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Card-Shuffling via Convolutions of Projections
on Combinatorial Hopf Algebras

C. Y. Amy Pang †

LaCIM, Université du Québec à Montréal, 201 Président-Kennedy, Montréal QC H2X 3Y7, Canada

Abstract. Recently, Diaconis, Ram and I created Markov chains out of the coproduct-then-product operator on com-
binatorial Hopf algebras. These chains model the breaking and recombining of combinatorial objects. Our motivating
example was the riffle-shuffling of a deck of cards, for which this Hopf algebra connection allowed explicit compu-
tation of all the eigenfunctions. The present note replaces in this construction the coproduct-then-product map with
convolutions of projections to the graded subspaces, effectively allowing us to dictate the distribution of sizes of the
pieces in the breaking step of the previous chains. An important example is removing one “vertex” and reattaching
it, in analogy with top-to-random shuffling. This larger family of Markov chains all admit analysis by Hopf-algebraic
techniques. There are simple combinatorial expressions for their stationary distributions and for their eigenvalues and
multiplicities and, in some cases, the eigenfunctions are also calculable.

Résumé. Récemment, avec Diaconis et Ram, nous avons construit des chaines de Markov à partir de l’opérateur
“coproduit-puis-produit” défini sur un algèbre de Hopf combinatoire. Ces chaines modélisent la déconstruction et
la construction d’objets combinatoires. La motivation était le “mélange à l’américaine”, une méthode populaire
pour mélanger un jeu de cartes, pour lequel les liens avec les algèbres de Hopf combinatoires nous a permis de
calculer explicitement toutes les fonctions propres. Ici, on généralise cette construction en remplaçant l’opérateur
“coproduit-puis-produit” par les convolutions de projections sur les composantes graduées de l’algèbre. Ceci nous
permet de stipuler les tailles des pièces dans la décomposition des objets combinatoires. Un exemple important est
la suppression et l’insertion d’un “sommet”, par analogie avec la bibliothèque de Tsetlin. On constate que toutes ces
chaines peuvent être analysées par des techniques provenant de la théorie des algèbres de Hopf combinatoires. On
prouve des expressions combinatoires simples pour les distributions stationnaires ainsi que pour les valeurs propres
et leurs multiplicités. Dans certains cas, il est possible de calculer les fonctions propres associées.

Keywords: shuffling, combinatorial Hopf algebras, Markov chains, noncommutative symmetric functions, hyper-
plane walks, dual graded graphs

1 Introduction
Background: Markov chains from Hopf-powers
Possibly the most popular model of card-shuffling is the Gilbert-Shannon-Reeds (GSR) riffle-shuffle: cut
the deck into two piles according to the (symmetric) binomial distribution, then drop one-by-one the
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bottom card from either pile, chosen with probability proportional to the current pile size. This second
step is equivalent to all interleavings of the two piles (counted with multiplicity) being equally likely.

Amongst the plethora of results concerning this shuffle, the most notable must be the work of Bayer
and Diaconis (1992), who determined that 3

2 log n shuffles are necessary and sufficient to randomise a
deck of n cards. Central to their argument is the generalisation of the GSR model to a-handed shuffles:
cut the deck into a piles according to a (symmetric) multinomial distribution, then drop the bottom cards
from a pile chosen with probability proportional to pile size as before. Performing the GSR shuffle t times
is then the same as a 2t-handed shuffle, so analysing long-term behaviour of 2-handed riffle-shuffles is
equivalent to letting the number of hands tend to infinity.

Diaconis, Pang, and Ram (2014) observed that the transition probabilities of the riffle-shuffle are, up to
scaling, the coefficients of the coproduct-then-product map m∆ on the shuffle algebra. Furthermore, the
coefficients of the ath Hopf-power map m[a]∆[a] on the shuffle algebra give the transition probabilities
of the a-handed riffle-shuffle. We then defined Markov chains on the bases of other combinatorial Hopf
algebras by setting their transition probabilities to be such Hopf-power coefficients, with a little modifici-
ation (via the Doob transform). These Hopf-power Markov chains model the breaking then recombining
of the combinatorial objects indexing the bases of the algebras. The thesis of Pang (2014) greatly ex-
tends the Hopf-power Markov chain framework; this encompasses a restriction-then-induction chain on
representations of the symmetric groups, and a tree-pruning model - see Examples 3.5 and 5.3 below.

