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On non-conjugate Coxeter elements in
well-generated reflection groups

Victor Reiner1† and Vivien Ripoll2‡ and Christian Stump3§

1School of Mathematics, University of Minnesota, USA
2Fakultät für Mathematik, Universität Wien, Austria
3Institut für Mathematik, Freie Universität Berlin, Germany

Abstract. Given an irreducible well-generated complex reflection group W with Coxeter number h, we call a Coxeter
element any regular element (in the sense of Springer) of order h in W ; this is a slight extension of the most common
notion of Coxeter element. We show that the class of these Coxeter elements forms a single orbit in W under the action
of reflection automorphisms. For Coxeter and Shephard groups, this implies that an element c is a Coxeter element if
and only if there exists a simple system S of reflections such that c is the product of the generators in S. We moreover
deduce multiple further implications of this property. In particular, we obtain that all noncrossing partition lattices
of W associated to different Coxeter elements are isomorphic. We also prove that there is a simply transitive action of
the Galois group of the field of definition of W on the set of conjugacy classes of Coxeter elements. Finally, we extend
several of these properties to regular elements of arbitrary order.

Résumé. Étant donnés un groupe de réflexion complexe W , irréductible et bien engendré, et h son nombre de Coxeter,
nous appelons élément de Coxeter un élément régulier (au sens de Springer) d’ordre h; ceci est une extension de la
notion la plus habituelle d’élément de Coxeter. Nous montrons que l’ensemble de ces éléments de Coxeter forme une
seule orbite sous l’action des automorphismes de réflexion de W . Pour les groupes de Coxeter et de Shephard, ceci
implique qu’un élément c est un élément de Coxeter si et seulement s’il existe un système simple S de réflexions tel
que c soit le produit des générateurs dans S. Nous déduisons de cette propriété plusieurs autres résultats. En particulier,
nous obtenons que tous les treillis de partitions non-croisées de W , associés à différents éléments de Coxeter, sont
isomorphes. Nous montrons également qu’il existe une action simplement transitive du groupe de Galois du corps de
définition de W sur l’ensemble des classes de conjugaison d’éléments de Coxeter. Enfin, nous étendons plusieurs de
ces propriétés au cas des éléments réguliers d’ordre quelconque.

Keywords: reflection groups, Coxeter groups, Coxeter elements, noncrossing partitions, Shephard groups

1 Background on reflection groups
Let V = Cn, and consider a finite subgroup W of GL(V ) ∼= GLn(C). One calls W a complex reflec-
tion group if it is generated by its subset R of reflections, that is, the elements r ∈ W for which the
fixed space ker(r − 11) ⊆ V is a hyperplane. Results of G. C. Shephard and J. A. Todd [ST54] and
of C. Chevalley [Che55] distinguish complex reflection groups as those finite subgroups of GLn(C) for
which the invariant subalgebra of the action on Sym(V ∗) ∼= C[x1, . . . , xn] yields again a polynomial alge-
bra, Sym(V ∗)W = C[f1, . . . , fn]. While the basic invariants f1, . . . , fn are not unique, they can be chosen
homogeneous, and then their degrees d1 ≤ · · · ≤ dn are uniquely determined and called the degrees of W .
The group W is called irreducible if it does not preserve a proper subspace of V . An important subclass
of irreducible complex reflection groups are those that are well-generated, that is, for which there exists a

†Email: reiner@math.umn.edu. Supported by NSF grant DMS-1001933.
‡Email: vivien.ripoll@univie.ac.at. Supported by the Austrian Science Foundation FWF, grants Z130-N13 and F50-

N15, the latter in the framework of the Special Research Program “Algorithmic and Enumerative Combinatorics”.
§Email: christian.stump@fu-berlin.de. Supported by the German Research Foundation DFG, grant STU 563/2-1

“Coxeter-Catalan combinatorics”.

1365–8050 c© 2015 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France

http://www.dmtcs.org/dmtcs-ojs/index.php/volumes/
http://www.dmtcs.org/dmtcs-ojs/index.php/volumes/dmFPSAC'15ind.html


110 Victor Reiner and Vivien Ripoll and Christian Stump

subset of n reflections that generate W . In particular, this subclass contains all (complexifications of) irre-
ducible real reflection groups inside GLn(R), which have a well-known structure of finite Coxeter groups.
It contains as well the subclass known as Shephard groups.

