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Introduction

The classical permutohedron is the convex hull of all permutation vectors (z(1), z(2), . . . , z(n)) ∈ R n where z is an element of the symmetric group S n . It has many beautiful properties: its edges are in bijection with cover relations in the weak Bruhat order; its faces can be described explicitly; it is the Minkowski sum of matroid polytopes; it is the moment map image of the complete flag variety.

The main subject of this paper is a natural generalization of the permutohedron called a Bruhat interval polytope. Let u and v be permutations in S n , with u ≤ v in (strong) Bruhat order. The Bruhat interval polytope (or pairmutohedron (i) ) Q u,v is the convex hull of all permutation vectors z = (z(1), z(2), . . . , z(n)) with u ≤ z ≤ v. Note that when u = e and v = w 0 are the shortest and longest elements of the symmetric group, Q e,w0 is the classical permutohedron. Bruhat interval polytopes were recently studied in [START_REF] Kodama | The full Kostant-Toda hierarchy on the positive flag variety[END_REF] by Kodama and the second author, in the context of the Toda lattice and the moment map on the flag variety Fl n . A basic fact is that Q u,v is the moment map image of the Richardson variety R u,v ⊂ Fl n . Moreover, Q u,v is a Minkowski sum of matroid polytopes (in fact of positroid polytopes [START_REF] Ardila | Positroids and non-crossing partitions[END_REF]) [START_REF] Kodama | The full Kostant-Toda hierarchy on the positive flag variety[END_REF], which implies that Q u,v is a generalized permutohedron (in the sense of Postnikov [START_REF] Postnikov | Permutohedra, associahedra, and beyond[END_REF]).

The goal of this paper is to study combinatorial aspects of Bruhat interval polytopes. We give a dimension formula for Bruhat interval polytopes, an inequality description of Bruhat interval polytopes, and prove that every face of a Bruhat interval polytope is again a Bruhat interval polytope. In particular, each edge corresponds to some edge in the (strong) Bruhat order. The proof of our result on faces uses the classical result (due to Edelman [START_REF] Paul | The Bruhat order of the symmetric group is lexicographically shellable[END_REF] in the case of the symmetric group, and subsequently generalized by Proctor [START_REF] Proctor | Classical Bruhat orders and lexicographic shellability[END_REF] and then Bjorner-Wachs [START_REF] Björner | Bruhat order of Coxeter groups and shellability[END_REF]) that the order complex of an interval in Bruhat order is homeomorphic to a sphere. Our proof also uses a generalization of the lifting property, which appears to be new and may be of interest in its own right. This Generalized lifting property says that if u < v in S n , then there exists an inversion-minimal transposition (ik) (see Definition 3.2) such that u ≤ v(ik) v and u u(ik) ≤ v. One may compare this with the usual lifting property, which says that if u < v and the simple reflection s i ∈ D r (v) \ D r (u) is a right-descent of v but not a right-descent of u, then u ≤ vs i v and u us i ≤ v. Note that in general such a simple reflection s i need not exist.

The usual lifting property is closely related to the R-polynomials R u,v (q). Recall that the R-polynomials are used to define Kazhdan-Lusztig polynomials [START_REF] Kazhdan | Representations of Coxeter groups and Hecke algebras[END_REF], and also have an interesting geometric interpretation: the Richardson variety R u,v may be defined over a finite field F q , and the number of points it contains is given by the

R-polynomial R u,v (q) = #R u,v (F q ). A basic result about the R-polynomials is that if s i ∈ D r (v) \ D r (u), then R u,v (q) = qR us,vs (q)+(q -1)R u,vs (q). We generalize this result, showing that if t = (ik) is inversion-minimal, then R u,v (q) = qR ut,vt (q) + (q -1)R u,vt (q).
The structure of this paper is as follows. In Section 2 we provide background and terminology for posets, Coxeter groups, permutohedra, matroid polytopes, and Bruhat interval polytopes. In Section 3 we state and prove the Generalized lifting property for the symmetric group. We then use this result in Section 4 to prove that the face of a Bruhat interval polytope is a Bruhat interval polytope. Section 4 also provides a dimension formula for Bruhat interval polytopes, and an inequality description for Bruhat interval polytopes. In Section 5 we give a generalization of the usual recurrence for R-polynomials, using the notion of an inversion-minimal transposition on the interval (u, v).

