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Introduction

Main Result: Equivariant K-theory of Grassmannians

Let X = Gr k (C n ) denote the Grassmannian of k-dimensional planes in C n . The natural action of GL n (C) on X restricts to an action of the Borel subgroup B of invertible upper triangular matrices and its subgroup T of invertible diagonal matrices. The T -fixed points e λ ∈ X are naturally indexed by Young diagrams λ contained in the rectangle Ω := k × (n -k). The Schubert varieties are defined as the orbit closures X λ = B -e λ . The classes {[X λ ]} of their Poincaré duals form a Z-basis of the cohomology ring H (X, Z).

The (classical) Schubert structure constants c ν λ,µ are defined by

[X λ ] • [X µ ] = ν⊆Ω c ν λ,µ [X ν ].
The fact c ν λ,µ ∈ Z ≥0 is geometrically interpreted in Schubert calculus as the statement that this number counts the number of points (when finite) in a generic triple intersection of Schubert varieties. Combinatorially, c ν λ,µ is computed, in a manifestly nonnegative manner, by any of the Littlewood-Richardson rules. The first such rule was stated (with partial proof) by D. Littlewood-A. Richardson in the 1930s [START_REF] Littlewood | Group Characters and Algebra[END_REF] in their study of the representation theory of symmetric groups. However, the first rigorous proof of a rule was given by M.-P. Schützenberger [START_REF] Schützenberger | Combinatoire et représentation du groupe symétrique[END_REF] only in the 1970s.

In the modern Schubert calculus, substantial attention has turned to the problem of generalizing the above described work to richer cohomology theories. Early last decade, two problems of this type were solved. A. Buch [Bu02] found the first rule for the multiplication of the Schubert structure sheaves in the K-theory of Grassmannians. His rule was nonnegative, at least once one takes into account a predictable alternation of sign. Separately, in [START_REF] Knutson | Puzzles and (equivariant) cohomology of Grassmannians[END_REF], puzzles (as opposed to Young tableaux) were introduced to give the first rule for equivariant Schubert calculus of Grassmannians that was positive in the sense of [START_REF] Graham | Positivity in equivariant Schubert calculus[END_REF].

We turn to the common unification of these problems, i.e., to combinatorially compute the Laurent polynomial

K ν λ,µ ∈ Z[t ±1 1 , • • • t ±1 n ] defined by [O X λ ] • [O Xµ ] = ν⊆Ω K ν λ,µ [O Xν ]
where [O X λ ] is the class of the Schubert structure sheaf in the T -equivariant K-theory ring K T (X). This problem may also be stated in terms of multiplication of double Grothendieck polynomials [START_REF] Lascoux | Structure de Hopf de l'anneau de cohomologie et de l'anneau de Grothendieck d'une variété de drapeaux[END_REF].

A partial summary of earlier contributions to this problem follows: A. Knutson-R. Vakil (reported in [START_REF] Coskun | Geometric positivity in the cohomology of homogeneous spaces and generalized Schubert calculus[END_REF]) described a still-open conjectural formula for K ν λ,µ in terms of puzzles. Later, "positivity" of K ν λ,µ (in a more general context) was geometrically established by D. Anderson-S. Griffeth-E. Miller [START_REF] Anderson | Positivity and Kleiman transversality in equivariant K-theory of homogeneous spaces[END_REF]. More recently, A. Knutson [Kn10] obtained a puzzle rule for a different Schubert calculus problem in K T (X), that of multiplying the class of a Schubert structure sheaf by that of an opposite Schubert structure sheaf. Also, H. Thomas and the second author conjectured the first Young tableau rule for K ν λ,µ [START_REF] Thomas | Equivariant Schubert calculus and jeu de taquin[END_REF]. The latter rule is positive in the sense of [START_REF] Anderson | Positivity and Kleiman transversality in equivariant K-theory of homogeneous spaces[END_REF]. We announce a proof of a new [AnGrMi11]-positive rule for K ν λ,µ that allows us to deduce the conjectural rule of [START_REF] Thomas | Equivariant Schubert calculus and jeu de taquin[END_REF]. Indeed, our approach completes the strategy set out in [START_REF] Thomas | Equivariant Schubert calculus and jeu de taquin[END_REF]. The principal development of this paper towards this strategy is the introduction of genomic tableaux. (This paper does not use or contribute to mathematical biology in any way.)