We briefly introduce these two subclasses below. In Section 2 we then define and give examples for
Coxeter elements, and we explain some motivation coming from Coxeter-Catalan combinatorics and the
study of generalized noncrossing partition lattices. Section 3 contains our first main result (Theorem 3.1),
giving several equivalent characterizations of Coxeter elements. Two of these characterizations relate Cox-
eter elements to the product of generators for some specific generating sets, and we explain these in more
detail in Sections 4.1 (for Coxeter and Shephard groups) and 4.2 (for arbitrary well-generated groups). In
Section 5 we state our second main result (Theorem 5.2), describing a simply transitive action of the Galois
group of the field of definition of W on the set of conjugacy classes of Coxeter elements. Finally, Section 6
presents an extension of some of the properties to Springer’s regular elements.

This article is an extended abstract of [RRS14]; we refer the reader to the long version for details and
complete proofs.

For a real reflection group W , let C be a chamber of the arrangement of reflecting hyperplanes of W
in Rn. To this chamber, one can associate a distinguished set S ⊆ R of Coxeter generators for W obtained
by taking those reflections defined by the boundary hyperplanes of C. The pair (W,S) is then a Coxeter
system, i.e., W has a Coxeter presentation with S as generating set. Moreover, every finite Coxeter system
can be obtained this way from a finite real reflection group. We refer to [Hum90] for details.

A slight generalization of the Coxeter presentation allows one to deal with Shephard groups, i.e., sub-
groups of GL(V ) that are symmetry groups of regular complex polytopes. These groups have been intro-
duced and classified by G. C. Shephard in [She52]; we also refer to [Cox91] for more detail. H. S. M. Cox-
eter showed in [Cox67] that every Shephard group has a generalized Coxeter structure, as given in the
following definition.

Definition 1.1 A generalized Coxeter system (W,S) is a group W together with a subset S ⊆W , such
that W has a presentation with S as generating set and relations

sts . . .︸ ︷︷ ︸
ms,t factors

= tst . . .︸ ︷︷ ︸
mt,s factors

for s, t ∈ S with s 6= t, and sps = 1 for s ∈ S,

for some integers ms,t = mt,s, ps ≥ 2, where moreover ps = pt whenever ms,t is odd.

Note that in this definition, we do not allow the labels ms,t and ps to be infinite, unlike in the standard
notion of Coxeter systems where the case ms,t =∞ is usually possible. However, this poses no restriction
in our setting since we will only consider the case where such a generalized Coxeter system gives rise to a
finite group.

Similarly to the situation for Coxeter systems, one can construct a (generalized) Coxeter graph for a
generalized Coxeter system (W,S). The vertices are given by the generators and are labelled by their
order, i.e., the vertex s is labelled by ps. Moreover, whenever ms,t ≥ 3, the two vertices s and t are
joined by an edge labelled by ms,t. This yields the definition of irreducible generalized Coxeter systems
as those for which the associated Coxeter graph is connected. Work of H. S. M. Coxeter [Cox67] and of
D. W. Koster [Kos75] provide the relations between the combinatorics of finite generalized Coxeter system
and the geometry of real reflection groups and Shephard groups.

• Any Shephard group has a structure of generalized Coxeter system (this is analogous to the well-
known property for real reflection groups). Moreover, as with the chamber geometry in the real case,
there is a reasonably natural way to construct a set of generalized Coxeter generators consisting
of reflections, using the geometry of the Shephard group [Cox67]. We call such a presentation
constructed from the geometry a standard generalized Coxeter presentation.

• Given a generalized Coxeter system (W,S) and an |S|-dimensional complex vector space V , there
exist a representation ρ : W → GL(V ) and an Hermitian form on V which is invariant under ρ(W ),
such that for s ∈ S, the element ρ(s) is a reflection of V of order ps.
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• If the generalized Coxeter system is irreducible and finite, there is such a representation ρ which is
faithful and such that ρ(W ) is a Shephard group or a real reflection group.

