor’s degree in mathematics. Their masters degree program 
required a substantial component of mathematics, and the chaos and fractals course 
qualified as one of their mathematics courses. The course was taught by one of the 
research team members. Data collected as part of the larger study included video-



  
recordings of each class session, individual problem solving interviews conducted at 
the middle and end of the semester, and copies of all student work. In this paper we 
report on an analysis of the 10 individual, mid-semester problem-solving interviews.  
The following question from the mid semester interview is the focus of this analysis: 

 
The Sierpinski Triangle is a fractal, and is the result of an infinite iterative process 
that begins with an equilateral triangle. Connecting the midpoints of its sides results 
in another equilateral triangle with sides half the length of the original’s and area that 
is one-fourth of the original’s, which is then removed. Repeating this process, ad 
infinitum, results in the Sierpinski Triangle. At each step of the process, the area of 
shrinks by a factor of  ¾ and the perimeter grows by a factor of 3/2. The perimeter of 
the Sierpinski Triangle can be described by the limit, as n→∞, of P0×(3/2)n, and the 
area by the limit, as n→∞, of A0×(3/4)n, where P0 and A0 refer to the perimeter and 
area of the starting triangle. Thus the Sierpinski Triangle has a perimeter of infinite 
length and an area of zero. This apparent contradiction comes from the fact that it is a 
fractal with Fractal dimension log2(3), putting it between one- and two-dimensions. 

In class, we discussed the Sierpinski Triangle. How do you think about what 
happens to the perimeter and the area of the Sierpinski Triangle as the number of 
iterations tends to infinity? 

 
Follow-up questions: 

a. One a scale from 1 to 10 with 10 being the most confident, how confident 
are you about what happens to the area? Can you say more about why you 
said [confidence number]?  

b. On a scale from 1 to 10, with 10 being the most confident, how confident 
are you about what happens to the perimeter? Why do you say [confidence 
number]? 

c. A student named Fred claimed the following. Please read it out loud. What 
do you think about his argument? (Please explain) 

 
Fred’s Argument: The computation shows that the perimeter goes to infinity 
because the perimeter is given by 3×(3/2)n which increases to infinity as n tends to 
infinity. But, the perimeter can’t really be infinitely long, because there is nothing 
left to draw a perimeter around, since the area goes to zero. 



  
The question was structured so that we would first gain insight into students’ own 
reasoning about the area and perimeter of the Sierpinski triangle, followed by an 
opportunity for them to engage in the hypothetical reasoning of “Fred.” The basis for 
Fred’s reasoning was taken from a whole class discussion that took place several 
weeks before the interview. Thus, Fred’s reasoning is authentic to the students and 
provides an ideal opportunity for us to subsequently coordinate individual and 
collective analyses.  
While most studies of decentering and engagement have involved interactions 
between two or more people, ours involves one person interacting with the work of 
another, who cannot respond. While this setup potentially restricts the ability of 
interviewees to engage with Fred and his argument, it has certain affordances as well. 
One affordance is that all interviewees reacted to the same statement, allowing us to 
make direct comparisons. This setup also controls for a variety of other features, such 
as personal histories, that may influence how people react to each other in face-to-
face settings.   
The transcripts and student work produced during the interview were open coded 
using methods from grounded theory (Strauss & Corbin, 1998). This open coding, 
which was initially conducted by the first two authors then vetted by the other authors 
to minimize bias and ensure interpretations were grounded in the data, was informed 
by literature on student thinking about infinity, and in particular infinite iterative 
processes (Núñez, 1994; Mamolo & Zazkis, 2008), but did not rely on an a priori 
coding scheme.  
The open coding of these interviews revealed differences between students’ initial 
responses and those that followed reading Fred’s argument. It also revealed a variety 
of ways of engaging and responding to Fred. We then supplemented our initial 
coding, using Toulmin’s argumentation scheme (Toulmin, 1969) to analyze the pre- 
and post-Fred arguments presented by the students. Finally, each transcript was 
distilled into an argumentation log (Rasmussen & Stephan, 2008), coupled with the 
primary ways of reasoning being used in each argument and instances of engagement, 
and supplemented by statements about the mathematics that were not necessarily part 
of a coherent argument. Logs were analyzed for shifts and relationships, with coding 
conducted by the first two authors and vetted by the other authors.  

RESULTS 
Our analysis of students’ responses revealed that responding to Fred’s argument was 
a productive experience for most students. There was variation across students with 
regards to both the extent and nature of their engagement and growth, but we note 
two major categories of productivity that stemmed from an ability to engage in Fred’s 
reasoning and decenter from their own: elaborating justifications and 
refining/enriching conceptions of particular mathematical ideas. Figure 2 is intended 
to capture the relationship between engaging with another’s reasoning, decentering, 
elaborating justifications, and refining/enriching conceptions. Specifically, engaging 



  
with another’s thinking can be foundational for (re)engaging with one’s own 
thinking. That is, the act of decentering provided the means for elaborating 
justifications and refining one’s thinking. The intersecting ovals in Figure 2 for these 
two acts signify the reciprocal relationship between justifying and refining 
conceptions. 

