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The Cambrian Hopf Algebra
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Abstract. Cambrian trees are oriented and labeled trees which fulfill local conditions around each node generalizing
the conditions for classical binary search trees. Based on the bijective correspondence between signed permutations
and leveled Cambrian trees, we define the Cambrian Hopf algebra generalizing J.-L. Loday and M. Ronco’s algebra
on binary trees. We describe combinatorially the products and coproducts of both the Cambrian algebra and its dual
in terms of operations on Cambrian trees. Finally, we define multiplicative bases of the Cambrian algebra and study
structural and combinatorial properties of their indecomposable elements.

Résumé. Les arbres Cambriens sont des arbres orientés et étiquetés qui satisfont des conditions locales autour de leurs
noeuds généralisant les conditions des arbres binaires de recherche classiques. À partir de la correspondence bijec-
tive entre permutations signées et arbres Cambriens à niveau, nous définissons l’algèbre Cambrienne qui généralise
l’algèbre sur les arbres binaires de J.-L. Loday et M. Ronco. Nous donnons une description combinatoire du produit et
du coproduit aussi bien dans l’algèbre Cambrienne que dans sa duale en termes d’opérations sur les arbres Cambriens.
Enfin, nous définissons des bases multiplicatives de l’algèbre Cambrienne et étudions les propriétés structurelles et
énumératives de leurs éléments indécomposables.

Keywords: Combinatorial Hopf algebras, Cambrian lattices, Cambrian trees

The background of this paper is the fascinating interplay between the combinatorial, geometric and
algebraic structures of permutations, binary trees and binary sequences:
? Combinatorially, the descent map from permutations to binary sequences factors via binary trees

through the BST insertion and the canopy map. These maps define lattice homomorphisms from the
weak order via the Tamari lattice to the boolean lattice.

? Geometrically, the permutahedron is contained in Loday’s associahedron [Lod04] which is in turn
contained in the parallelepiped generated by the simple roots. See Figure 1.

? Algebraically, these maps translate to Hopf algebra inclusions from M. Malvenuto and C. Reutenauer’s
algebra on permutations [MR95] via J.-L. Loday and M. Ronco’s algebra on binary trees [LR98] to
L. Solomon’s descent algebra [Sol76].
These structures and their connections have been partially extended in several directions, see e.g. [CD06,

Pos09, BPR12, NT14]. This paper explores combinatorial and algebraic aspects of Hopf algebras related
∗gregory.chatel@univ-paris-est.fr
‡vincent.pilaud@lix.polytechnique.fr. Supported by the Spanish MICINN grant MTM2011-22792 and the

French ANR grant EGOS (12 JS02 002 01).

1365–8050 c© 2015 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France

http://www.dmtcs.org/dmtcs-ojs/index.php/volumes/
http://www.dmtcs.org/dmtcs-ojs/index.php/volumes/dmFPSAC'15ind.html


62 G. Chatel and V. Pilaud

34123421
4321 4312

2413

4213

3214

14231432

1342

1243 1234
2134

1324

2341

2431

3124
2314

−−−

−+−

+−−

−−+

−++

++−

+++

Fig. 1: The 3-dimensional permutahedron (blue, left), Loday’s associahedron (red, middle), and parallelepiped (green,
right). Shaded facets are preserved to get the next polytope.

to N. Reading’s type A Cambrian lattices [Rea06] and their polytopal realizations by C. Hohlweg and
C. Lange [HL07]. N. Reading provides in [Rea06] a procedure to map a signed permutation of Sn into
a triangulation of a certain convex (n + 3)-gon. The dual trees of these triangulations naturally extend
rooted binary trees and were introduced and studied as “spines” [LP13] or “mixed cobinary trees” [IO13].
We prefer here the term “Cambrian trees” in reference to N. Reading’s work. The map κ from signed per-
mutations to Cambrian trees is known to encode combinatorial and geometric properties of the Cambrian
structures: the Cambrian lattice is the quotient of the weak order under the fibers of κ, each maximal cone
of the Cambrian fan is the incidence cone of a Cambrian tree T and is refined by the braid cones of the
permutations in the fiber κ−1(T), etc.