The last point yields that finite, irreducible generalized Coxeter systems correspond to the class of com-
plex reflection groups which is the union of (complexified) real irreducible reflection groups and Shephard
groups. The latter are known to be all real reflection groups with unbranched Coxeter graph, together with
the infinite family G(r, 1, n) with r ≥ 3, and 15 of the non-real irreducible, exceptional groups.

2 Coxeter elements and noncrossing partition lattices
Consider first an irreducible real reflection group W with a fixed chamber C of its reflection arrangement.
Denote by S = {s1, . . . , sn} the set of reflections associated to the chamber C, so that (W,S) is a Coxeter
system. A Coxeter element in W is classically defined as the product of the reflections in S in any order,
see [Cox51]. It thus depends on the choice of the chamber C and on the order of the factors. It is well
known that, however, the set of such Coxeter elements forms a single conjugacy class in W , and that the
order of a Coxeter element is equal to the highest degree dn (for basic results on Coxeter elements, we
refer to [Hum90, Ch. 3.16–3.19] or [Kan01, Ch. 29]). Coxeter elements play an important role in the
theory of (finite) Coxeter groups. In particular, they are crucial in Coxeter-Catalan combinatorics, namely
in the context of noncrossing partitions, cluster complexes, generalized associahedra, Cambrian fans and
lattices, and subword complexes. For details about these concepts, we refer to [Arm06, Rea07, PS15]
and the references therein. Work of T. Brady and C. Watt [BW02] and of D. Bessis [Bes03] on the braid
group of W show the importance of the W -noncrossing partition lattice NC(W, c) associated to a Coxeter
element c ∈ W . This poset NC(W, c) is defined as the principal order ideal generated by any Coxeter
element c, that is,

NC(W, c) = [11, c]W = {w ∈W | 11 ≤R w ≤R c}. (1)

Here, ≤R denotes the absolute order on W given by

x ≤R y ⇐⇒ `R(x) + `R(x−1y) = `R(y) (2)

where `R(x) is the absolute length of xwith respect to the setR of all reflections inW , and 11 ∈W denotes
the identity element.

Further work of D. Bessis [Bes15] shows how to generalize the noncrossing partition lattice to all irre-
ducible well-generated groups. The definitions of absolute length and absolute order in (2) still make sense
in the complex case, but one needs a replacement for the notion of Coxeter element. This is provided by
the following notion of regularity from T. A. Springer [Spr74]. An element w ∈W is called regular if w
has an eigenvector v in the complement of the reflecting hyperplanes, so that W acts freely on the orbit
of v. Say that w is ζ-regular if w(v) = ζv in this situation. The multiplicative order d of w within W is
then the same as that of ζ within C×, and one calls d a regular number for W . A simple characterization
of regular numbers was obtained by G. I. Lehrer and T. A. Springer [LS99], and later proven uniformly
by G. I. Lehrer and J. Michel [LM03]. This characterization implies that for irreducible well-generated
groups, the Coxeter number h = dn is always a regular number, and that it is the highest regular number
possible. It turns out that for a real reflection group, the class of usual Coxeter elements corresponds to the
class of e2iπ/h-regular elements. D. Bessis thus replaced the Coxeter element c in a real reflection group
with an e2iπ/h-regular element in an irreducible well-generated group, see [Bes15, Definition 7.1].

In the present paper, we consider the following more general definition.

Definition 2.1 Let W be an irreducible well-generated complex reflection group W . A Coxeter element
in W is a regular element in W of order h = dn.

As mentioned above, the usual definition is more restrictive than the one given here: a Coxeter element
is classically taken to be regular for the specific eigenvalue e2iπ/h, and this notion is, for real reflection
groups, equivalent to the definition using the product of the reflections through the walls of a chamber in
the reflection arrangement. Both definitions (the classical one, and the extended one from Definition 2.1)
have been used in the literature, but their subtle distinction has been sometimes source of confusion. For
example, the statement of Theorem C in [Kan01, Ch. 32.2] is erroneous. Also, some results of [BR11]
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Fig. 1: The symmetry group of the regular pentagon.

used the extended definition, although they relied on results from [Bes15] which used only the restrictive
definition. One of the purposes of this work is to clarify these confusions. We will next see that the more
general definition provides new insights even for real reflection groups.

