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INTRODUCTION

When a sound is emitted in an enclosed space, the microphone does not only capture the output of the source: all the paths the sound may follow, from the source to the microphone, are added to the direct one and produce reverberation. Whereas a soft reverberation may be desired to color a sound or to give a feeling of space [START_REF] Wen | An evaluation measure for reverberant speech using decay tail modelling[END_REF], strong reverberation is unpleasant. Indeed, it damages speech intelligibility and quality when human beings are concerned and it reduces automatic speech recognition performance of machines [START_REF] Habets | Single-and Multi-Microphone Speech Dereverberation using Spectral Enhancement[END_REF].

If the room impulse response (RIR) is known, one can invert it to cancel the reverberation, thus there is no problem of phase [START_REF] Delcroix | Blind dereverberation algorithm for speech signals based on multichannel linear prediction[END_REF][START_REF] Miyoshi | Inverse filtering of room acoustics[END_REF]. However, these cancellation methods are highly dependent on the speaker position and require a high computing power. Hence, one prefers to use suppression methods, which aim to estimate the magnitude spectrogram of the late reverberation and remove it from the magnitude spectrogram of the reverberant signal. To do so, existing methods are based on a linear prediction model [START_REF] Kinoshita | Suppression of late reverberation effect on speech signal using long-term multiple-step linear prediction[END_REF], on a stochastic model of the RIR [START_REF] Lebart | A new method based on spectral subtraction for speech dereverberation[END_REF][START_REF] Habets | Single-and Multi-Microphone Speech Dereverberation using Spectral Enhancement[END_REF], or more recently on deep neural networks [START_REF] Xiao | Speech dereverberation for enhancement and recognition using dynamic features constrained deep neural networks and feature adaptation[END_REF].

However, these suppression methods present a main drawback: once the dereverberated magnitude spectrogram is computed, the reverberant phase is used to synthesize the dereverberated signal. We observed that using this corrupted phase reintroduces reverberation and distortion in the signal; this fact was also highlighted in [START_REF] Xiao | Speech dereverberation for enhancement and recognition using dynamic features constrained deep neural networks and feature adaptation[END_REF]. The idea of modeling the phase has recently been proposed in source separation literature [START_REF] Magron | Phase recovery in NMF for audio source separation: An insightful benchmark[END_REF], where a similar problem occurs: the phase of the mixture is used to synthesize the source signals.

For speech enhancement, Deleforge et al. proposed an adaptation of the K-SVD dictionary method to consider the phase in a noise suppression task [START_REF] Deleforge | Phase-optimized K-SVD for signal extraction from underdetermined multichannel sparse mixtures[END_REF]. But for dereverberation, we were only able to find a post-processing step in [START_REF] Moshirynia | Speech dereverberation method using adaptive sparse dictionary learning[END_REF] which constrains a harmonic structure in the dereverberated spectrogram. This phase modification enables a slight improvement of the Perceptual Evaluation of Speech Quality (PESQ, [START_REF] Hu | Evaluation of objective quality measures for speech enhancement[END_REF]) and motivates a proper estimation of the anechoic phase.

In this paper, we propose a method for estimating the phase of an anechoic signal given its reverberant version. Before working on speech we started to study chirp signals, which will be used to model voiced signals. Section 2 derives the effect of reverberation on the Hilbert phase and presents a first estimator. In Section 3, we adapt this estimator to a Short Time Fourier Transform (STFT) framework to be able to deal with multicomponent signals. The evaluation method and results are detailed in Section 4. Finally, in Section 5 some conclusions are drawn and outlooks are proposed for future work.

INFLUENCE OF REVERBERATION ON THE HILBERT PHASE

As we study chirp signals in the first place, we derive the expression of the Hilbert phase of a reverberant chirp, in order to highlight the influence of the reverberation. The influence on the phase is also motivated by [START_REF] Parada | Non-intrusive estimation of the level of reverberation in speech[END_REF], where the authors added the Hilbert phase of reverberant signals as a feature in a classification and regression tree (CART, [START_REF] Breiman | Classification and Regression Trees[END_REF]) to estimate their level of reverberation. They found that phase was one of the top 10 most important features, among 300, for the CART algorithm.