In this paper, we use this map κ for algebraic purposes. We introduce the Cambrian Hopf algebra Camb
as a subalgebra of the Hopf algebra FQSym± on signed permutations, and the dual Cambrian alge-
bra Camb∗ as a quotient algebra of the dual Hopf algebra FQSym∗±. Their bases are indexed by all
Cambrian trees. Our approach extends that of F. Hivert, J.-C. Novelli and J.-Y. Thibon [HNT05] to con-
struct J.-L. Loday and M. Ronco’s Hopf algebra on binary trees [LR98] as a subalgebra of C. Malvenuto
and C. Reutenauer’s Hopf algebra on permutations [MR95]. We also use this map κ to describe both
the product and coproduct in the algebras Camb and Camb∗ in terms of simple combinatorial operations
on Cambrian trees. From the combinatorial description of the product in Camb, we derive multiplicative
bases of the Cambrian algebra Camb and study the structural and enumerative properties of their inde-
composable elements. We refer to [CP14] for detailed proofs and further aspects of the Cambrian algebra.

1 Cambrian trees
1.1 Cambrian trees and increasing trees
Consider a directed tree T on a vertex set V and a vertex v ∈ V. We call children (resp. parents) of v the
sources of the incoming arcs (resp. the targets of the outgoing arcs) at v and descendants (resp. ancestor)
subtrees of v the subtrees attached to them. The main characters of our paper are the following trees,
which generalize standard binary search trees. Our definition is adapted from [IO13, LP13].

Definition 1 A Cambrian tree is a directed tree T with vertex set V endowed with a bijective vertex
labeling p : V→ [n] such that for each vertex v ∈ V,
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Fig. 2: A Cambrian tree (left), an increasing tree (middle), and a leveled Cambrian tree (right).

(i) v has either one parent and two children (its descendant subtrees are called left and right subtrees)
or one child and two parents (its ancestor subtrees are called left and right subtrees);

(ii) all labels are smaller (resp. larger) than p(v) in the left (resp. right) subtree of v.
The signature of T is the n-tuple ε(T) ∈ ±n defined by ε(T)p(v) = − if v has two children and + if v
has two parents. Denote by Camb(ε) the set of Cambrian trees with signature ε, by Camb(n) the set of
all Cambrian trees on n vertices, and by Camb the set of all Cambrian trees.

Definition 2 An increasing tree is a directed tree T with vertex set V endowed with a bijective vertex
labeling q : V→ [n] such that v → w in T implies q(v) < q(w).

Definition 3 A leveled Cambrian tree is a directed tree T with vertex set V endowed with two bijective
vertex labelings p, q : V → [n] which respectively define a Cambrian and an increasing tree.

In other words, a leveled Cambrian tree is a Cambrian tree endowed with a linear extension of its
transitive closure. Figure 2 provides examples of a Cambrian tree (left), an increasing tree (middle), and
a leveled Cambrian tree (right). All edges are oriented bottom-up. Throughout the paper, we represent
leveled Cambrian trees on an (n× n)-grid as follows (see Figure 2):

(i) each vertex v appears at position (p(v), q(v));
(ii) negative vertices (with one parent and two children) are represented by 	, while positive vertices

(with one child and two parents) are represented by ⊕;
(iii) we sometimes draw a vertical red wall below the negative vertices and above the positive vertices to

mark the separation between the left and right subtrees of each vertex.

Proposition 4 ([LP13, IO13]) For any signature ε ∈ ±n, the number of ε-Cambrian trees is the Catalan
number Cn = 1

n+1

(
2n
n

)
. Therefore, |Camb(n)| = 2nCn.

1.2 Cambrian correspondence
We represent graphically a permutation τ ∈ Sn by the (n×n)-table, with rows labeled by positions from
bottom to top and columns labeled by values from left to right, and with a dot in row i and column τ(i)
for all i ∈ [n]. (This unusual choice of orientation is necessary to fit later with the existing constructions
of [LR98, HNT05].)

A signed permutation is a permutation table where each dot receives a + or − sign, see the top left
corner of Figure 3. We could equivalently think of a permutation where the positions or the values receive
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Fig. 3: The insertion algorithm on the signed permutation 2751346.

a sign, but it will be useful later to switch the signature from positions to values. The p-signature (resp. v-
signature) of a signed permutation τ is the sequence εp(τ) (resp. εv(τ)) of signs of τ ordered by positions
from bottom to top (resp. by values from left to right). For ε ∈ ±n, we denote by Sε (resp. by Sε) the
set of signed permutations τ with p-signature εp(τ) = ε (resp. with v-signature εv(τ) = ε). Finally, we
denote the set of all signed permutations by S± :=

⊔
ε∈±∗ Sε =

⊔
ε∈±∗ S

ε.
In concrete examples, we underline negative positions/values and overline positive positions/values:

for example, we write 2751346 for the signed permutation represented on the top left corner of Figure 3,
where τ = [2, 7, 5, 1, 3, 4, 6], εp = −+−−+−+ and εv = −−+−−++.