Background

In this section we will quickly review some notation and background for posets and Coxeter groups. We will also review some basic facts about permutohedra, matroid polytopes, and Bruhat interval polytopes. We will assume knowledge of the basic definitions of Coxeter systems and Bruhat order; we refer the reader to [START_REF] Björner | Combinatorics of Coxeter groups[END_REF] for details. Note that throughout this paper, Bruhat order will refer to the strong Bruhat order.

Let P be a poset with order relation <. We will use the symbol to denote a covering relation in the poset: u v means that u < v and there is no

z such that u < z < v. Additionally, if u < v then [u, v] denotes the (closed) interval from u to v; that is, [u, v] = {z ∈ P | u ≤ z ≤ v}. Similarly, (u, v) denotes the (open) interval, that is, (u, v) = {z ∈ P | u < z < v}.
The natural geometric object that one associates to a poset P is the geometric realization of its order complex (or nerve). The order complex ∆(P ) is defined to be the simplicial complex whose vertices are the elements of P and whose simplices are the chains x 0 < x 1 < • • • < x k in P . Abusing notation, we will also use the notation ∆(P ) to denote the geometric realization of the order complex.

Let (W, S) be a Coxeter group generated by a set of simple reflections S = {s i | i ∈ I}. We denote the set of all reflections by T = {wsw -1 | w ∈ W }. Recall that a reduced word for an element w ∈ W is a minimal length expression for w as a product of elements of S, and the length (w) of w is the length of a reduced word. For w ∈ W , we let D R (w) = {s ∈ S | ws w} be the right descent set of w and D L (w) = {s ∈ S | sw w} the left descent set of w. We also let T R (w) = {t ∈ T | (wt) < (w)} and T L (w) = {t ∈ T | (tw) < (w)} be the right associated reflections and left associated reflections of w, respectively.

The (strong) Bruhat order on W is defined by u ≤ v if some substring of some (equivalently, every) reduced word for v is a reduced word for u. The Bruhat order on a Coxeter group is a graded poset, with rank function given by length.

When W is the symmetric group S n , the reflections are the transpositions T = {(ij) | 1 ≤ i < j ≤ n}, the set of permutations which act on {1, . . . , n} by swapping i and j. The simple reflections are the reflections of the form (ij) where j = i+1. We also denote this simple reflection by s i . An inversion of a permutation z = (z(1), . . . , z(n)) ∈ S n is a pair (ij) with 1 ≤ i < j ≤ n such that z(i) > z(j). It is well-known that (z) is equal to the number of inversions of the permutation z.

Note that we will often use the notation (z 1 , . . . , z n ) instead of (z(1), . . . , z(n)).

We now review some facts about permutohedra, matroid polytopes, and Bruhat interval polytopes.

Definition 2.1 The usual permutohedron Perm n in R n is the convex hull of the n! points obtained by permuting the coordinates of the vector (1, 2, . . . , n).

Bruhat interval polytopes, as defined below, were introduced and studied by Kodama and the second author in [START_REF] Kodama | The full Kostant-Toda hierarchy on the positive flag variety[END_REF], in connection with the full Kostant-Toda lattice on the flag variety. Definition 2.2 Let u, v ∈ S n such that u ≤ v in (strong) Bruhat order. We identify each permutation z ∈ S n with the corresponding vector (z(1), . . . , z(n)) ∈ R n . Then the Bruhat interval polytope Q u,v is defined as the convex hull of all vectors (z(1), . . . , z(n)) for z such that u ≤ z ≤ v.

See Figure 1 for some examples of Bruhat interval polytopes. We next explain how Bruhat interval polytopes are related to matroid polytopes, generalized permutohedra, and flag matroid polytopes.