Genomic edge-labeled tableaux

A genomic tableau is a Young diagram filled with (subscripted) labels i j where i ∈ Z >0 and the j's that appear for each i form an initial segment of Z >0 . Such a tableau is edge-labeled of shape ν/λ if each horizontal edge of a box weakly below the southern border of λ (interpreted as a ballot path from (0, 0) to (k, n -k)) is filled with a subset of {i j }.

We write family(i j ) = i. Distinguish two orders on subscripted labels: i j < k if i < k; also i j ≺ k if i < k or i = k with j < . Note that ≺ is a total order, while many pairs are incomparable under <. For a box x, let x denote the upper horizontal edge of x and x denote the lower horizontal edge.

A genomic tableau S is semistandard if the following hold: (1) every box-label is ≺-strictly smaller than any label to its right in its row; (2) every label is <-strictly smaller than any label below in its column;

(3) if i j , k appear on the same edge then i = k; (4) if i a is west of i b , then a ≤ b. Let us refer to the labels i j (for fixed i and j) collectively as a gene. The content of T is the vector (c 1 , c 2 , c 3 , . . .) where c i is the number of genes of family i.

Example 1.1 For λ = (4, 2, 2, 1) and ν = (6, 5, 4, 3, 2), consider the genomic tableau T :

1 2 1 3 1 2 2 1 2 2 2 1 3 2 1 1 3 2 2 1 3 2 2 1 3 2 4 2 3 1 4 1
The content of T is (3, 2, 2, 2). T is not semistandard since the second column from the left fails condition (2) by having two labels of family 3. If we deleted the 3 2 from the edge, the result would be semistandard.

Ballotness of genomic tableaux

A genotype G of T is a choice of one label from each gene of T . (The remainder of the genomic analogy is that each label of a gene is an allele and the other genes of the same family are paralogs.) Let word(G) be obtained by reading family labels of G down columns from right to left. (For multiple labels on an edge, read them from smallest to largest.) G is ballot if in every initial segment of word(G), there are (for each i) at least as many i's as i + 1's. T is ballot if all its genotypes are ballot.

Example 1.2 Consider T = 1 2 1 1 2 1 and U = 1 1 1 1 2 1
. Then T is ballot since there is only one genotype (namely itself), and the reading word is the ballot sequence 121. On the other hand, U is not ballot. It has two genotypes

1 1 2 1 and 1 1 2 1
and the word for the former is 21, which is not ballot. The reader can check that the tableau of Example 1.1 is also not ballot. 2

1.4 Tableau weights and the K ν λ,µ rule

For a box x define Man(x) to be the "Manhattan distance" from the southwest corner (point) of Ω to the northwest corner (point) of x (i.e., the length of any north and east lattice path between the corners). For a gene G, define N G to be the number of genes G with family(G ) = family(G) and G G. For instance, in Example 1.1, N 11 = 2 since the genes 1 2 and 1 3 are of the same family as 1 1 (namely family 1) but 1 1 ≺ 1 2 , 1 3 . (Note that N G depends on the content of the tableau.) Suppose ∈ x is an instance of i j and x is in row r. If i > r then set edgefactor( ) := 0. Otherwise

edgefactor( ) := 1 - t Man(x) t r-i+Ni j +1+Man(x)
.

The edge weight edgewt(T ) of T is edgefactor( ); the product is over all edge-labels of T . A nonempty box x in row r is productive if family(label(x)) < r and family(label(x)) < family(label(x → )). (Here x → is the box immediately right of x.) For a nonempty productive box x in row r with label i j define boxfactor(x) := t Man(x)+1 t r-i+Ni j +1+Man(x) .