Following [LP13], we now present an algorithm to construct a leveled ε-Cambrian tree Θ(τ) from
a signed permutation τ ∈ Sε. Figure 3 illustrates this algorithm on the permutation 2751346. As a
preprocessing, we represent the table of τ (with signed dots in positions (τ(i), i) for i ∈ [n]) and draw a
vertical wall below the negative vertices and above the positive vertices. We then sweep the table from
bottom to top (thus reading the permutation τ from left to right) as follows. The procedure starts with
an incoming strand in between any two consecutive negative values. A negative dot 	 connects the two
strands immediately to its left and immediately to its right to form a unique outgoing strand. A positive
dot ⊕ separates the only visible strand (not hidden by a wall) into two outgoing strands. The procedure
finishes with an outgoing strand in between any two consecutive positive values. See Figure 3.

Proposition 5 ([LP13]) The map Θ is a bijection from signed permutations to leveled Cambrian trees.

Definition 6 Given a signed permutation τ ∈ Sε, its P-symbol is the insertion Cambrian tree P(τ)
defined by Θ(τ) and its Q-symbol is the recording increasing tree Q(τ) defined by Θ(τ).
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1.3 Cambrian congruence
Similarly to the sylvester congruence in [HNT05], we now characterize by a congruence the signed per-
mutations τ ∈ Sε with the same P-symbol P(τ). The definition appears in N. Reading’s work [Rea06].

Definition 7 ([Rea06]) For a signature ε ∈ ±n, the ε-Cambrian congruence is the equivalence relation
on Sε defined as the transitive closure of the rewriting rules

UacV bW ≡ε UcaV bW if εb = − and UbV acW ≡ε UbV caW if εb = +

where a < b < c ∈ [n] andU, V,W ∈ [n]∗. The Cambrian congruence is the congruence≡ :=
⊔
ε∈±∗≡ε

on all signed permutations S± obtained as the union of all ε-Cambrian congruences.

Proposition 8 Two signed permutations τ, τ ′ ∈ Sε are ε-Cambrian congruent if and only if they have
the same P-symbol: τ ≡ε τ ′ ⇐⇒ P(τ) = P(τ ′).

Proposition 9 The signed permutations τ ∈ Sε such that P(τ) = T are precisely the linear extensions
of (the transitive closure of) T.

Remember that the (right) weak order on Sε is defined as the inclusion order of coinversions, where a
coinversion of τ ∈ Sε is a pair of values i < j such that τ−1(i) > τ−1(j) (no matter the signs on τ ). The
following statement is due to N. Reading [Rea06].

Proposition 10 ([Rea06]) All ε-Cambrian classes are intervals of the weak order on Sε.

1.4 Rotations and Cambrian lattices
Definition 11 Let i → j be an edge in a Cambrian tree T, with i < j. Let L denote the left subtree of i
andB denote the remaining incoming subtree of i, and similarly, letR denote the right subtree of j andA
denote the remaining outgoing subtree of j. Let T′ be the oriented tree obtained from T just reversing
the orientation of i → j and attaching the subtrees L and A to i and the subtrees B and R to j. The
transformation from T to T′ is called rotation of the edge i→ j. See Figure 4.
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Fig. 4: Rotations in Cambrian trees: the tree T (top) is transformed into the tree T′ (bottom) by rotation of the
edge i→ j. The four cases correspond to the possible signs of i and j.

An edge cut in a Cambrian tree T is the ordered partition (X ‖ Y ) of the vertices of T into the set X
of vertices in the source set and the set Y of vertices in the target set of an oriented edge of T.

Proposition 12 ([LP13]) The result T′ of the rotation of an edge i → j in a ε-Cambrian tree T is a
ε-Cambrian tree. Moreover, T′ is the unique ε-Cambrian tree with the same edge cuts as T, except the
cut defined by the edge i→ j.
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Fig. 5: The ε-Cambrian lattices on ε-Cambrian trees, for the signatures ε = −+−− (left) and ε = +−−− (right).

Define the increasing rotation graph on Camb(ε) to be the graph whose vertices are the ε-Cambrian
trees and whose arcs are increasing rotations T → T′, i.e. where the edge i → j in T is reversed to the
edge i← j in T′ for i < j. See Figure 5 for an illustration.