Definition 2.3 Let M be a nonempty collection of k-element subsets of [n] such that: if I and J are distinct members of M and i ∈ I \ J, then there exists an element j ∈ J \ I such that (I \ {i}) ∪ {j} ∈ M. Then M is called the set of bases of a matroid of rank k on the ground set [n]; or simply a matroid.

Definition 2.4 Given the set of bases M ⊂ [n] k of a matroid, the matroid polytope Γ M of M is the convex hull of the indicator vectors of the bases of M:

Γ M := Conv{e I | I ∈ M} ⊂ R n ,
where e I := i∈I e i , and {e 1 , . . . , e n } is the standard basis of R n .

Note that "a matroid polytope" refers to the polytope of a specific matroid in its specific position in R n .

Definition 2.5 The flag variety Fl n is the variety of all flags

Fl n = {V • = V 1 ⊂ V 2 ⊂ • • • ⊂ V n = R n | dim V i = i} of vector subspaces of R n . Definition 2.6 The Grassmannian Gr k,n is the variety of k-dimensional subspaces of R n Gr k,n = {V ⊂ R n | dim V = k}.
Note that there is a natural projection

π k : F l n → Gr k,n taking V • = V 1 ⊂ • • • ⊂ V n to V k .
Note also that any element V ∈ Gr k,n gives rise to a matroid M(V ) of rank k on the ground set [n]. First represent V as the row-span of a full rank k × n matrix A. Given a k-element subset I of {1, 2, . . . , n}, let ∆ I (A) denote the determinant of the k × k submatrix of A located in columns I. This is called a Plücker coordinate. Then V gives rise to a matroid M(V ) whose bases are precisely the k-element subsets I such that ∆ I (A) = 0.

One result of [KW13, Section 6] (see also [START_REF] Kodama | The full Kostant-Toda hierarchy on the positive flag variety[END_REF]Appendix]) is the following.

Proposition 2.7 Choose u ≤ v ∈ S n . Let V • = V 1 ⊂ • • • ⊂ V n be
any element in the positive part of the Richardson variety R u,v;>0 . Then the Bruhat interval polytope Q u,v is the Minkowski sum of n -1 matroid polytopes:

Q u,v = n-1 k=1 Γ M(V k ) .
In fact each of the polytopes Γ M(V k ) is a positroid polytope, in the sense of [START_REF] Ardila | Positroids and non-crossing partitions[END_REF], and Q u,v is a generalized permutohedron, in the sense of Postnikov [START_REF] Postnikov | Permutohedra, associahedra, and beyond[END_REF].

We can compute the bases M(V k ) from the permutations u and v as follows.

M(V k ) = {I ∈ [n] k | there exists z ∈ [u, v] such that I = {z(1), . . . , z(k)}}. (1) 
Therefore we have the following.

Proposition 2.8 For any u ≤ v ∈ S n , the Bruhat interval polytope Q u,v is the Minkowski sum of n -1 matroid polytopes

Q u,v = n-1 k=1 Γ M k ,
where

M k = {I ∈ [n] k | there exists z ∈ [u, v] such that I = {z(1), . . . , z(k)}}.
Positroid polytopes are a particularly nice class of matroid polytopes coming from positively oriented matroids. A generalized permutohedron is a polytope which is obtained by moving the vertices of the usual permutohedron in such a way that directions of edges are preserved, but some edges (and higher dimensional faces) may degenerate. See [START_REF] Ardila | Positroids and non-crossing partitions[END_REF] and [START_REF] Postnikov | Permutohedra, associahedra, and beyond[END_REF] for more details on positroid polytopes and generalized permutohedra.

There is a generalization of matroid called flag matroid, due to Gelfand and Serganova [START_REF] Gel | Combinatorial geometries and the strata of a torus on homogeneous compact manifolds[END_REF], [BGW03, Section 1.7], and a corresponding notion of flag matroid polytope. A convex polytope ∆ in the real vector space R n is called a (type A n-1 ) flag matroid polytope if the edges of ∆ are parallel to the roots of type A n-1 and there exists a point equidistant from all of its vertices.