Probabilistic conclusions from Hopf-algebraic techniques
The benefit of this viewpoint is two-fold. Firstly, as recorded by (Pang, 2014, Th. 4.7.1), maps between
Hopf algebras which “respect the bases” induce projections of the related chains. Pang (2013) applied
this to a map from the shuffle algebra to the algebra of quasisymmetric functions, to conclude that the
positions of descents under riffle-shuffling of a deck of distinct cards is a Markov statistic. (A descent
occurs where a card has greater value than the card immediately below it.) This means that the probability
of a shuffle producing descents in prescribed positions depends only on the positions of descents before
the shuffle, and not on the exact deck order. (This fact also follows from the descent set being a “shuffle-
compatible statistic”, which Gessel (2010) attributes to Stanley.) (Pang, 2014, Sec. 4.7) constructs many
Markov statistics for inverse riffle-shuffling out of commutation quotients of the free associative algebra.

The second way in which the Hopf formulation aids in studying these Markov chains is that, in many
cases, there are algorithms to compute a basis of eigenvectors for the Hopf-power maps and hence the
transition matrices. This gives interesting information about the long term behaviour of the chain. As an
example, (Pang, 2014, Prop. 6.1.3 and Prop. 6.1.5) state that, if a deck of n distinct cards was originally
in ascending order, then, after t iterations of the a-handed shuffle, the expected number of descents is
(1− a−t)n−1

2 , and the expected number of peaks is (1− a−2t)n−2
3 . (A peak is a triple of adjacent cards

with the middle one having greatest value.) Although the algorithms do not provide all eigenvectors of all
Hopf-power Markov chains, their stationary distributions are always computable.

A new extension: Markov chains from convolutions of projections
As (Pang, 2014, Th. 4.4.1) shows, the breaking step of a Hopf-power Markov chain always involves a
symmetric multinomial distribution. However, it is sometimes more natural to consider other distribu-
tions. For example, the restriction-then-induction chain mentioned above is difficult to express in terms of
partitions, because the restriction of a symmetric group representation to a multinomially-chosen Young
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subgroup involves Littlewood-Richardson coefficients. Simpler is the Markov chain which removes a
random corner box and re-inserts it in a random position.

The discovery in this extended abstract is that, by replacing m[a]∆[a] in the definition of a Hopf-power
Markov chain with a non-negative convolution of projections (Definition 2.3), one can change the piece
sizes in the breaking step to have any desired distribution. For example, the “remove and re-insert a box”
chain above comes from the mapm(Proj1⊗ι)∆, using exactly the same Doob transform. (ι is the identity
map and Proj1 is projection to the subspace of degree 1.) On the shuffle algebra, m(Proj1⊗ι)∆ defines
the much studied top-to-random shuffle: take the top card off the deck, then re-insert it at a uniformly
chosen position. The other non-negative convolutions of projections recover the shuffles of Diaconis, Fill,
and Pitman (1992), where the deck is cut in some specified distribution, and then the cards dropped one
by one from the bottom of piles chosen with probability proportional to pile size. Their Corollaries 5.1
and 5.2 are a formula for the composition of such shuffles, and an upper bound for the mixing time. The
inverses of such shuffles are examples of pop shuffles of Bidigare, Hanlon, and Rockmore (1999), so the
eigenvalues and multiplicities can be calculated with their hyperplane walk theory.

This new class of Markov chains admit analysis by the same techniques as for Hopf-power Markov
chains. Maps between Hopf algebras “respecting the bases” again induce projections of their associated
chains (Theorem 4.1 below). Consequently, the descent set is a Markov statistic under all these shuffling
schemes. Existing literature on convolutions of projections provides the eigenvalues and multiplicities of
these transition matrices. In some cases, there are eigenbasis algorithms resembling those for the Hopf-
power chains. Once again, the stationary distributions of all these chains are accessible - they are precisely
the same as those for the Hopf-power chains.

One notable shuffle outside this framework is random-to-random: uniformly choose a card to remove
from the deck, and re-insert it in a uniform position. Its defining linear map is an interesting operator on
other combinatorial Hopf algebras, and it would be great to find a probability interpretation.

This extended abstract is organised as follows: Section 2 gives the conditions on the two main characters
in this story, the state space basis of a combinatorial Hopf algebra and the non-negative convolution of
projections map. Section 3 explains how to construct the Markov chain via the Doob transform. Section 4
states the three main theorems: how morphisms of Hopf algebras lead to Markov statistics; the eigenvalues
of the transition matrices and their multiplicities; and the common stationary distributions. Section 5
shows one scenario where explicit eigenbasis formulae are available, and gives probability applications
both for shuffling and for a chain on trees.