Proposition 13 ([Rea06]) The transitive closure of the increasing rotation graph on Camb(ε) is a lattice,
called ε-Cambrian lattice. The map P : Sε → Camb(ε) defines a lattice homomorphism from the weak
order on Sε to the ε-Cambrian lattice on Camb(ε).

2 Cambrian Hopf Algebra
2.1 Signed shuffle and convolution
For n, n′ ∈ N, let S(n,n′) := {τ ∈ Sn+n′ | τ(1) < · · · < τ(n) and τ(n+ 1) < · · · < τ(n+ n′)} denote
the set of permutations of Sn+n′ with at most one descent, at position n. The shifted concatenation τ τ̄ ′,
the shifted shuffle product τ �̄ τ ′, and the convolution τ ? τ ′ of two permutations τ ∈ Sn and τ ′ ∈ Sn′

are classically defined by

τ τ̄ ′ := [τ(1), . . . , τ(n), τ ′(1) + n, . . . , τ ′(n′) + n] ∈ Sn+n′ ,

τ �̄ τ ′ :=
{

(τ τ̄ ′) ◦ π−1 | π ∈ S(n,n′)
}

and τ ? τ ′ :=
{
π ◦ (τ τ̄ ′) | π ∈ S(n,n′)

}
.

These definitions extend to signed permutations. The signed shifted shuffle product τ �̄ τ ′ is the shifted
product of the permutations where signs travel with their values, while the signed convolution τ ? τ ′ is the
convolution of the permutations where signs stay at their positions. For example,

12 �̄ 231 = {12453, 14253, 14523, 14532, 41253, 41523, 41532, 45123, 45132, 45312},
12 ? 231 = {12453, 13452, 14352, 15342, 23451, 24351, 25341, 34251, 35241, 45231}.
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2.2 Subalgebra of FQSym±

We denote by FQSym± the Hopf algebra with basis (Fτ )τ∈S± and whose product and coproduct are
defined by

Fτ · Fτ ′ =
∑

σ∈τ �̄ τ ′

Fσ and 4Fσ =
∑

σ∈τ?τ ′
Fτ ⊗ Fτ ′ .

It naturally extends to signed permutations the Hopf algebra FQSym on permutations defined by C. Mal-
venuto and C. Reutenauer [MR95].

We denote by Camb the vector subspace of FQSym± generated by the elements

PT :=
∑
τ∈S±
P(τ)=T

Fτ =
∑

τ∈L(T)

Fτ ,

for all Cambrian trees T. For example, for the Cambrian tree of Figure 2 (left), we have

P = F2137546 + F2173546 + F2175346 + F2713546 + F2715346

+ F2751346 + F7213546 + F7215346 + F7251346 + F7521346.

Theorem 14 Camb is a Hopf subalgebra of FQSym±.

In the remaining of this section, we describe combinatorially the product and coproduct of P-basis
elements of Camb in terms of operations on Cambrian trees.

PRODUCT The product in the Cambrian algebra can be described in terms of intervals in Cambrian
lattices. Given two Cambrian trees T,T′, we denote by T\T̄′ the tree obtained by grafting the rightmost
outgoing leaf of T on the leftmost incoming leaf of T and shifting all labels of T′. Note that the resulting
tree is εε′-Cambrian, where εε′ is the concatenation of the signatures ε = ε(T) and ε′ = ε(T′). We define
similarly T/T̄′. An example is given in Figure 6 (left).

Proposition 15 For any Cambrian trees T,T′, we have PT ·PT′ =
∑

S PS, where S runs over the interval
between T\T̄′ and T/T̄′ in the ε(T)ε(T′)-Cambrian lattice.

For example, we can compute the product

P · P = F12 ·
(
F213 + F231

)
=

 F12435 + F12453 + F14235

+ F14253 + F14523 + F41235

+ F41253 + F41523 + F45123

+


F14325 + F14352

+ F14532 + F41325

+ F41352 + F41532

+ F45132

+

(
F43125 + F43152

+ F43512 + F45312

)

= P + P + P .

The first equality is obtained by computing the linear extensions of the two factors, the second by com-
puting the shuffle product and grouping terms according to their P-symbol, displayed in the last line.
Proposition 15 enables us to shortcut the computation by avoiding to resort to the F-basis.
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Fig. 6: (Left) The tree T\T̄′ obtained by identifying the rightmost outgoing leaf of T with the leftmost incoming leaf
of T. (Right) A cut γ of a Cambrian tree T defines two forests A(T, γ) and B(T, γ).