Evaluating, indicating (dis)agreement, connecting with own 
reasoning, connecting with others’ reasoning, entertaining 

another’s reasoning, interpreting, empathizing

(Re)engaging with one’s own thinking

Elaboration of 
justification using new or 
improved argumentation

Reflecting and/or revising 
individual mathematical 

conceptions

Engaging with another’s thinking

Decentering

 

Figure 2: Productivity of engaging in another’s reasoning 

Since all of the interviewed students were or intended to be teachers at the secondary 
or postsecondary level, it is particularly interesting to look at their ability to engage 
with another’s thinking. Doing so is foundational to teacher noticing (Jacobs, Lamb, 
& Philipp, 2010) in which teachers can instructionally build on student thinking. We 
found that all of the interviewees exhibited the ability to engage with Fred’s thinking. 
We identified the following ways that interviewees engaged in Fred’s reasoning: a) 
evaluating (with or without justification); b) indicating (dis)agreement (with or 
without justification); c) making connections to their own reasoning; d) making 
connections to classmates’ reasoning; e) entertaining Fred’s reasoning; f) interpreting 
Fred’s reasoning; g) diagnosing Fred’s reasoning; and h) empathizing with Fred. 
These ways of engaging provide an opportunity for the individual to decenter. By 
decenter, we mean putting aside one’s own reasoning in an attempt to understand 
another’s reasoning (Steffe & Thompson, 2000; Teuscher, Moore, & Carlson, 2015). 
Many interviewees, through decentering, engaged or re-engaged with their own 
thinking in a way that furthered their own thinking. This analysis lays the 
groundwork for coordinating individual and collective ways of participating in 
discourse since evaluating (with justification) and indicating (dis)agreement connect 
strongly to foundational classroom social norms. 
In this paper we give a few brief examples of engaging and decentering. Most 
students gave some indication of agreement or disagreement with Fred’s argument, 
e.g. “I agree with him that the perimeter increases to infinity […] but I disagree with 
his second line.” This example shows a fairly superficial engagement in which the 
interviewee attended to Fred’s reasoning but viewed it from her own point of view. 
Other students went further, e.g. “I disagree because we thought about it in terms of 



  
fencing […] so eventually it’s all fence.” The second student’s explanation makes it 
clear that while she has not necessarily built a model of Fred’s line of reasoning, she 
is aware of her own model and believes Fred’s is different. This second student then 
elaborated and improved upon her original argument.  
Interviewees also demonstrated a range of depth when engaging with Fred by 
interpreting his reasoning. Some interpreted Fred’s thinking from their own point of 
view, but others made clear attempts to deduce Fred’s reasoning from his point of 
view – in one case an interviewee requested more information about Fred’s argument 
before settling on an interpretation. We saw evidence, across all interviews, that each 
act of engaging functioned as a potential stepping-stone to decentering, an 
opportunity that some students took up while others did not. We saw that students 
who engaged deeply with Fred’s thinking and decentered from their own point of 
view appeared to (re)engage with their own thinking.  
As a consequence of decentering, many of the students clarified and even advanced 
their own lines of mathematical reasoning as expressed by Figure 2. As Fred’s 
argument was in response to a question they had already answered, many reacted by 
re-explaining or expanding their initial justification. Within mathematical thinking 
we observed two main subcategories: the elaboration of justification for their claims 
and the expansion of their thinking regarding the mathematical concepts involved in 
the task. By elaboration of justification, we mean that students were observed adding 
new or improved warrants and backings to strengthen their argument or even 
providing entirely alternative explanations. As an example, one student, Sandor, 
reacted to Fred’s argument by noting that it is because the area of the Sierpinski 
Triangle goes to zero that the perimeter goes to infinity, and explicitly connected the 
removal of triangles at each recursive step to adding the perimeter of these triangles 
to the total perimeter. Prior to engaging with Fred’s statement, he had treated the two 
results as essentially separate features of the process – the connection between the 
two had gone unnoticed or at least unexplained.  
With regards to the underlying mathematical concepts, we observed students 
exploring the nature of infinity, perimeter, and the Sierpinski Triangle itself in greater 
depth than they had in their initial arguments. Some students appeared to become 
aware of a distinction between potential infinity (the unending process) and actual 
infinity (the final resultant state) in their attempts to clarify their reasoning. Many 
students took the opportunity to define, or re-define, the perimeter of an object. 
Students also reflected on the fractal nature of the Sierpinski Triangle, noting that it 
exists “between” dimensions and therefore does not act in the way that a “normal” 
one- or two-dimensional object might, and that therefore traditional thinking about a 
perimeter enclosing area is not necessarily valid in this context.  
While we identify decentering and mathematical thinking as distinct, we note that 
they are not disjoint. All of these examples of expanded thinking and reasoning 
occurred to some extent as a reaction to the thinking of someone else. We posit that 
decentering functioned as a catalyst for this process. Seeing Fred’s argument, 