2 Combinatorial Hopf Algebras and the Convolution Product
The starting point of our Markov chain construction is a combinatorial Hopf algebra, which encodes the
breaking and combining rules for our family of combinatorial objects. An instructive example is the
shuffle algebra, whose associated Markov chains describe various models of shuffling.

Example 2.1 The shuffle algebra has a basis B of words, which we will think of as decks of cards. For
example, the word accb will denote the deck with card a on top, followed by two copies of card c, and
card b on the bottom. This algebra is graded by the lengths of the words, or the number of cards in the
deck. The product of two words is the sum of all their interleavings (with multiplicity), and the coproduct
of a word is the sum of all its deconcatenations. For example,

m(ac⊗ cb) = 2accb+ acbc+ cacb+ cabc+ cbac;
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∆(accb) = 1⊗ accb+ a⊗ ccb+ ac⊗ cb+ acc⊗ b+ accb⊗ 1.

The exposition of Grinberg and Reiner (2014) gives background on combinatorial Hopf algebras, and
the opening of Foissy (2012) contains an extensive list of examples with references. Like many recent
treatments, these focus on generalisations of the symmetric functions, which, though extremely important,
are not so integral to the present Markov chain application. The thesis of (Klausner, 2011, Sec. 4) is closer
to the viewpoint herein.

There is no rigorous definition of a combinatorial Hopf algebra. The intuition is that such an algebra
H should have a basis B indexed by a family of combinatorial objects, graded by their sizes. (Assume
throughout that the ground field is Q or R, to facilitate the probability applications.) Write Hn for the
subspace ofH of degree n, soH =

⊕
Hn. Since the empty object is the only object of size 0, the vector

space H is connected, i.e. dimH0 = 1. Now equip H with a multiplication map m : Hi ⊗Hj → Hi+j :
for w, z ∈ B, set m(w ⊗ z) to be the sum (possibly weighted) of all possible results from “combining”
w and z. Similarly, the coproduct map ∆ : Hn →

⊕n
i=0Hi ⊗ Hn−i takes x ∈ B to the sum (possibly

weighted) of w ⊗ z over all pairs (w, z) obtainable by “breaking” x. There are various axioms that these
operations must satisfy.

The above combinatorial interpretation of the product and coproduct motivates that the structure con-
stants be non-negative (conditions i and ii below). This is crucial for the transition probabilities in Def-
inition 3.1 to be non-negative. As we will discover in Section 3, another important hypothesis for the
construction of the associated Markov chains is that ∆(x) 6= 1 ⊗ x + x ⊗ 1 for any x ∈ B of degree
greater than 1. Intuitively, it mandates that “every combinatorial object of size greater than 1 can be
broken into strictly smaller pieces”. Combining these criteria leads to the following definition:

Definition 2.2 (Pang, 2014, Def. 4.3.3) A basis B = qnBn of a graded connected Hopf algebra H =⊕
nHn is a state space basis if:

i) for all w, z ∈ B, the expansion of m(w ⊗ z) in the B basis has all coefficients non-negative;

ii) for all x ∈ B, the expansion of ∆(x) in the B ⊗ B basis has all coefficients non-negative;

iii) for n > 1, the basis Bn contains no primitive elements. That is, ∆(x) 6= 1 ⊗ x + x ⊗ 1 for all
x ∈ Bn with n > 1.

Note thatH may contain primitive elements of high degree, so long as they are not in the basis B.
Having fixed a combinatorial Hopf algebra and a degree n, the next step is to choose the distribution

of sizes of pieces in the breaking step of the Markov chain. As Step 1 of the interpretation in Section 3
will show, these distributions are in bijection, up to scaling, with the class of non-negative convolutions
of projections, as defined below. For example, the operator Projd1 ∗Projd2 will constrain the first piece
to be of size exactly d1, and the second piece to be of size exactly d2.

Given maps f, g : H → H, their convolution product f ∗ g : H → H is the composition

f ∗ g := m(f ⊗ g)∆.