Example 2.2 (cf. [Mil14, Example 2.7]) An example (actually the smallest for which our generalization is
nontrivial) to bear in mind is the real reflection groupW of typeH2 = I2(5) shown in Figure 1. It is the di-
hedral group of order 10 consisting of all symmetries of a regular pentagon. The degrees ofW are 2 and 5,
and the Coxeter number is thus h = 5. Set s and t to be the reflections through the boundary hyperplanes
of a given chamber in the reflection arrangement, and let c = st be a corresponding Coxeter element.
It is given by a rotation of angle 2π/5. Its eigenvalues are ζ and ζ4 = ζ−1, where ζ := e

2iπ
5 . Observe

that c2 is again regular of order h. It is a rotation of angle 4π/5 and has eigenvalues ζ2 and ζ3 = ζ−2.
In particular, c and c2 are not conjugate in W . In the classical notion of Coxeter elements, c and c4 are
Coxeter elements (both can be written as products of reflections through the walls of a chamber of the
reflection arrangement), while c2 and c3 are not. Observe though that c2 = sts · t, that the reflections sts
and t also generate W , and that (W, {sts, t}) is again a Coxeter system, isomorphic to the Coxeter system
(W, {s, t}). So c2 and c3 are still products of the generators of a Coxeter system, but this Coxeter system
(W, {sts, t}) does not come from the walls of a chamber, as in the usual Coxeter generators of a reflection
group.

For an irreducible well-generated group W and a Coxeter element c in W , we define the poset of W -
noncrossing partitions NC(W, c) as in (1). Since conjugation by elements of W preserves the set of
reflectionsR, it also preserves the absolute length `R and respects the absolute order≤R. Hence, whenever
two Coxeter elements c and c′ are W -conjugate, the posets NC(W, c) and NC(W, c′) are isomorphic.
T. A. Springer showed in [Spr74, Theorem 4.2] that, for a fixed ζ in C, the ζ-regular elements in W form
a single W -conjugacy class. It is known to experts that the poset structure on NC(W, c) does not depend
on the choice of the Coxeter element c, even in the more general notion of Coxeter elements in which there
is not necessarily a single conjugacy class. But it seems to have only been mentioned so far in [CS14],
where the poset isomorphisms were checked explicitly using a computer. As a result of the considerations
in this paper, we obtain a conceptual reason for the existence of a poset isomorphism between NC(W, c)
and NC(W, c′) for two regular elements of order h that are not W -conjugate, see Corollary 3.3 below.

3 Characterizations of Coxeter elements
The first main result of this paper, Theorem 3.1 below, provides several alternative characterizations of
Coxeter elements. We show that the set of Coxeter elements forms a single orbit in W for the action of
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reflection automorphisms, that is, those automorphisms of W that preserve the set R of reflections. This
allows one to characterize Coxeter elements using only e2iπ/h-regular elements and reflection automor-
phisms as described in characterization (iv) below. It also implies that Coxeter elements are exactly the
products of generators of W for some well-behaved generating subsets of reflections; see characteriza-
tion (v), for which we need to explain beforehand the terminology. We call a regular generating set of W
such a well-behaved generating set: it is a minimal generating set of reflections having some additional
properties as will be made precise in Section 4.2. We will see in Proposition 4.4 that any irreducible well-
generated group admits a regular generating set. Note that most explicit presentations forW using diagrams
“à la Coxeter” feature a regular generating set. We say that two generating sets for W are isomorphic if
there exists a bijection between them which extends to an automorphism of W .

Moreover we obtain the purely combinatorial characterization (vi) for Coxeter elements in finite groups
that admit a generalized Coxeter system. As we have explained in Section 1, these are exactly the real
reflection groups and the Shephard groups, and for a real reflection group, a generalized Coxeter system is
a Coxeter system in the usual sense.

Theorem 3.1 Let W be an irreducible well-generated complex reflection group with Coxeter number h,
and let c ∈W . The following statements are equivalent.