COPRODUCT The coproduct in the Cambrian algebra can also be described in combinatorial terms.
Define a cut of a Cambrian tree S to be a set γ of edges such that any geodesic vertical path in S from
a down leaf to an up leaf contains precisely one edge of γ. Such a cut separates the tree T into two
forests, one above γ and one below γ, denoted A(S, γ) and B(S, γ), respectively. An example is given in
Figure 6 (right).

Proposition 16 For any Cambrian tree S, we have 4PS =
∑
γ

(∏
T∈B(S,γ) PT

)
⊗
(∏

T′∈A(S,γ) PT′
)
,

where γ runs over all cuts of S.

For example, we can compute the coproduct

4P = 4
(
F213 + F231

)
= 1⊗

(
F213 + F231

)
+ F1 ⊗ F12 + F1 ⊗ F21 + F21 ⊗ F1 + F12 ⊗ F1 +

(
F213 + F231

)
⊗ 1

= 1⊗ P +P ⊗ P +P ⊗ P +P ⊗ P +P ⊗ P + P ⊗ 1

= 1⊗ P + P ⊗
(
P · P

)
+P ⊗ P +P ⊗ P + P ⊗ 1.

Proposition 16 enables us to shortcut the computation by avoiding to resort to the F-basis. We compute
directly the last line, which corresponds to the five possible cuts of the Cambrian tree .

Remark 17 A different generalization of J.-L. Loday and M. Ronco’s algebra was studied by N. Reading
in [Rea05]. His idea was to construct a subalgebra of C. Malvenuto and C. Reutenauer’s algebra FQSym
using equivalent classes of a congruence relation defined as the union

⋃
n∈N ≡εn of εn-Cambrian relation

for one fixed signature εn ∈ ±n for each n ∈ N. In order to obtain a valid Hopf algebra, the choice
of (εn)n∈N has to satisfy certain compatibility relations: N. Reading characterizes the “translational”
(resp. “insertional”) families ≡n of lattice congruences on Sn for which the sums over the elements of
the congruence classes of (≡n)n∈N form the basis of a subalgebra (resp. subcoalgebra) of FQSym. These
conditions make the choice of (εn)n∈N rather constrained. In contrast, by constructing a subalgebra
of FQSym± rather than FQSym, we consider simultaneously all Cambrian relations for all signatures. In
particular, our Cambrian algebra contains all Hopf algebras of [Rea05] as subalgebras.
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2.3 Quotient algebra of FQSym∗
±

We switch to the dual Hopf algebra FQSym∗± with basis (Gτ )τ∈S± and whose product and coproduct are
defined by

Gτ ·Gτ ′ =
∑

σ∈τ?τ ′
Gσ and 4Gσ =

∑
σ∈τ �̄ τ ′

Gτ ⊗Gτ ′ .

The following statement is automatic from Theorem 14.

Theorem 18 The graded dual Camb∗ of the Cambrian algebra is isomorphic to the image of FQSym∗±
under the canonical projection π : C〈A〉 −→ C〈A〉/ ≡, where≡ denotes the Cambrian congruence. The
dual basis QT of PT is expressed as QT = π(Gτ ), where τ is any linear extension of T.

Similarly as in the previous section, we can describe combinatorially the product and coproduct of
Q-basis elements of Camb∗ in terms of operations on Cambrian trees.

PRODUCT Call gaps the n+ 1 positions between two consecutive integers of [n], including the position
before 1 and the position after n. A gap γ defines a geodesic vertical path λ(T, γ) in a Cambrian tree T
from the bottom leaf which lies in the same interval of consecutive negative labels as γ to the top leaf
which lies in the same interval of consecutive positive labels as γ. See Figure 8. A multiset Γ of gaps
therefore defines a lamination λ(T,Γ) of T, i.e. a multiset of pairwise non-crossing geodesic vertical
paths in T from down leaves to up leaves. When cut along the paths of a lamination, the Cambrian tree T
splits into a forest.

Consider two Cambrian trees T and T′ on [n] and [n′] respectively. For any shuffle s of their signatures ε
and ε′, consider the multiset Γ of gaps of [n] given by the positions of the negative signs of ε′ in s and the
multiset Γ′ of gaps of [n′] given by the positions of the positive signs of ε in s. We denote by T/sT

′ the
Cambrian tree obtained by connecting the up leaves of the forest defined by the lamination λ(T,Γ) to the
down leaves of the forest defined by the lamination λ(T′,Γ′). An example is given in Figure 7.