Since the product m on H is associative and the coproduct is coassociative, the convolution product is
associative, and it is useful to view

f1 ∗ · · · ∗ fa as m[a](f1 ⊗ · · · ⊗ fa)∆[a].
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Here m[a] : H⊗a → H and ∆[a] : H → H⊗a are the a-fold product and a-fold coproduct respectively,
describing the combining of a objects and breaking one object into a pieces (some of which may be
trivial). So m[2] = m and ∆[2] = ∆. (A precise definition, by induction, is as follows: m[1] := ι,
m[a] := m(m[a−1] ⊗ ι); ∆[1] := ι, ∆[a] := (ι⊗ · · · ⊗ ι⊗∆)∆[a−1].)

The present Markov chain application uses only the case fi = Projdi , the projection to the subspace of
degree di. In other words, Projd : H → Hd is the linear map satisfying Projd(x) = x for x ∈ Hd, and
Projd(Hi) = 0 if i 6= d. It will be convenient to allow the case d = 0.

Patras (1994) studied linear combinations of these convolutions of projections. He called them descent
operators, since his Theorem II.7 shows that, on a commutative or cocommutative Hopf algebra, these
operators form an algebra under composition isomorphic to the descent algebra of the symmetric group.
This connection is central to the eigenbasis algorithms for the present Markov chains, which come from
the following subset of these operators:

Definition 2.3 Let H be a graded connected Hopf algebra, and fix an integer a ≥ 2. A map T : H → H
of the form

T :=
∑

d1,...,da

α(d1,...,da) Projd1 ∗ · · · ∗ Projda

is a non-negative convolution of projections onHn if

i) for all weak-compositions D := (d1, . . . , da) of n (that is, di ≥ 0 and
∑
di = n), the coefficients

αD are non-negative;

ii) for some weak-composition D of n where each di 6= n, the coefficient αD is positive.

The second axiom ensures that T : Hn → Hn is not merely multiplication by a constant. Note that
the map T does not uniquely determine the coefficients αD, because of the possibility of parts of size 0.
Different choices of αD lead to different interpretations of the same Markov chain. One final remark on
this definition: it is fine for infinitely many αD to be non-zero, as the image T(x) of any particular x ∈ H
is always a finite sum. This is because there are only finitely many weak-compositions of a given integer
into exactly a parts.

One key example of a non-negative convolution of projections is the ath Hopf-power map m[a]∆[a].
This is the ath convolution power of the identity map, so it corresponds to setting αD ≡ 1 for all weak-
compositions D. As the three-step interpretation of Section 3 will explain, the associated Markov chains
have a symmetric multinomial breaking step. This is the case previously studied in Diaconis, Pang, and
Ram (2014) and in Pang (2014). Another important specialisation comes from α(1,n−1) = 1, αD = 0
if D 6= (1, n − 1) for any n, so T = Proj1 ∗ι. This map produces Markov chains which break off a
singleton and reattach it, analogous to the top-to-random shuffle of the introduction.

More examples are at the end of the next section.

3 Building The Markov Chain
The following fact is the main motivation for the definition of a Markov chain for each non-negative
convolution of projections: the probability that a riffle-shuffle takes a deck x of n cards to a deck y is
the coefficient of y in 1

2nm∆(x). In other words, the transition matrix of the riffle-shuffling of n cards

is
[

1
2nm∆

]T
Bn

, the transpose of the matrix of the linear operator 1
2nm∆ with respect to the basis Bn of
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words. A similar direct calculation shows that the top-to-random shuffle of n cards has transition matrix[
1
n Proj1 ∗ι

]T
Bn

.

These observations suggest defining the transition matrix to be
[

1
βT
]T
Bn

on other combinatorial Hopf

algebras, for other non-negative convolution of projections T and some appropriate number β. However,
such a matrix represents transition probabilities only when each of its rows sums to 1. In other words, this
naive generalisation fails if the rows of [T]

T
Bn do not sum to the same number. One of the major findings

of (Diaconis, Pang, and Ram, 2014, Th. 3.4) is that, when T is a Hopf-power map T = m[a]∆[a], and B
is a state space basis, then it is possible to define a rescaling B̌ of B so the row sums of [T]

T
B̌n are equal.

(Pang, 2014, Sec. 4.3) gives a much slicker and more general description of this rescaling, in terms of the
Doob transform. This allows a generalisation to linear maps on H that are not the Hopf-power. Indeed,
(Pang, 2014, Th. 3.1) describes the choice of rescalings B̌ of B that are available for arbitrary linear maps.