If x is not productive, we set boxfactor(x) := 1. The box weight of T is 0 if any label of family i is in a box strictly north of row i. Otherwise, it is boxwt(T ) := x boxfactor(x), where the product is over all boxes of T . The weight of T is wt(T ) := (-1) d(T ) × boxwt(T ) × edgewt(T ). Here d(T ) = (# genes counted with multiplicity)-(# genes counted without multiplicity).

Let L ν λ,µ := T wt(T ),
where the sum is over all ballot semistandard genomic tableaux T of shape ν/λ and content µ. The following provides the first theorem for an Anderson-Griffeth-Miller positive rule for K ν λ,µ :

Theorem 1.3 K ν λ,µ = L ν λ,µ . Example 1.4 To compute K (2,2)
(2),(2,1) for Gr 2 (C 4 ), the required tableaux are

T 1 = 1 1 1 2 , T 2 = 1 1 1 2 , T 3 = 1 1 1 2 , T 4 = 1 1 2 1 , T 5 = 1 1 2 1 . Then 2 1 2 1 2 1 2 1 1 2 1 2 2 1 • edgewt(T 1 ) = 1 -t1
t2 , boxwt(T 1 ) = t3 t4 and d(T 1 ) = 0

• edgewt(T 2 ) = 1 -t2 t3 , boxwt(T 2 ) = t3 t4 and d(T 2 ) = 0 • edgewt(T 3 ) = (1 -t1 t2 )(1 -t2 t3 ), boxwt(T 3 ) = t3 t4 and d(T 3 ) = 1 • edgewt(T 4 ) = (1 -t3 t4 ), boxwt(T 4 ) = t2 t4 and d(T 4 ) = 0 • edgewt(T 5 ) = (1 -t1 t2 )(1 -t3 t4 ), boxwt(T 5 ) = t2 t4 and d(T 5 ) = 1 Hence K (2,2) (2),(2,1) = 1 - t 1 t 2 t 3 t 4 + 1 - t 2 t 3 t 3 t 4 -1 - t 1 t 2 1 - t 2 t 3 t 3 t 4 + 1 - t 3 t 4 t 2 t 4 -1 - t 1 t 2 1 - t 3 t 4 t 2 t 4 .
2

If one drops the edge labels and weights, Theorem 1.3 reduces to a rule for non-equivariant K-theory of Grassmannians. This indicates a different semistandard theory than the set-valued approach of A. Buch [START_REF] Buch | A Littlewood-Richardson rule for the K-theory of Grassmannians[END_REF]; see Section 3.1. If instead one assumes each gene G has (multiset) cardinality 1 in Theorem 1.3, one essentially recovers the rule of [START_REF] Thomas | Equivariant Schubert calculus and jeu de taquin[END_REF] for equivariant cohomology of Grassmannians. For discussion of the algebraic relations among these generalized cohomology rings, we refer the reader to [START_REF] Griffeth | Affine Hecke algebras and the Schubert calculus[END_REF].

In Section 2, we sketch how Theorem 1.3 is used to prove the conjecture of [START_REF] Thomas | Equivariant Schubert calculus and jeu de taquin[END_REF]. Section 3 concerns applications to non-equivariant K-theory of (maximal orthogonal, Lagrangian) Grassmannians. Section 4 briefly outlines our proof of Theorem 1.3.

2 The conjectural K T rule from [START_REF] Thomas | Equivariant Schubert calculus and jeu de taquin[END_REF] We briefly recap the conjectural rule for K ν λ,µ from [ThYo13, §8]. We refer the reader to loc. cit. for further elaboration and references.

An equivariant increasing tableau is an edge-labeled filling of ν/λ by the labels 1, 2, . . . , such that each label in a box is: (1) strictly smaller than the label in the box immediately to its right; (2) strictly smaller than the label in its southern edge, and the label in the box immediately below it; and (3) strictly larger than the label in the northern edge. Any subset of the boxes of ν/λ may be marked by s, except that if the labels i and i + 1 appear as box labels in the same row, then only the box containing i + 1 may be -ed. Let EqInc(ν/λ, ) denote the set of all equivariant increasing tableaux.