The following result follows easily from Proposition 2.7.

Proposition 2.9 Choose u ≤ v ∈ S n . Then the Bruhat interval polytope Q u,v is a flag matroid polytope.

We can use Proposition 2.9 to prove the following useful result.

Proposition 2.10 Let Q u,v be a Bruhat interval polytope. Consider a face F of Q u,v . Let N be the set of permutations which label vertices of F . Then N contains an element x and an element y such that

x ≤ z ≤ y ∀z ∈ N .
3 The generalized lifting property for the symmetric group

The main result of this section is Theorem 3.3, which is a generalization (for the symmetric group) of the classical lifting property for Coxeter groups. This result will be a main tool for proving that every face of a Bruhat interval polytope is a Bruhat interval polytope. We start by recalling the usual lifting property.

Proposition 3.1 (Lifting property) Suppose u < v and s ∈ D R (v) \ D R (u). Then u ≤ vs v and u us ≤ v.

Definition 3.2 Let u, v ∈ S n . A transposition (ik) is inversion-minimal on (u, v) if the interval [i, k]
is the minimal interval (with respect to inclusion) which has the property

v i > v k , u i < u k . Theorem 3.3 (Generalized lifting property) Suppose u < v in S n . Choose a transposition (ij) which is inversion- minimal on (u, v). Then u ≤ v(ij) v and u u(ij) ≤ v.
We note that there are pairs u < v where D R (v) \ D R (u) is empty, and hence one cannot apply the Lifting property. In contrast, Lemma 3.4 below shows that for any pair u < v in S n , there exists an inversion-minimal transposition (ij). Hence it is always possible to apply the Generalized lifting property.

Lemma 3.4 Let (W, S) be a Coxeter group. Take u, v ∈ W distinct. If (v) ≥ (u) then there exists a reflection t ∈ T such that v > vt, u < ut.

Lemma 3.4 directly implies the following corollary.

Corollary 3.5 Let v, u ∈ S n be two distinct permutations. If (v) ≥ (u) then there exists an inversion-minimal transposition on (u, v).

In preparation for the proof of Theorem 3.3, it will be convenient to make the following definition.

Definition 3.6 A pattern of length n is an equivalence class of sequences x 1 x 2 • • • x n of distinct integers. Two such sequences x 1 x 2 • • • x n , y 1 y 2 • • • y n are
in the same equivalence class ("have the same pattern") if

x i > x j ⇐⇒ y i > y j for all i, j such that 1 ≤ i, j ≤ n.

Denote by Patt n the set of patterns of length n.

There is a canonical representative for each pattern x ∈ Patt n obtained by replacing each x i with

xi := #{j ∈ [n] : x j ≤ x i }.
For example, the canonical representative of 523 is 312.

Definition 3.7 Let x, y ∈ Patt n for some n. Call (x, y) an Inversion-Inversion pair if the following condition holds:

for all i < j, x i > x j =⇒ y i > y j .
Notice that this statement is independent of the choice of representatives.

It is easy to see that if (x, y) is an Inversion-Inversion pair, then so is

(x 1 • • • xk • • • x n , y 1 • • • ŷk • • • y n ) for any k.
In preparation for the proof of Theorem 3.3, we first state and prove Lemmas 3.8, 3.10, and 3.11.