  
interviewees demonstrated a variety of strategies for engaging with student reasoning, 
which were taken up with varying depth. Deeper engagement took the form of 
decentering, which predicated (re)engagement with and growth of their own 
reasoning. That is to say, the greater the extent to which students engaged with Fred 
and decentered, the more productive the experience was with regards to their own 
thinking. 
The Case of Curtis 
To clarify the constructs and interpretations outlined above, we present the case of a 
single student, with pseudonym Curtis. We choose this student as an example 
because of the brevity and clarity of this portion of his interview, as well as the range 
of constructs identified in his experience with Fred. Figure 3 shows Toulmin analyses 
of Curtis’s pre- and post-Fred arguments, as well as his comment about infinite 
processes. 

   

Figure 3: Toulmin analysis of Curtis’ arguments. 

Toulmin analysis of Curtis’ pre- and post-Fred argumentation revealed shifts and 
changes. A small shift occurred in Curtis’ claim: initially he showed that the 
perimeter is infinite, afterward he showed it could not be finite. This new claim is 
drawn from different data and is supported by a different warrant. Where initially 
Curtis used formal/symbolic reasoning, his second argument draws on heuristics and 
a sense that the Sierpinski Triangle is not a real object. He also brings up the fact that 
infinite processes do not have a ‘final step’ after which they reach their final state, 
something that was not mentioned prior to Fred. 
Retracing the emergence of new topics for Curtis, we found that they were directly 
linked to his engagement with Fred’s reasoning, and in particular resulted from his 
ability to decenter and look at Fred’s reasoning in ways not related to his own. Curtis 
comments that Fred’s “logic doesn’t work,” addressing more than just his faulty 
claim. The new warrant that Curtis provides, that the Sierpinski Triangle is not a 
physical object but rather “kind of just a concept,” directly addresses an unspoken 
assumption on Fred’s part. It seems that Curtis has identified and reacted to an 
implicit backing in Fred’s argument – that the Sierpinski Triangle is a geometric 
object that obeys two-dimensional rules. Curtis’ diagnosis of a misconception 
underlying Fred’s reasoning implies that he has considered Fred’s argument from a 



  
different viewpoint, effectively trying to put himself in Fred’s shoes and understand 
fully his reasoning. 
In addition to presenting a new argument, Curtis presents it in a new style. While his 
original argument was based in formal limits and notation, his new argument adopts 
some of Fred’s informal, heuristic, and geometric language. Again, this supports the 
idea that Curtis is working from Fred’s point of view, rather than his own. 
Finally, Curtis’ added commentary about infinite processes comes from his 
interpretation of Fred’s argument.  He says that Fred’s argument is equivalent to there 
being a final step, a point where something is taken away and the area becomes zero, 
and notes that this is not how infinite processes work. This seems to address Fred’s 
data, that the object becomes something with no area. 
Altogether, we see that Curtis addresses all the pieces of Fred’s argument (not just the 
claim) by thinking through Fred’s reasoning (not just comparing it to his own). This 
includes an implicit backing that Fred does not explicitly state. He does so using 
Fred’s style of reasoning, and (re)engages with his own reasoning to present a second 
argument and an observation about infinite processes. Throughout his response to 
Fred, Curtis addresses Fred’s reasoning and explains why it does not work, rather 
than simply asserting that his own original ideas are correct. 

 

Figure 4: Curtis’ productivity from engaging with Fred’s reasoning. 

CONCLUSION 
In conclusion, we return to classroom social norms and the ultimate role we envision 
for our framework. We argue that the ways of engaging we observed in these 
interviews are closely related to particular classroom social norms.  The relevant 
social norms related to engaging in others’ reasoning include listening to others’ 
reasoning, attempting to make sense of this reasoning, and indicating agreement or 
disagreement, with reasons. Moreover, acting in accordance with these norms led, 
through decentering, to enriched and refined mathematical conceptions and activity. 



  
The case of Curtis illustrates that decentering is an individual cognitive mechanism 
triggered by engaging with another’s reasoning.  
Prior work posits a reflexive relationship between engaging in others’ reasoning (i.e., 
social norms) and individual beliefs. In Figure 1, this relationship coordinates the 
cells in the top row of the interpretive framework. As far as we are aware, the 
analysis in this paper is the first to coordinate social norms and individual 
mathematical conceptions and activity. That is, we provide evidence for a 
relationship between social norms (upper left hand cell of the interpretive framework 
in Figure 1) and individual conceptions (bottom right hand cell). This importance of 
this work lies in coordinating different analytic tools that separately address 
collective and individual phenomenon. Thus, our framework not only contributes to a 
nuanced understanding of engaging and decentering with another’s reasoning, but 
also leads to links between individual mathematical conceptions and social activity. 
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