A short ribbon R is a connected skew shape without a 2 × 2 subshape and where each row and column contains at most two boxes. An alternating ribbon is a filling of R by two symbols, say α and β, such that adjacent boxes are filled differently; all edges except the southwestmost edge are empty; and if this southwestmost edge is filled, it is filled with a different symbol than the box above it is. Let switch(R) be the alternating ribbon of the same shape but where each box is instead filled with the other symbol. If the southwestmost edge contained one of these symbols, that symbol is deleted. If R is a ribbon consisting of a single box with only one symbol used, then switch does nothing to it. Define switch to act on a disjoint union of alternating ribbons by acting on each separately.

Given T ∈ EqInc(ν/λ, ), consider an inner corner x ∈ λ which we label •. Erase all s appearing in T . Apply switch to the alternating ribbon made of • and 1. Now let R 2 be the union of ribbons consisting of • and 2, and proceed as before. Repeat this process until the •s are at outer corners; the final placement of the numerical labels gives KEqjdt <

x (T ). Define KEqrect < (T ) by successively applying KEqjdt < in the column rectification order.

A label s ∈ T is a special label if it is an edge-label or if its box is -ed. Given a box x define a weight β(x) = t m /t m+1 where m is the "Manhattan distance" as defined in Section 1.4. Each step of the rectification moves an s at most one step north (keeping it in the same column). A special label s passes through a box x if it occupies x during rectification of the column that s initially occupies and if s did not initially begin in x. Let x 1 , . . . , x s be the boxes passed through by s and y 1 , . . . , y t be the numerically labeled boxes strictly right of x s and in the same row. Set

factor K (s) = 1 - s i=1 β(x i ) t j=1 β(y j ).
If a special label s does not move during the rectification of the column that it initially sits in, then factor K (s) = 0. Now set wt K (T ) = s factor K (s), where the product is over all special labels s. Lastly, given T we define sgn(T ) = (-1) # 's in T + #labels in T -|µ| .

Let T µ be the superstandard tableau of shape µ, i.e., the first row has entries 1, 2, 3, . . . , µ 1 , the second row has entries µ 1 + 1, µ 1 + 2, . . . , µ 1 + µ 2 , etc. The following is the main conjecture of [START_REF] Thomas | Equivariant Schubert calculus and jeu de taquin[END_REF]. We deduce it via a weight preserving bijection with the rule of Theorem 1.3: Theorem 2.1 The equivariant K-theory Schubert structure coefficient is

K ν λ,µ = T sgn(T ) • wt K (T )
where the sum is over all T ∈ EqInc(ν/λ, |µ|) such that KEqrect < (T ) = T µ .

Proof (sketch): Say two equivariant increasing tableaux are equivalent if they differ only in the location of s. Let X ν λ,µ be the set of equivalence class of witnessing tableaux for the rule asserted in the theorem. Let Y ν λ,µ be the set of witnessing tableaux for the rule of Theorem 1.3. We need a "semistandardization" map φ :

X ν λ,µ → Y ν λ,µ . Given [T ] ∈ X ν λ,µ
, replace the labels 1, 2, . . . , µ 1 in T with 1 1 , 1 2 , . . . , 1 µ1 respectively. Next, replace µ 1 + 1, µ 1 + 2, . . . , µ 1 + µ 2 by 2 1 , 2 2 , . . . , 2 µ2 respectively, etc. The result is φ([T ]). Define a "standardization" map ψ : Y ν λ,µ → X ν λ,µ by reversing the above process in the obvious way. We prove that the maps φ and ψ are weight-preserving mutually inverse bijections, which implies the theorem. We omit the details in this announcement. 2

Example 2.2 We repeat the computation from Example 1.4 of K

(2,2)

(2),(2,1) for Gr 2 (C 4 ), this time using the tableaux of [START_REF] Thomas | Equivariant Schubert calculus and jeu de taquin[END_REF]. There are 14 such tableaux. We illustrate only those without s, and merely describe where the s can go:

U 1 = 1 2 , U 2 = 1 2 , U 3 = 1 2 , U 4 = 1 3 , U 5 = 1 3 . 3 3 3 3 2 2 3
The remaining 9 tableaux are: analogues of U 1 , U 2 , U 3 with s on the boxes containing 2, and analogues of U 4 , U 5 with s on the boxes containing 1, 3, or both.