4

3
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1

3

2
1

s=

T  =

T  =

= T /sT  

5
4

1

7

6
2

3

(e)(d)(c)(b)(a)
Fig. 7: (a) Two Cambrian trees T© and T�. (b) Given the shuffle s = �		��⊕� of their signatures, the positions
of the � are reported in T© and the positions of the⊕ are reported in T�. (c) The corresponding laminations. (d) The
trees are splitted according to the laminations. (e) The resulting Cambrian tree T©/sT�.
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Proposition 19 For any Cambrian trees T,T′, we have QT · QT′ =
∑
sQT/sT′ , where s runs over all

shuffles of the signatures of T and T′.

For example, we can compute the product

Q ·Q = G12 ·G213

= G12435 + G13425 + G14325 + G15324 + G23415 + G24315 + G25314 + G34215 + G35214 + G45213

= Q +Q +Q +Q +Q +Q +Q +Q +Q +Q .

COPRODUCT To describe the coproduct of Q-basis elements of Camb∗, we also use gaps and vertical
paths in Cambrian trees. Namely, for a gap γ, we denote by L(S, γ) and R(S, γ) the left and right
Cambrian subtrees of S when split along the path λ(S, γ). An example is given in Figure 8.
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7
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1

Fig. 8: A gap γ between 3 and 4 (left) defines a vertical cut (middle) which splits the Cambrian tree (right).

Proposition 20 For any Cambrian tree S, we have 4QS =
∑
γ QL(S,γ) ⊗ QR(S,γ), where γ runs over

all gaps between vertices of S.

For example, we can compute the coproduct

4Q = 4G213

= 1⊗G213 + G1 ⊗G12 + G21 ⊗G1 + G213 ⊗ 1

= 1⊗Q + Q ⊗Q + Q ⊗Q + Q ⊗ 1.

Note that the last line can indeed be directly computed using the paths defined by the four possible gaps
of the Cambrian tree .
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2.4 Multiplicative bases
To conclude, we define multiplicative bases of Camb and study structural and enumerative properties of
the indecomposable elements of Camb for these bases. For a Cambrian tree T, we define

ET :=
∑

T≤T′

PT′ and HT :=
∑

T′≤T

PT′ .

Proposition 21 (ET) and (HT) are multiplicative bases of Camb: ET·ET′= ET\T̄′and HT ·HT′= HT/T̄′.

As the multiplicative bases (ET)T∈Camb and (HT)T∈Camb have symmetric properties, we focus our
analysis on the E-basis. The reader is invited to translate the results below to the H-basis. We consider
multiplicative decomposability. Remember that an edge cut in a Cambrian tree S is the ordered parti-
tion (X ‖ Y ) of the vertices of S into the set X of vertices in the source set and the set Y of vertices in
the target set of an oriented edge e of S.

Proposition 22 The following properties are equivalent for a Cambrian tree S:
(i) ES can be decomposed into a product ES = ET · ET′ for non-empty Cambrian trees T,T′;

(ii) ([k] ‖ [n] r [k]) is an edge cut of S for some k ∈ [n];
(iii) at least one linear extension τ of S is decomposable, i.e. τ([k]) = [k] for some k ∈ [n].
The tree S is then called E-decomposable.

For example, Figure 6 shows that P(2751346) is E-decomposable. We denote by Indε the set of
E-indecomposable elements of Camb(ε).

Example 23 For ε = (−)n, the E-indecomposable ε-Cambrian trees are right-tilting binary trees, i.e. bi-
nary trees whose root has no left child. Similarly, for ε = (+)n, the E-indecomposable ε-Cambrian trees
are left-tilting binary trees oriented upwards. See Figure 9 for illustrations.

Proposition 24 For any signature ε ∈ ±n, the set Indε of E-indecomposable ε-Cambrian trees forms a
principal upper ideal of the ε-Cambrian lattice. See Figure 9.
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Fig. 9: Generators of the principal upper ideals of E-indecomposable ε-Cambrian trees for ε = −−+−−++ (left),
ε = (−)7 (middle), and ε = (+)7 (right).

Proposition 25 For any signature ε ∈ ±n, there are Cn−1 E-indecomposable ε-Cambrian trees. There-
fore, there are 2nCn−1 E-indecomposable Cambrian trees on n vertices.

Corollary 26 The Cambrian algebra Camb is free.
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