Models and notations

We consider an anechoic chirp signal s(t) of T seconds

s(t) = cos (ϕ(t)) , t ∈ [0, T ] (1) 
and the instantaneous phase ϕ(t)

ϕ(t) = 2π(f d t + ḟ 2 t 2 ) + ϕ 0 , t ∈ [0, T ] (2) 
with ϕ 0 chosen between 0 and 2π. This phase results in an instantaneous frequency f (t) with a linear variation from the starting frequency f d Hz with a rate of ḟ Hz/s:

f (t) = 1 2π dϕ dt (t) = f d + ḟ t, t ∈ [0, T ]. (3) 
The RIR h(t) of length T h is modeled with the stochastic model introduced in [START_REF] Polack | La transmission de l'énergie sonore dans les salles[END_REF]:

h(t) = b(t)p(t) (4) 
with b(t) ∼ N (0, σ 2 ) a centered Gaussian white noise of variance σ 2 and p(t

) = e -δt 1 [0,T h ] ,
where

1 [0,T h ] denotes the indicator function of the interval [0, T h ].
The room parameter δ is directly linked to the reverberation time RT 60 , which is the required time to observe a 60 dB decay of the reverberant energy [START_REF] Schroeder | New Method of Measuring Reverberation Time[END_REF], through δ = 3 log (10) RT60 . Thus, we model the reverberant chirp y(t) as the convolution of s(t) and h(t):

y(t) = (h * s)(t). (5) 
We denote y(t) the Hilbert transform of a real signal y(t), corresponding to the Cauchy principal value (p.v.) of

y(t) = p.v. ∞ -∞ y(τ ) π(t -τ ) dτ.
Then, the Hilbert phase of the reverberant signal is obtained with

ϕ rev (t) = arctan y(t) y(t) . (6) 

Estimator with the Hilbert transform

We are interested in the instantaneous frequency of the reverberant signal:

f rev (t) = 1 2π dϕ rev dt (t) = 1 2π d y dt (t)y(t) -y(t) dy dt (t) y(t) 2 + y(t) 2 . (7) 
Firstly, we approximate the mathematical expectation of the ratio in [START_REF] Xiao | Speech dereverberation for enhancement and recognition using dynamic features constrained deep neural networks and feature adaptation[END_REF] as the ratio of the mathematical expectations 1 . 1 This assumption has been confirmed experimentally on a wide range of ḟ and RT 60 , with RIR simulated with (4), resulting in less than 0.5 % relative error on the frequency. Thus, we define f rev (t) as:

f rev (t) = 1 2π E d y dt (t)y(t) -y(t) dy dt (t) E [ y(t) 2 + y(t) 2 ] . (8) 
The Hilbert transform behaves nicely with the convolution operator as

(h * s)(t) = (h * s)(t) = ( h * s)(t).
We can then easily obtain the following equations:

y(t) = τ s(t -τ )h(τ )dτ, d y dt (t) = τ d s dt (t -τ )h(τ )dτ.
Let us detail the first term in ( 8):

E d y dt (t)y(t) = E τ1 τ2 d s dt (t -τ 1 )s(t -τ 2 )p(τ 1 )p(τ 2 )b(τ 1 )b(τ 2 )dτ 1 dτ 2 = σ 2 d s dt s * p 2 (t) since E[b(τ 1 )b(τ 2 )] = σ 2 δ τ1τ2 with δ ij the Kronecker delta.
Likewise, we have:

E y(t) dy dt (t) = σ 2 s ds dt * p 2 (t), E y 2 (t) = σ 2 (s 2 * p 2 )(t), E y 2 (t) = σ 2 ( s 2 * p 2 )(t).
Hence we can rewrite f rev (t) as:

f rev (t) = 1 2π p 2 * z 1 (t) (p 2 * z 2 ) (t) (9) 
with

z 1 (t) = d s dt (t)s(t) -s(t) ds dt (t), (10) 
z 2 (t) = s 2 (t) + s 2 (t). (11) 
For a cosine with fixed frequency f 0 , i.e. s(t) = cos(2πf 0 t), we get ŝ(t) = sin(2πf 0 t) and then f rev (t) = f 0 . There is no influence of the reverberation, as well as it is hard to notice reverberation when hearing stationary signals.