(i) c is a Coxeter element (i.e., c is regular of order h);

(ii) c = wp for an e2iπ/h-regular element w and an integer p coprime to h;

(iii) c has an eigenvalue of order h;

(iv) c = ψ(w) for an e2iπ/h-regular element w and a reflection automorphism ψ.

Fix a regular generating set S0 for W . Then the following statement is as well equivalent.

(v) There exists a generating set S contained in R and isomorphic to S0, such that c is the product (in
some order) of the elements in S.

If W admits a generalized Coxeter system, the following statement is as well equivalent.

(vi) There exists a subset S of the set R of reflections in W such that (W,S) is a generalized Coxeter
system and c is the product (in some order) of the elements in S.

The proof of Theorem 3.1 is derived as follows. The assertions (i)⇔(ii) and (i)⇒(iii) are direct conse-
quences of the definition of Springer’s regularity. The implication (iii)⇒(i) comes from a counting argu-
ment using Pianzola-Weiss’ formula, and can be found in [Kan01, Theorem 32-2C] for the real case and
in [CS14, Proposition 2.1] for the general case. In our work, we prove the three remaining characteriza-
tions (iv), (v) and (vi). Characterization (iv) is a consequence of Proposition 3.2 below, and is the first main
result of this work. Characterization (vi) for real reflection groups and Shephard groups will be treated in
Section 4.1. It relies on the study of classical Coxeter elements in these groups, on characterization (iv)
and on a rigidity property of the generalized Coxeter presentations of these groups (see Proposition 4.1).
Characterization (v) will also follow in Section 4.2 from characterization (iv) and from the definition of
regular generating sets.

The first consequence of Theorem 3.1 is that characterization (iv) allows one to transfer properties that
are known for “classical” Coxeter elements to the more general notion of Coxeter elements, see e.g. Corol-
lary 3.3 below. Moreover it shows that the two natural generalizations of the usual definition of Cox-
eter elements (one in the real setting, the other for the complex setting) coincide in the real case. Prop-
erty (vi) can indeed be taken as a natural generalized definition of Coxeter elements in finite real reflection
groups. We will see that this generalization brings new elements whenever the Coxeter group is non-
crystallographic (see Remark 5.4). Note that a slightly more restrictive version of this definition already
appears in D. Bessis’ work on the dual braid monoid of Coxeter groups, see [Bes03, Definition 1.3.2].
This generalized definition for Coxeter elements was also used for general finite or infinite Coxeter groups
in [BDSW14]. Table 1 records the “classical” and the more general definition of Coxeter elements for an
irreducible well-generated group, either real or complex.
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“classical” definition general definition

W real
product of the reflections through the

walls of some chamber
product of elements of S for some

Coxeter system (W,S) with S ⊆ R

W complex e
2iπ
h -regular regular of order h

Tab. 1: Different notions of Coxeter elements in a reflection group W

The statement below is a reformulation of characterization (iv) in Theorem 3.1. We denote by AutR(W )
the group of reflection automorphisms of W .

Proposition 3.2 The action of AutR(W ) on W preserves the set of Coxeter elements, and is transitive on
it.

The proof of this property involves the study of Galois automorphisms of W , and makes use of a result
from I. Marin and J. Michel (Proposition 5.1); see [RRS14, §2] for details.

Proposition 3.2 implies that, for any two Coxeter elements c and c′, there is a reflection automorphism ψ
mapping c to c′. Since ψ sends reflections to reflections, the absolute length `R and the absolute order ≤R
are respected by ψ. Hence, ψ restricts to a poset isomorphism from the interval [11, c]W to the interval
[11, c′]W in the absolute order, and we obtain the following corollary.

Corollary 3.3 Let W be an irreducible well-generated complex reflection group, and let c and c′ be two
Coxeter elements. Then the two posets NC(W, c) and NC(W, c′) are isomorphic.

This corollary implies that all properties of the poset of noncrossing partitions that have only been proven
for the classical definition of Coxeter elements also hold for the more general definition. In particular, for
a Coxeter element c ∈ W , the poset NC(W, c) is an EL-shellable, self-dual lattice whose elements are
counted by the W -Catalan number

∏n
i=1

di+h
di

. We refer to [Arm06, BR11, KM13, Müh15] for these
and several other properties of the noncrossing partitions that were so far only proven for the restricted
definition of Coxeter elements.