Lemma 3.8 Let u, v ∈ S n . The following are equivalent:

(i). The transposition (ik) is inversion-minimal on (u, v) Lemma 3.11 Suppose that (ik) is inversion-minimal on (u, v). Then for every i < j < k, we have Example 3.12 The following example shows that the converse to Theorem 3.3 does not hold: it is not necessarily the case that if the Bruhat relations

(ii). The patterns x = x i . . . x k := v i • • • v k and y = y i . . . y k := u k u i+1 u i • • • u k-2 u k-1 u i form
u j > u i ⇐⇒ u j > u k ⇐⇒ v j > v k ⇐⇒ v j > v i . u = 2143 3142 2341 v = 3241 t = (24) (14) t = (24) (12) 
v(ik) v u u(ik) u ≤ v(ik) u(ik) ≤ v hold, then (ik) is inversion-minimal on (u, v). Take v = 4312, u = 1243 and (ik) = (24). Then v(ik) v u u(ik) u ≤ v(ik) u(ik) ≤ v but also v 2 > v 3 and u 2 < u 3 .
As a corollary of Generalized lifting, we have the following result, which says that in an interval of the symmetric group we may find a maximal chain such that each transposition connecting two consecutive elements of the chain is a transposition that comes from the atoms, and similarly, for the coatoms.

Corollary 3.13 Let [u, v] =⊂ S n and let T (v) := {t ∈ T : v vt ≥ u} and T (u) := {t ∈ T : u ut ≤ v}. There exist maximal chains C v : u = x (0) x (1) x (2) . . . x (l) = v and C u : u = y (0) y (1) y (2) . . . y (l) = v in I such that x -1 (i) x (i+1) ∈ T (v) and y -1 (i) y (i+1) ∈ T (u) for each i.

Results on Bruhat interval polytopes

In this section we give some results on Bruhat interval polytopes. We show that the face of a Bruhat interval polytope is a Bruhat interval polytope; we give a dimension formula; and we give an inequality description.

Faces of Bruhat interval polytopes are Bruhat interval polytopes

The main result of this section is the following.

Theorem 4.1 Every face of a Bruhat interval polytope is itself a Bruhat interval polytope.

Our proof of this result uses the following theorem. It was first proved for the symmetric group by Edelman [START_REF] Paul | The Bruhat order of the symmetric group is lexicographically shellable[END_REF], then generalized to classical types by Proctor [START_REF] Proctor | Classical Bruhat orders and lexicographic shellability[END_REF], and then proved for arbitrary Coxeter groups by Bjorner and Wachs [START_REF] Björner | Bruhat order of Coxeter groups and shellability[END_REF].

Theorem 4.2 [BW82] Let (W, S) be a Coxeter group. Then for any u ≤ v in W , the order complex ∆(u, v) of the interval (u, v) is PL-homeomorphic to a sphere S (u,v)-2 . In particular, the Bruhat order is thin, that is, every rank 2 interval is a diamond. In other words, whenever u ≤ v with (v) -(u) = 2, there are precisely two elements z (1) , z (2) such that u < z (i) < v.

We will identify a linear functional ω with a vector (ω 1 , . . . , ω n ) ∈ R n , where ω : R n → R is defined by ω(e i ) = ω i (and extended linearly).

Proposition 4.3 Choose u ≤ v in S n , and let ω : R n → R be a linear functional which is constant on a maximal chain C from u to v. Then ω is constant on all permutations z where u ≤ z ≤ v. 

The dimension of Bruhat interval polytopes

In this section we will give a dimension formula for Bruhat interval polytopes. We will then use it to determine which Richardson varieties in Fl n are toric varieties, with respect to the usual torus action on Fl n . Recall that a Richardson variety R u,v is the intersection of opposite Schubert (sometimes called Bruhat) cells. Definition 4.5 Let u ≤ v be permutations in S n , and let C : u = x (0) x (1) x (2) . . . x (l) = v be any maximal chain from u to v. Define a labeled graph G C on [n] having an edge between vertices a and b if and only if the transposition (ab) equals x -1 (i) x (i+1) for some 0 ≤ i ≤ l -1. Define B C = {B 1 , B 2 , . . . , B r } to be the partition of [n] = {1, 2, . . . , n} whose blocks B j are the connected components of G C . Let #B C denote r, the number of blocks in the partition.

We will show in Corollary 4.8 that the partition B C is independent of C; and so we will denote this partition by B u,v .