For the chirp signal defined in Section 2.1, we assume that ŝ(t) = sin(ϕ(t)) still approximately holds, which has been confirmed experimentally on a wide range of ḟ (for the exact theoretical conditions the reader can refer to the Bedrosian's Theorem in [START_REF] Boashash | Estimating and interpreting the instantaneous frequency of a signal[END_REF]). Thus, after straightforward calculations, equations ( 9) to (11) yield: f rev (t) over 5000 h(t) Estimated inst. frequency Ground truth f(t) Fig. 1. Instantaneous frequency estimation On a toy example with T = 1.0 s and RT 60 = 0.8 s, we have plotted f (t), f rev (t) and f rev (t)+ ḟ 1 2δ + min(t,T h ) 1-e 2δ min(t,T h ) , estimating f rev (t) by computing empirical means on 5000 realizations of h(t) with the same RT 60 . We can see in Figure 1 that the instantaneous frequency is well estimated.

f rev (t) = f (t) signal -ḟ 1 2δ + min(t, T h ) 1 -e 2δ min(t,T h ) room influence . ( 12 
However we do not have access to f rev (t) in practice, so we approximate it with a temporal smoothing. To do so, we experimentally verified that f rev (t) can be accurately estimated by means of a Savitzky-Golay filter h SG [START_REF] Savitzky | Smoothing and differentiation of data by simplified least squares procedures[END_REF] of order 1 and size N SG . Thus, given a reverberant chirp signal we can estimate the instantaneous frequency of the anechoic signal with f (t) = (h SG * f rev )(t) + ḟ 1 2δ + min(t, T h ) 1 -e 2δ min(t,T h ) , [START_REF] Breiman | Classification and Regression Trees[END_REF] assuming that δ and T h are known (one can find various methods in the literature to estimate the reverberation time and deduce δ and T h ). The value of ḟ can be estimated with a method detailed in [START_REF] Betser | Modélisation sinusoïdale et applications à l'indexation sonore[END_REF]. The instantaneous phase of the anechoic signal φ(t) is then obtained by integrating f (t) as:

φ(t) = 2π t 0 f (τ )dτ + ϕ rev (0). (14) 
In [START_REF] Polack | La transmission de l'énergie sonore dans les salles[END_REF] we have set φ(0) = ϕ rev (0), which is justified by assuming that the signal is preceded by silence, thus the initial phase is unaffected by reverberation.

ADAPTATION TO THE STFT FRAMEWORK

The Hilbert transform is not suited to signals made up of multiple sinusoids, this is why we want to adapt the results derived with the Hilbert transform in Section 2 within a timefrequency framework.

From a full-band to a subband model

Firstly, we have experimentally verified that the convolution product in ( 5) can be accurately approximated by a convolution product in the Modified Discrete Cosine Transform (MDCT) subbands:

∀k ∈ [0, N -1], Y (m, k) (H(., k) * S(., k)) (m)
, where H(m, k), S(m, k) and Y (m, k) denote the MDCT of h(t), s(t) and y(t) respectively, at the m-th time frame and the k-th frequency bin. Then, we have to show that the stochastic model of the RIR in (4) still holds in the MDCT subbands. By using [START_REF] Badeau | Probabilistic timefrequency source-filter decomposition of non-stationary signals[END_REF] we can indeed compute the MDCT of the product h(t) = b(t)p(t).

After straightforward calculations, we get the approximation

H(m, k) αe -δN m B(m, k) (15) 
with α > 0 and B(m, k) the MDCT of the white noise b(t).

We also know from [START_REF] Badeau | Probabilistic timefrequency source-filter decomposition of non-stationary signals[END_REF] that B(m, k) is a white noise of same variance σ 2 . We then retrieve the stochastic model of the RIR: a white noise damped by a decaying exponential, in each subband of H(m, k).

Finally, by considering the STFT as the analytical part of the MDCT, we can directly apply the results found on the Hilbert phase to the Fourier phase, in each channel of the STFT.

Estimator with the STFT

The signals are sampled at f s Hz and the STFT is computed with an analysis window w(n) of size N and a hop size R, resulting in N f frames and N discrete frequencies

f k = k fs N , k ∈ [0, N -1].
In Section 2.1 we denoted the Hilbert transform with a hat; from now on we denote the STFT with a hat and an upper case.

To compute the instantaneous frequency of the reverberant signal f rev mR fs at the m-th frame we use the reassigned vocoder framework introduced in [START_REF] Betser | Estimation of frequency for AM/FM models using the phase vocoder framework[END_REF]. The estimated instantaneous frequency of the anechoic signal f mR fs is then computed with [START_REF] Breiman | Classification and Regression Trees[END_REF], dividing N SG by R due to subsampling. Since we assume that each frequency subband contains only one sinusoidal component, we build a two-dimensional array F ∈ R N f ×N carrying the evolution of the estimated frequency in each channel.