It happens that the standard rescaling for the Hopf-power maps also applies to non-negative convolu-
tions of projections; indeed, the rescaling necessary to construct a T-Markov chain depends only on the
underlying Hopf algebra, and not on the map T. This resulting Markov chain is:

Definition 3.1 Let H = ⊕n≥0Hn be a graded connected Hopf algebra with state space basis B. For
x ∈ Bn, let η(x) denote the sum of the coefficients (in the B⊗n basis) of Proj⊗n1 ∆[n](x), and let

B̌n :=

{
x

η(x)

∣∣∣∣x ∈ Bn} .
Let T =

∑
αD Projd1 ∗ · · · ∗ Projda be a non-negative convolution of projections on Hn. Then the

T-Markov chain on Bn has transition matrix[
1

βn
T

]T
B̌n
, where βn :=

∑
d1+···+da=n

αD

(
n

d1 . . . da

)
.

The hypotheses of a state space basis ensure that η(x) is never zero. In the shuffle algebra, η(x) = 1
always, so no rescaling is necessary.

Expressing the above transition probabilities in terms of a “natural” process requires careful analysis of
the underlying Hopf algebra. Fortunately, one only needs to do this once for each Hopf algebra to interpret
all its T-Markov chains, as an analogue of (Pang, 2014, Th. 4.4.1) shows that these have the form:

1. Choose a weak-composition (d1, . . . , da) of n with probability 1
βn
αD
(

n
d1...da

)
.

2. Choose a way to break into pieces of sizes d1, . . . , da.

3. Choose a way to combine these pieces.

Here, the probabilities of the choices in steps 2 and 3 depend only on the Hopf algebra, not on T. (The
exact expressions for these probabilities are unsightly and not instructive; the interested reader may consult
(Pang, 2014, Th. 4.4.1).) For example, a T-shuffle (the T-Markov chain on the shuffle algebra) of n cards
is the following:

1,2. Cut the deck into piles of sizes (d1, . . . , da) with probability 1
βn
αD
(

n
d1...da

)
.
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3. Drop one-by-one the bottommost card from a pile chosen with probability proportional to the
current pile size.

Aside from the GSR riffle-shuffle, its a-handed generalisation, and the top-to-random shuffle, here are
some additional notable T-shuffles:

Example 3.2 Assaf, Diaconis, and Soundararajan (2012) give the mixing time for shuffles with biased
cuts, when the shuffler prefers to take more cards in one hand than the other. Here, the probability of
cutting i cards off the top of a deck of n cards is the asymmetric binomial, qi(1 − q)n−i

(
n
i

)
, for some

parameter q ∈ (0, 1). The associated non-negative convolution of projections is

T =

n∑
i=0

qi(1− q)n−i Proji ∗Projn−i .

This has an obvious a-handed generalisation, with a − 1 parameters. Setting all parameters to 1
a then

recovers the a-handed riffle-shuffle (even though the associated non-negative convolution of projections
is then a−nι∗a instead of ι∗a, as these Markov chains depend on T only up to scaling).

Example 3.3 (Diaconis, Fill, and Pitman, 1992, Sec. 2 and Sec. 6, Ex. 2) discuss two notions of top-m-
to-random shuffles: T = Projm ∗ι corresponds to cutting off m cards and re-inserting them randomly,
keeping their relative order, whilst T = Proj∗m1 ∗ι cuts m cards off and inserts them randomly in any
order. For both schemes, they show that n

m log n shuffles suffice to randomise the deck.

Example 3.4 Taking T = Proj1 ∗ι + ι ∗ Proj1 produces a shuffle where the pile sizes are (1, n − 1) or
(n − 1, 1), each with probability 1

2 . In other words, flip a fair coin, and perform a top-to-random shuffle
if the coin shows heads, and a bottom-to-random shuffle if it shows tails. This is the (symmetric) top-or-
bottom-to-random shuffle of (Diaconis, Fill, and Pitman, 1992, Sec. 6, Ex 4). It is easy to introduce an
asymmetry here: for q ∈ [0, 1], take T = qProj1 ∗ι+ (1− q)ι ∗ Proj1. Setting q = 1 then recovers the
top-to-random shuffle. Theorem 5.1 below exhibits an eigenbasis for this map on cocommutative Hopf
algebras.

The Markov chains coming from the above choices of T, on other Hopf-algebras, are also interesting.