Theorem 4.6 The dimension dim Q u,v of the Bruhat interval polytope Q u,v is dim Q u,v = n -#B u,v .
The equations defining the affine span of Q u,v are

i∈B j x i = i∈B j u i (= i∈B j v i ), j = 1, 2, . . . , #B u,v .
(2)

Before proving Theorem 4.6, we need to show that B u,v is well-defined. Given a subset A ⊂ [n], let e A denote the 0 -1 vector in R n with a 1 in position a if and only if a ∈ A.

Lemma 4.7 Let C be a maximal chain in [u, v] ⊂ S n . Let B C = {B 1 , . . . , B r } be the associated partition of [n]. Then a linear functional ω : R n → R is constant on the interval [u, v] if and only if ω = r j=1 c j e B j
for some coefficients c j . 

We now turn to the question of when the Richardson variety R u,v is a toric variety.

Proposition 4.12 The Richardson variety R u,v in Fl n is a toric variety if and only if the number of blocks

#B u,v of the partition B u,v satisfies #B u,v = n -(v) + (u).
Equivalently, R u,v is a toric variety if and only if the labeled graph G C is a forest (with no multiple edges).

Given a labeled graph G, we will say that a cycle

(v 0 , v 1 , . . . , v k ) with v k = v 0 is increasing if v 0 < v 1 < . . . < v k-1 .
We shall call a labeled graph with no increasing cycles an increasing-cycle-free labeled graph.

Lemma 4.13 The labeled graphs G at and G coat are increasing-cycle-free. In particular, they are simple and trianglefree.

Following Björner and Brenti [START_REF] Björner | Combinatorics of Coxeter groups[END_REF], we call the face poset of a k-gon a k-crown. Any length 3 interval in a Coxeter group is a k-crown [BB05, Corollary 2.7.8]. It is also known that in S n , the values of k can only be 2, 3 or 4.

Remark 4.14 Using Proposition 4.10 and Lemma 4.13, it is easy to show that any k-crown must have k ≤ 4. Indeed, the graph G C has 3 edges, and therefore at least n -3 connected components. By Proposition 4.10, the graph G at has the same connected components as G C and k edges. By Lemma 4.13 it is simple and triangle-free. Consequently, if k > 4 then G at must have at most n -4 components.

Lemma 4.15 Let [u, v] be a 4-crown and let C : u = x (0) x (1) x (2) x (3) = v be any maximal chain. The graph G C is a forest. In particular, if we set t i := x -1 (i) x (i+1) for 0 ≤ i ≤ 2, then t 0 = t 2 since there are no multiple edges. Corollary 4.16 A Richardson variety R u,v in Fl n with (v) -(u) = 3 is a toric variety if and only if [u, v] is a 3-crown or a 4-crown.

An inequality description of Bruhat interval polytopes

Using Proposition 2.8, which says that Bruhat interval polytopes are Minkowski sums of matroid polytopes, we will provide an inequality description of Bruhat interval polytopes.

We first need to recall the notion of the rank function r M of a matroid M. Suppose that M is a matroid of rank k on the ground set [n]. Then the rank function r M : 2 [n] → Z ≥0 is the function defined by

r M (A) = max I∈M |A ∩ I| for all A ∈ 2 [n] .
There is an inequality description of matroid polytopes, using the rank function.

Proposition 4.17 [START_REF] Dominic | Matroid theory[END_REF]) Let M be any matroid of rank k on the ground set [n], and let r M : 2 [n] → Z ≥0 be its rank function. Then the matroid polytope Γ M can be described as

Γ M =    x ∈ R n | i∈[n] x i = k, i∈A x i ≤ r M (A) for all A ⊂ [n]    .
Using Proposition 4.17 we obtain the following result. Then

Q u,v =    x ∈ R n | i∈[n] x i = n + 1 2 , i∈A x i ≤ n-1 j=1 r Mj (A) for all A ⊂ [n]    .
Example 4.19 Consider u = 1324 and v = 2431 in S 4 . We will compute the inequality description of Q u,v . First note that [u, v] = {1324, 1342, 1423, 1432, 2314, 2341, 2413, 2431}. We then compute:

• M 1 = {{1}, {2}}, a matroid of rank 1 on [4]. • M 2 = {{1, 3}, {1, 4}, {2, 3}, {2, 4}}, a matroid of rank 2 on [4]. • M 3 = {{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}}, a matroid of rank 3 on [4].
Now using Proposition 4.18, we get

Q u,v = {x ∈ R 4 | i∈[4] x i = 10, x 1 + x 2 + x 3 ≤ 6, x 1 + x 2 + x 4 ≤ 6, x 1 + x 3 + x 4 ≤ 6, x 2 + x 3 + x 4 ≤ 6, x 1 + x 2 ≤ 4, x 1 + x 3 ≤ 5, x 1 + x 4 ≤ 5, x 2 + x 3 ≤ 5, x 2 + x 4 ≤ 5, x 3 + x 4 ≤ 3, x 1 ≤ 3, x 2 ≤ 3, x 3 ≤ 2, x 4 ≤ 2.}

A generalization of the recurrence for R-polynomials

The well-known R-polynomials were introduced by Kazhdan and Lusztig as a useful tool for computing Kazhdan-Lusztig polynomials [START_REF] Kazhdan | Representations of Coxeter groups and Hecke algebras[END_REF]. R-polynomials also have a geometric interpretation in terms of Richardson varieties. More specifically, the Richardson variety R u,v may be defined over a finite field F q , and the number of points it contains is given by the R-polynomial R u,v (q) = #R u,v (F q ). The R-polynomials may be defined by the following recurrence.

Theorem 5.1 [BB05, Theorem 5.1.1] There exists a unique family of polynomials {R u,v (q)} u,v∈W ⊂ Z[q] satisfying the following conditions:

1. R u,v (q) = 0, if u ≤ v. 2. R u,v (q) = 1, if u = v. 3. If s ∈ D R (v), then R u,v (q) = R us,vs (q) if s ∈ D R (u), qR us,vs (q) + (q -1)R u,vs (q) if s ∈ D R (u).
It is natural to wonder whether one can replace s with a transposition t whenever the Generalized lifting property holds. More precisely, suppose that t is a transposition such that vt v u ut u ≤ vt ut ≤ v.

(3)

Is it true that R u,v (q) = qR ut,vt (q) + (q -1)R u,vt (q)? (4)

In general, the answer is no. For example, one can check that u = 1324, v = 4231 and t = (24) give a counterexample. However, when t is an inversion-minimal transposition on (u, v), (4) does hold. We'll use the next lemma to prove this.

Lemma 5.2 Let u, v ∈ S n and suppose that (ik) is inversion-minimal on (u, v). Assume further that v j > v j+1 and u j > u j+1 for some j such that i < j < k -1. Then (ik) is inversion-minimal on (vs j , us j ).

Proposition 5.3 Let u, v ∈ S n with v ≥ u. Let t = (ij) be inversion-minimal on (u, v). Then R u,v (q) = qR ut,vt (q) + (q -1)R u,vt (q).

Remark 5.4 The above statement holds mutatis mutandis for the R-polynomials, which are a renormalization of the R-polynomials.

Example 5.5 Take u = 21345, v = 53421 and t = (13). We have R u,v (q) = q 8 -4q 7 + 7q 6 -8q 5 + 8q 4 -8q 3 + 7q 2 -4q + 1 R ut,vt (q) = q 6 -4q 5 + 7q 4 -8q 3 + 7q 2 -4q + 1 and R u,vt (q) = q 7 -4q 6 + 7q 5 -8q 4 + 8q 3 -7q 2 + 4q -1.

Definition 5.6 A matching of a graph G = (V, E) is an involution M : V → V such that {v, M (v)} ∈ E for all v ∈ V .

Definition 5.7 Let P be a graded poset. A matching M of the Hasse diagram of P is a special matching if for all x, y ∈ P such that x y, we have M (x) = y or M (x) ≤ M (y).