It is left to the reader to confirm that for each i, wt(T i ) = sgn(U ) • wt K (U ), where the sum is over all equivariant increasing tableaux that differ from U i only in location of s.

Applications to (non-equivariant) K-theory

In this section we describe applications of genomic tableaux to non-equivariant K-theory. Let G/P be a generalized flag variety, where G is a complex connected reductive Lie group and P is a parabolic subgroup. The classes [O X λ ] of the structure sheaves of the Schubert varieties X λ form a Z-linear basis of the Grothendieck ring K 0 (G/P ) of algebraic vector bundles over G/P . Here λ ranges over W/W P , where W is the Weyl group of G and W P is the subgroup of W associated to P . Define structure constants by

[O X λ ] • [O Xµ ] = ν k ν λ,µ (G/P )[O Xν ].
It is known that (-1) |λ|+|µ|-|ν| k ν λ,µ (G/P ) ≥ 0, where |λ| is the codimension of X λ (see [START_REF] Brion | Lectures on the geometry of flag varieties, Topics in cohomological studies of algebraic varieties[END_REF] and references therein). We now discuss k ν λ,µ (G/P ) when G/P is a Grassmannian, maximal orthogonal Grassmannian or Lagrangian Grassmannian.

Recently, C. Monical (private communication) has found another application of genomic tableaux to combinatorial K-theory. This is in the study of Lascoux polynomials (see [START_REF] Ross | Combinatorial rules for three bases of polynomials[END_REF] and references therein) and K-theoretic analogues of Demazure atoms, extending results of [START_REF] Haglund | Refinements of the Littlewood-Richardson rule[END_REF].

Gr

k (C n ) Our rule for K ν λ,µ (Gr k (C n )) reduces to one for k ν λ,µ (Gr k (C n ))
. That is we define genomic tableaux, their genes, content and genotype the same way except we do not allow edge-labels. For example:

Example 3.1 The genomic tableau T = 1 2 2 1 1 1 1 2 2 1 2 1 has content (2, 1) and six genotypes:

1 1 1 2 2 1 1 2 1 1 2 1 1 1 1 2 2 1 1 2 1 1 2 1 2 1 1 1 1 2 1 2 2 1 1 1
The above genotypes respectively have reading words: 112, 112, 211, 121, 211 and 211. Since 211 is not a ballot sequence, the genomic tableau T is not ballot. (2,1),(2,1) (Gr 3 (C 7 )) = -3 is computed by the tableaux

Theorem 3.2 k ν λ,µ (Gr k (C n )) equals (-1)
1 1 1 2 2 1 1 1 1 1 1 2 1 1 2 1 1 1 1 2 2 1 2 1 A rule for k ν λ,µ (Gr k (C n ))
was first given by A. Buch [START_REF] Buch | A Littlewood-Richardson rule for the K-theory of Grassmannians[END_REF] in terms of set-valued tableaux.

[ThYo09b] introduced an alternative model, extending the classical jeu de taquin algorithm to increasing tableaux. This latter rule had applications to maximal orthogonal Grassmannians, a point we wish to now revisit.