Example 3.5 The irreducible representations of the symmetric groups form a basis of a Hopf algebra,
with product being external induction, and coproduct coming from restriction to Young subgroups. It
is straightforward to adapt (Pang, 2014, Ex. 4.4.3) to give the following description for each step of a
T-Markov chain, starting from a representation x of Sn:

1. Choose a Young subgroup Sd1 × · · · ×Sda of Sn with probability 1
βn
αD
(

n
d1...da

)
.

2. Restrict the starting state x to the chosen subgroup.

3. Induce it back up to Sn, then pick an irreducible constituent with probability proportional to
the dimension of its isotypic component.

In particular, the Proj1 ∗ι-chain is restricting to Sn−1, inducing back to Sn, then choosing an irre-
ducible constituent as in step 3. This chain previously appeared in the work of Fulman (2009), where it
generates central limit theorems for character ratios.

For a more involved example, see Example 5.3 regarding the (qProj1 ∗ι+(1−q)ι∗Proj1)-Markov chain
on trees.
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4 Projection Theorem and Eigenvalue Multiplicities
As outlined in the introduction, viewing Markov chains in this Hopf-theoretic framework gives two useful
consequences. The first is the construction of Markov statistics from maps between Hopf algebras:

Theorem 4.1 Let H, H̄ be graded, connected Hopf algebras with bases B, B̄ respectively. Suppose in
addition that B is a state space basis. Let T be a non-negative convolution of projections. If θ : H → H̄
is a Hopf-morphism such that θ(Bn) = B̄n for all n, then the T-chain on B̄n is the projection under θ of
the T-chain on Bn.

It follows that θ is a Markov statistic for the T-chain on Bn - this fact would be interesting by itself even
if the projected chain were not identified as the T-chain on the target Hopf algebra.

The second profit of the Hopf formulation is the following expression for all the eigenvalues and multi-
plicites of these Markov chains, which hint at their long term behaviour. It follows from (Patras, 1994, Th.
II.7), (Krob, Leclerc, and Thibon, 1997, Prop. 3.12), (Bonnafé and Pfeiffer, 2008, Prop. 3.10) and the ar-
guments of (Krob, Leclerc, and Thibon, 1997, Th. 3.21) and of Aguiar and Lauve (2013), or alternatively
from the Poincaré-Birkhoff-Witt straightening algorithm and the Perron-Frobenius theorem.

Theorem 4.2 Work in the setup of Definition 3.1. Given a partition λ := (λ1, . . . , λl) and a weak-
composition D = (d1, . . . , da), let 〈λ,D〉 denote the number of set partitions B1| . . . |Ba of {1, 2, . . . , l}
such that, for each i ∈ {1, . . . a}, we have

∑
j∈Bi λj = di. (So 〈λ,D〉 is equal to the inner product

〈pλ, hD〉 of symmetric functions, hence the notation.) Then the eigenvalues of 1
βn

T : Hn → Hn are{
βλ
βn

:=
1

βn

∑
D`n

αD〈λ,D〉

∣∣∣∣∣λ ` n
}
,

and the multiplicity of the eigenvalue βλ
βn

is the coefficient of xλ := xλ1
. . . xλl in the generating function∏

i(1− xi)−bi , where bi satisfies ∑
n

dimHntn =
∏
i

(1− ti)−bi .

Futhermore, T is diagonalisable ifH is commutative or cocommutative.

Note that β(n) agrees with the βn of Definition 3.1, so this is not a point of confusion. Here’s how this
formula specialises to some key examples:

Example 4.3 Let T = Proj1 ∗ι, the top-to-random map. Recall that this corresponds to α(1,n−1) = 1,
and all other αD = 0. So, for all partitions λ of n, it holds that βλ = 〈λ, (1, n − 1)〉, and this is the
number of parts of size 1 in λ, which can be 0, 1, . . . , n− 2, or n. So the eigenvalues of a top-to-random
chain on any Hopf algebra are βλ/β(n) = 0, 1

n ,
2
n , . . . ,

n−2
n , 1.

In the case of the shuffle algebra, for a deck of distinct cards, (Diaconis, Fill, and Pitman, 1992, Th. 4.1)
show that the multiplicity of the eigenvalue j

n is the number of permutations with n− j fixed points, and
find projection operators for each eigenspace (on the right). (Hivert, Luque, Novelli, and Thibon, 2011,
Sec. 4.6) produce an eigenbasis by associating each permutation with n− j fixed points to an eigenvector
of eigenvalue j

n . The present Proj1 ∗ι-chain framework generalises this eigenbasis algorithm for decks
with repeated cards; see the remark after Proposition 5.2. It follows from a multigraded refinement of
Theorem 4.2 above that, for any T-shuffle of a deck of distinct cards, the multiplicity of the eigenvalue
βλ/β(n) is the number of permutations of cycle type λ.
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Example 4.4 Take T = (qProj1 ∗ι + (1 − q)ι ∗ Proj1), the “asymmetric top-or-bottom-to-random”
operator. Its eigenvalues are

βλ
βn

=
q〈λ, (1, n− 1)〉+ (1− q)〈λ, (n− 1, 1)〉

n
.