It is known that special matchings can be used to compute R-polynomials:

Theorem 5.8 [BCM06, Theorem 7.8] Let (W, S) be a Coxeter system, let w ∈ W , and let M be a special matching of the Hasse diagram of the interval [e, w] in Bruhat order. Then R u,w (q) = q c R M (u),M (w) (q) + (q c -1)R u,M (w) (q) for all u ≤ w, where c = 1 if M (u) u and c = 0 otherwise.

One might guess that the Generalized lifting property is compatible with the notion of special matching. More precisely, one might speculate that if [u, v] ⊂ S n and t is inversion-minimal on (u, v) then there is a special matching M of [u, v] such that M (u) = ut and M (v) = vt. The following gives an example of this.

Example 5.9 Take u = 143265 and v = 254163. Then t = (36) is inversion-minimal on (u, v). Suppose that a special matching M of [u, v] (see Figure 6) satisfies M (v) = vt and M (u) = ut. Then we must have M (154263) = 153264 and M (243165) = 245163. Observe that the result is a multiplication matching. Similarly, if we take t = (14), another inversion-minimal transposition on (u, v), we again obtain a multiplication matching. 

The following example shows that it is not the case that an inversion-minimal transposition must be compatible with a special matching. This makes Proposition 5.3 all the more surprising, and shows that it cannot be deduced using special matchings. 

Figure 1 :

 1 Figure 1: The two polytopes are the permutohedron Q e,w0 = Perm 4 , and the Bruhat interval polytope Q u,v with v = (2, 4, 3, 1) and u = (1, 2, 4, 3).

Figure 2 :

 2 Figure 2: Generalized lifting property Lemma 3.10 Let x, y ∈ Patt n with xn = x1 + 1 and ȳn = ȳ1 + 1. If (x, y) is an Inversion-Inversion pair, then x1 = ȳ1 .

Figure 3 :

 3 Figure 3: Example of Theorem 3.3

Corollary 4. 4

 4 If a linear functional ω : R n → R, when restricted to [u, v], attains its maximum value on u and v, then it is constant on [u, v].

Corollary 4. 8

 8 The partition B C is independent of the choice of C. Definition 4.9 Let u ≤ v be permutations in S n , and let T (u) := {t ∈ T : u ut ≤ v} and T (v) := {t ∈ T : v vt ≥ u} be the transpositions labeling the cover relations corresponding to the atoms and coatoms in the interval. Define a labeled graph G at (resp. G coat ) on [n] such that G at (resp. G coat ) has an edge between a and b if and only if the transposition (ab) ∈ T (u) (resp. (ab) ∈ T (v)). Let B at u,v be the partition of [n] whose blocks are the connected components of G at . Similarly, define partition B coat u,v whose blocks are the connected components of G coat . Proposition 4.10 Let [u, v] ⊂ S n . The partitions B at u,v and B coat u,v are equal to B u,v . Consequently, the labeled graphs G C , G at and G coat all have the same connected components.

Example

  

Proposition 4 .

 4 18 Choose u ≤ v ∈ S n , and for each 1 ≤ k ≤ n -1, define the matroidM k = {I ∈ [n] k | there exists z ∈ [u, v]such that I = {z(1), . . . , z(k)}}.

Example 5 .

 5 10 Take u = 1324 and v = 4312. Then t = (24) is inversion-minimal on (u, v). Suppose that a special matching M of [u, v] (Figure 7) satisfies M (v) = vt, i.e., sends 4312 to 4213. Then M (4132) = 4123, M (1432) = 1423, M (1342) = 1324, M (3142) = 3124, M (3412) = 3214, M (2413) = 2314. But M (2314) = 2413 ≥ 1342 = M (1324), which is a contradiction.

  Figure 7

  4.11 Consider the intervals [1234, 1432] and [1234, 3412] in Figures4 and 5. We see that B 1234,1432 = |1|234| and B 1234,3412 = |1234|, so that the dimensions are 2 and 3, respectively.
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