For a chirp signal, the phase Φ(m, k) of its STFT Ŝ(m, k) is not equal to the Hilbert phase, there is a correction term caused by the analysis window [START_REF] Betser | Modélisation sinusoïdale et applications à l'indexation sonore[END_REF]:

Φ(m, k) = ϕ mR f s + arg Γ k, f mR f s (16) 
with

Γ(k, f ) = N -1 n=0 w(n)e i[2π(f -f k ) n fs +π ḟ ( n fs ) 2 ] . (17) 
This is why we construct the estimated anechoic phase Φ(m, k) at the m-th time frame and frequency bin k with:

Φ(m, k) = Φ(m -1, k) + 2π F (m, k) R f s + arg Γ(k, f (mR/f s ))Γ k, f (m -1) R f s (18) 
where . denotes the complex conjugate. As in ( 14), we initialize Φ(0, k) with the reverberant phase.

EVALUATION

To test our method we generate anechoic chirps with instantaneous frequencies increasing from 400 Hz to 6 kHz, sampled at f s = 16 kHz. We choose different durations, ranging from T = 0.5 s to T = 3.0 s. Note that with this frequency sweep, the usual values of ḟ one can find in the pitch of human speech would correspond to durations T ≥ 2.0 s. Each anechoic signal is then convolved with an RIR simulated as in ( 4), with reverberation times ranging from RT 60 = 0.4 s to RT 60 = 2.0 s. Since we only deal with the estimation of the anechoic phase, we use the anechoic magnitude assuming the magnitude spectrogram was perfectly estimated. We synthesize it either with the reverberant phase (no modification), or with the estimated anechoic phase, to generate s ane,rev (n) or s ane,est (n) respectively.

Firstly, we focus on frequency estimation and compute for each couple (T, RT 60 ) the instantaneous frequency f ane,est (n) of s ane,est (n) and compute the mean relative error:

e rel = 100 T f s T fs-1 n=0 f n fs -f ane,est (n) f n fs
We also compute the mean relative error with f ane,rev (n) to highlight the effect of the phase modification. As we can see from Figure 2, the relative error with the reverberant phase (dashed lines) increases with ḟ and RT 60 , as expected considering [START_REF] Parada | Non-intrusive estimation of the level of reverberation in speech[END_REF]. If we look at the relative errors when we use the estimated phase (solid lines) they are approximately divided by a factor 7. Moreover, for usual values of ḟ (T ≥ 2.0 s) the mean relative error is around 2% and is independent of ḟ and RT 60 , which is very satisfying.

Then, we look at the dereverberation provided by the phase modification. To evaluate the dereverberation we use the toolbox released in the last REVERB challenge [START_REF] Kinoshita | A summary of the REVERB challenge: state-of-the-art and remaining challenges in reverberant speech processing research[END_REF], which computes the Signal-to-Reverberant Ratio (SRR) and the Cepstral Distance (CD) between the clean signal and the enhanced one [START_REF] Hu | Evaluation of objective quality measures for speech enhancement[END_REF]. We see in Figure 3 that the SRR is increased by 10 dB when using the estimated phase instead of the reverberant one, which is an important gain in term of dereverberation. The CD is also decreased by 5 dB, corresponding to a significant reduction of distortions. 

CONCLUSION AND FUTURE WORK

By using a stochastic model of RIR, we have derived an expression of the instantaneous frequency of a reverberant chirp. We managed to quantify the influence of the reverberation on this instantaneous frequency, thereby we were able to correct it and estimate the instantaneous phase of the anechoic signal. In order to deal with multicomponent signals, we adapted the estimator to the STFT framework. We tested our method given a set of various reverberant chirps and obtained an accurate frequency estimation. We also significantly improved objective measures of the REVERB challenge, by using the estimated phase instead of the reverberant one.

In future work we will track the instantaneous frequencies of multicomponent signals, with the same reassigned vocoder method [START_REF] Betser | Estimation of frequency for AM/FM models using the phase vocoder framework[END_REF], in order to estimate the phase of a reverberant signal composed of harmonic chirps. We will then be able to apply our estimator to speech signals, by modeling them as time-varying harmonics + noise [START_REF] Laroche | HNS: Speech modification based on a harmonics + noise model[END_REF].
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