OG(n, 2n + 1)

The Schubert varieties of the odd orthogonal Grassmannian OG(n, 2n + 1) are indexed by shifted Young diagrams λ contained in the shifted staircase δ n whose ith row is of length i for 1 ≤ i ≤ n. Equivalently, λ = (λ 1 > λ 2 > . . . > λ k > 0) where k ≤ n and λ 1 ≤ n. Let λ be the self-conjugate Ferrers diagram λ ∪ λ † , where λ † is the diagram obtained by reflecting λ across the main diagonal and folding along that diagonal. For example,

λ = (3, 1) ⊂ δ 4 = • • • • → λ = • • • • • •
Using standard matrix coordinates to describe the boxes of λ, the upper part of λ is the set of boxes in positions (i, j) with i ≤ j (the boxes labeled • in our example above). A symmetric pair is either a pair of boxes with one in position (i, j) and the other in position (j, i), or else a single box in position (i, i).

Let D be the doubled alphabet 1 < 1 < 2 < 2 < • • •. For i ∈ D, we say |i| = n, if either i = n or i = n . A gene is a set of subscripted entries from D with a given subscript. A gene is of family i if all unprimed labels in the gene are of the form i a for some a. A OG-genomic tableau is a filling of λ with subscripted entries from D (the subscripts should form an initial segment of Z >0 ) such that: but is the correct form to work with for our proof. Let B ν λ,µ = {B ∈ Bundled(ν/λ) with content µ}, be the set of such tableaux. Fix λ, µ, ν with λ ν. Define the formal sums We define jeu de taquin swaps for bundled tableaux. We show that using these swaps to slide Λ + at the inner corners ρ/λ gives Λ + Λ -. We then show this process is weight-preserving in an appropriate sense, concluding the proof. This proof of weight-preservation and moreover that our slides are well-defined is the vast majority of the effort in our forthcoming work.

Λ + = ρ∈λ +

T

  and Λ -= δ∈ν - (-1) |ν/δ|+1 wt(δ/λ)

  |ν|-|λ|-|µ| times the number of ballot genomic tableaux of shape ν/λ and content µ.

	Example 3.3 The structure constant k	(4,2,1)
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8. no primed labels appear on the main diagonal.

For example, if λ = (3, 1), then an OG-genomic tableau of shape λ is given by 1 1 2 2 3 4 2 2 2 3 4 4

.

We now give OG-analogues of the notions from Section 1.2. The content of T is the number of genes of each family. A genotype G of T is a choice of a single symmetric pair from each gene.

Example 3. [START_REF]if k appears in position (i, j)[END_REF] Let n = 6, ν = (6, 4, 1), λ = (4, 2). Then a genomic tableau T of shape ν/ λ and one of its two genotypes G are given by

The content of T is µ = (2, 1, 1).

The reading word word(G) of a genotype G is obtained by reading the families of its entries along rows from right to left and from top to bottom. Suppose i ∈ D is the jth letter of word(G). Say word(G) is locally ballot in the jth position, if |i| = 1 or the number of |i|'s among the first j -1 letters of word(G) is strictly less than the number of (|i| -1)'s among the first j -1 letters. G is ballot if word(G) is locally ballot in every position and the genomic tableau T is ballot if every genotype of T is ballot.

Theorem 3.5 k ν λ,µ (OG(n, 2n + 1)) equals (-1) |ν|-|λ|-|µ| times the number of ballot genomic tableaux of shape ν/ λ and content µ.

One can also give a variant of this theorem, using a reading word that more closely resembles earlier work (e.g. [START_REF] Stembridge | Shifted tableaux and the projective representations of symmetric groups[END_REF]). Earlier a conjecture for k ν λ,µ (OG(n, 2n + 1)) was given in [START_REF] Thomas | A jeu de taquin theory for increasing tableaux, with applications to K-theoretic Schubert calculus[END_REF] and proved by the combination of [START_REF] Buch | Pieri rules for the K-theory of cominuscule Grassmannians[END_REF][START_REF] Clifford | K-theoretic Schubert calculus for OG(n, 2n + 1) and jeu de taquin for shifted increasing tableaux[END_REF]. See also related work of T. Ikeda-H. Naruse [START_REF] Ikeda | K-theoretic analogues of factorial Schur P -and Q-functions[END_REF]. Note that since OG(n, 2n + 1) is isomorphic to a component of OG(n + 1, 2n + 2), Theorem 3.5 also applies in the latter context.