Note that the definition of 〈λ,D〉 depends only on the part sizes of the composition D and not on their
order, so 〈λ, (1, n − 1)〉 = 〈λ, (n − 1, 1)〉. Hence the eigenvalues of top-or-bottom-to-random are the
same as for top-to-random in Example 4.3 above, with the same multiplicities.

Using the multiplicity in Theorem 4.2 for the eigenvalue 1 =
β(n)

βn
shows that the following expressions,

which are easily shown to be linearly independent stationary distributions, do span the eigenspace of
eigenvalue 1.

Theorem 4.5 For a fixed state space basis B, all T-Markov chain on Bn have the same set of stationary
distributions. These can be uniquely written as a linear combination of the functions

πc1,...,cn(x) :=
η(x)

n!2

∑
σ∈Sn

coefficient of x in the product cσ(1) . . . cσ(n)

for each multiset {c1, . . . , cn} in B1. (Here, η(x) are the rescaling constants of Definition 3.1.)

As noted in (Pang, 2014, Th. 4.5.1), πc1,...,cn(x) essentially enumerates the ways to build x out of
c1, . . . , cn using the multiplication of the combinatorial Hopf algebra, and to then break it into single-
tons. In the case of card-shuffling, the unique stationary distribution for all T-shuffles is the uniform
distribution.

5 Eigenvectors and Applications
Since the coefficients αD of a non-negative convolution of projections can take any non-negative value,
it’s not surprising that there is no neat universal eigenbasis algorithm for these chains. However, one case
which works out nicely, thanks to the theory of dual graded graphs of (Fomin, 1994, Th. 1.6.6), is the
top-or-bottom-to-random chain of Example 3.4:

Theorem 5.1 Let H be a graded connected Hopf algebra, and P be a (graded) basis of its primitive
subspace. Write P as the disjoint union P1 q P>1, where P1 has degree 1. Set

Ej :=


j∑
i=0

∑
σ∈Sj

(
j

i

)
qi(1− q)j−icσ(1) . . . cσ(i)

(∑
τ∈Sk

pτ(1) . . . pτ(k)

)
cσ(i+1) . . . cσ(j)

 ,

ranging over all multisets {c1, . . . , cj} of P1, and all multisets {p1, . . . , pk} of P>1 where deg p1 + · · ·+
deg pk = n − j. Then Ej is a linearly independent set of eigenvectors of eigenvalue j

n for the operator
1
n (qProj1 ∗ι+ (1− q)ι ∗ Proj1) : Hn → Hn. Furthermore, ifH is cocommutative, then qn−2

j=0Ej qEn
is a basis.

Here are some simple applications of these eigenvectors to the top-or-bottom-to-random shuffle of a deck
of distinct cards, analogous to the statements for riffle-shuffling in the fifth paragraph of the introduction.
(The shuffle algebra is commutative, so its dual is cocommutative, and the eigenvectors of T on this dual
give right eigenfunctions of the transition matrix, from which one deduces these results.)
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Proposition 5.2 Let {Xt} denote the top-or-bottom-to-random shuffle, with parameter q, of a deck of n
distinct cards. Suppose the starting deck X0 is in ascending order. Let Des(X) ⊆ {1, 2, . . . , n− 1} and
Peak(X) ⊆ {1, 2, . . . , n− 2} denote the positions of the descents and peaks of X respectively. Then

Expectation

 ∑
i∈Des(Xt)

(
n− 2

i− 1

)
qi−1(1− q)n−1−i

 =

(
1−

(
n− 2

n

)t)
1

2
;

Expectation

 ∑
i∈Peak(Xt)

(
n− 3

i− 1

)
qi−1(1− q)n−2−i

 =

(
1−

(
n− 3

n

)t)
1

3
.

Setting q = 1 in Theorem 5.1 gives the eigenvectors for the top-to-random operator Proj1 ∗ι as∑
σ∈Sj

cσ(1) . . . cσ(j)

∑
τ∈Sk

pτ(1) . . . pτ(k).

These are also the eigenvectors of Proj∗m1 ∗ι, the unordered version of top-m-to-random as in Example
3.3, with eigenvalue

(
j
m

)
/
(
n
m

)
. The reason is that, on a cocommutative Hopf algebra, the map Proj∗m1 ∗ι

is a polynomial in Proj1 ∗ι. Similarly, the Ej in Theorem 5.1 are eigenvectors of any polynomial in
qProj1 ∗ι+(1−q)ι∗Proj1. In particular, they have eigenvalue qn−j2 for the following map, corresponding
to the trinomial-top-and-bottom-to-random shuffle of (Diaconis, Fill, and Pitman, 1992, Sec. 6, Ex 6):∑

m1+m2+m3=n

1

m1!m3!
qm1
1 qm2

2 qm3
3 Proj∗m1

1 ∗ι ∗ Proj∗m3
1 ,

(Here, q1 + q2 + q3 = 1, and the previous q is q1
q1+q3

in terms of the new parameters.)
To finish, here is an example away from the world of card-shuffling, to illustrate the diversity of Markov

chains that this framework can analyse.

Example 5.3 We will study the trinomial-top-and-bottom-to-random Markov chain (of two paragraphs
prior) on the Connes-Kreimer Hopf algebra of rooted forests. Take as state space basis the set of all rooted
forests - that is, a disjoint union of trees, each of which has a distinguished root vertex. (The vertices are
unlabelled, and the embedding of the tree in the plane is immaterial.) The degree of a forest is its number
of vertices. The product of two trees is their disjoint union, and the coproduct of a tree T is the sum of
T\S ⊗ S over all connected subtrees S of T which are either empty or contain the root of T . Hence
ι ∗Proj1 corresponds to removing a root of a forest, and Proj1 ∗ι to removing a leaf. For a full definition
of this algebra, see (Connes and Kreimer, 1998, second half of Sec. 2).

The Hopf-power Markov chain on this algebra was the subject of (Pang, 2014, Sec. 5.3). Adapting
Theorem 5.3.8 there gives the following description of the trinomial-top-and-bottom-to-random chain:

Suppose a company has a forest structure, so all employees have at most one direct superior. All
employees are either regular employees or VPs, and the superior of a VP is necessarily also a VP (so the
VPs in each connected component of the company form a subtree containing the root).

Each month, each regular employee independently produces excellent work with probability q3, average
work with probability q2, and subpar work with probability q1 (where q1+q2+q3 = 1.) For each employee
who produced excellent work, one by one in a random order, the regular employee furthest up the chain
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of superiority from him becomes a VP. Then the employees who produced subpar work are fired, one by
one starting from the most superior. Each firing causes a cascade of promotions: first, someone further
down the chain of superiority from the fired employee is uniformly selected to replace him. Then, if the
promoted employee was superior to anyone, then one of those is uniformly selected and promoted to his
position. This process continues until someone who is not superior to anyone is promoted.

The chain keeps track of the structure of the regular employees, but does not know which employee is
taking which position in the forest structure, nor does it see the structure of the VPs.

The cases j = 2, 3 below are analogues of Proposition 5.2 for this chain. These are inequalities, rather
than equalities, because the exact eigenvectors in Theorem 5.1 are very complicated (involving a second

sum), so to obtain a slicker result, we use instead the estimates
≈
f j . Defining these requires some more

notation: for a regular employee u, let desc(u) (resp. anc(u)) denote the number of regular employees
who are further down (resp. up) from u in the chain of superiority, including u himself in both counts. (In
tree language, these are the descendants and the ancestors). Also, write n′(u) for the size of the connected
component of regular employees containing u.

Proposition 5.4 Let {Xt} denote the trinomial-top-and-bottom-to-random Markov chain on the Connes-
Kreimer Hopf algebra of rooted forests, with interpretation and notation as above. For each integer j ≥ 2,
define the following functions on forests:

≈
f j(T ) :=

∑
u∈T

q
desc(u)
1 q

anc(u)
3

(
desc(u)

j

)
.

(The binomial coefficient is 0 if desc(u) < j.) Then

Expectation
{
≈
f j(Xt)

}
≤ qjt2

≈
f j(X0) max

u∈X0:desc(u)≥j

{(
n′(u)

anc(u)− 1

)}
.
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