(3,1),(3,1) (OG(n, 2n + 1)) = -6 is witnessed by: 

LG(n, 2n)

The Schubert varieties of the Lagrangian Grassmannian LG(n, 2n) are indexed by the same shifted Young diagrams λ as in the OG case. We do not as yet have an exact rule in this case, but we present some conjectures in this direction. We define LG-genomic tableaux exactly like OG-genomic tableaux except:

• We delete condition 7. on OG-genomic tableaux; and

• we relax condition 1., allowing i a left of j a in the same row or above j a in the same column, when i < j ∈ D.

Conjecture 3.7 |k ν λ,µ (LG(n, 2n))| ≤ #{ballot LG-genomic tableaux of shape ν/ λ and content µ}.

In the "cohomological case", i.e., when |λ| + |µ| = |ν|, we have

where l(π) denotes the number of nonzero parts of π. However, we are not aware of any such simple relationship between the coefficients in general. However, we have:

Conjecture 3.8 For any strict partitions λ, µ, ν, |k ν λ,µ (OG(n, 2n + 1))| ≤ |k ν λ,µ (LG(n, 2n))|.

By [START_REF] Buch | Pieri rules for the K-theory of cominuscule Grassmannians[END_REF], this conjecture holds whenever µ has a single part. The above two conjectures have been checked extensively by computer. Concluding, we have given combinatorially related upper and lower bounds for |k ν λ,µ (LG(n, 2n))|. Meanwhile, Conjecture 3.8 presents an inequality for which a geometric explanation is desired.

Structure of the proof of Theorem 1.3

Let λ + denote the set of partitions ρ such that λ ρ and ρ/λ has no two boxes in the same row or column. Similarly, let λ -denote the set of partitions δ such that δ λ and λ/δ has no two boxes in the same row or column.

(1)

Proof: The Chevalley formula in equivariant K-theory (see, e.g., [START_REF] Lenart | Affine Weyl groups in K-theory and representation theory[END_REF]) implies:

Thus, the coefficient of

On the other hand,

The conclusion follows from associativity and commutativity:

To prove K ν λ,µ = L ν λ,µ we induct on |ν/λ|. This inductive approach is inspired by that of [START_REF] Molev | A Littlewood-Richardson rule for factorial Schur functions[END_REF] and [START_REF] Knutson | Puzzles and (equivariant) cohomology of Grassmannians[END_REF]. Assume K τ θ,µ = L τ θ,µ when |τ /θ| ≤ h. Now suppose we are given λ, ν with |ν/λ| = h+1. We will later show that L ν λ,µ satisfies (1). This relates L ν λ,µ to L τ θ,µ = K τ θ,µ (the equality being the inductive hypothesis). Since Proposition 4.1 asserts K ν λ,µ also satisfies (1) we are done, except that we must check the base case of the induction:

Proof (sketch): For λ ⊆ Ω = k × (n -k), the Grassmannian permutation associated to λ is the permutation π λ ∈ S n uniquely defined by π λ (i) = i + λ k-i+1 for 1 ≤ i ≤ k and which has at most one descent, which (if it exists) appears at position k. Let w , v ∈ S n be the Grassmannian permutations for the conjugate shapes λ , µ ⊆ (n -k) × k. The following identity (well-known to experts) relates K λ λ,µ to the localization at e µ of the class σ λ , as expressed in terms of a specialization of the double Grothendieck polynomial:

The remainder of the proof uses a tableau formula for G v (t w (1) , . . . , t w (n) ; t 1 , . . . , t n ) [KnMiYo09, Theorem 5.8] which is valid when v is Grassmannian. We biject the tableaux of this formula with the tableaux given by our rule. 2

To show that L ν λ,µ satisfies the recurrence of Proposition 4.1, we need to reformulate our rule in terms of what we call 'bundled tableaux.' These may be thought of as certain equivalence classes of ballot semistandard genomic tableaux. This rule is more difficult to formulate (which is why we do not give it here),