More generally, Proposition 3.2 implies that all the properties of Coxeter elements relative only to the
combinatorics of the group W equipped with its set of generators R, do not depend on the choice of a
Coxeter element. For example, the transitivity of the Hurwitz action of the n-strands braid group Bn on
the reduced R-decompositions of e2iπ/h-regular elements (see [Bes15, Definition 6.19, Proposition 7.6])
implies the same property for all regular elements of order h. This was proven for Coxeter elements of
infinite Coxeter groups as well in [BDSW14, Theorem 1.3].

Remark 3.4 Theorem 3.1(vi) provides a purely combinatorial description of Coxeter elements in reflection
groups admitting generalized Coxeter systems. Nevertheless, this property is rather difficult to check for
a given element. We do not know of any better purely combinatorial description, nor do we know of any
combinatorial description for Coxeter elements in arbitrary well-generated groups. Coxeter elements have
a number of simple properties: they have absolute length n (the rank of the group), order h, and the
Hurwitz action is transitive on the set of reduced R-decompositions of a Coxeter element. However, these
properties are not sufficient to characterize Coxeter elements. For example, there exist elements in the
group of type D4 that are of absolute length 4 and for which the Hurwitz action is transitive on reduced
R-decompositions, but which do not have a primitive 6-th root of unity as an eigenvalue(i). Similarly,
there exist elements in type B6 that are of absolute length 6 and order 12, but which also do not have a
primitive 6-th root of unity as an eigenvalue.

(i) We thank Patrick Wegener for pointing out the existence of such elements.



On non-conjugate Coxeter elements in well-generated reflection groups 115

4 Coxeter elements and generating sets
4.1 Characterization of Coxeter elements in real groups and Shephard groups
Let W be an irreducible real reflection group, and S = {s1, . . . , sn} be a set of fundamental reflections
determined by the choice of a chamber of the reflection arrangement of W . We obtain a Coxeter sys-
tem (W,S), and it is well known that the product, in any order, of the reflections in S, is a regular element
for the eigenvalue e2iπ/h. The proof goes by studying the action of such an element on a specific plane
called the Coxeter plane, see e.g. [Hum90, Ch. 3.17].

For a Shephard group W , we explained in Section 1 that there is an analog of the chamber geometry,
that allows one to construct a set S of standard generating reflections (giving rise to a “standard general-
ized Coxeter presentation”). It can be checked that in this case as well, the product, in any order, of the
reflections in S is e2iπ/h-regular.

We can now explain how to prove characterization (vi) of Coxeter elements in Theorem 3.1, i.e., that c is
a regular element of order h on a Coxeter or Shephard group W if and only if c can be written as s1 . . . sn
where S = {s1, . . . , sn} consists of reflections and (W,S) is a generalized Coxeter system. The “only
if” part follows directly from the discussion above and from Proposition 3.2 (transitivity of reflection
automorphisms on Coxeter elements), since a reflection automorphism transports any (generalized) Coxeter
system consisting of reflections to another one. The “if” part follows from Proposition 4.1 below that
exhibits a rigidity property of generalized Coxeter presentations, allowing one to construct a reflection
automorphism between any two standard generating sets.

Proposition 4.1 Let W be a complex reflection group, and let R be the set of all its reflections. As-
sume S, S′ are two subsets of R such that (W,S) and (W,S′) are generalized Coxeter systems. Then
(W,S) and (W,S′) are isomorphic generalized Coxeter systems.

In particular, rewritten in the context of abstract Coxeter systems, Proposition 4.1 implies the following.
Let (W,S) be a finite Coxeter system, and let T denote the conjugacy closure of S inW . Then any Coxeter
system (W,S′) for W , with S′ ⊆ T , is isomorphic to (W,S). Note that however, S′ is not necessarily
W -conjugate to S, as seen in the example of the dihedral group I2(5) (Example 2.2).

Remark 4.2 It is well known that Proposition 4.1 does not hold if one does not assume S ⊆ R. Some clas-
sical counterexamples arise from the existence of a group isomorphism between I2(2m) and A1 × I2(m)
(for any m ≥ 3). This property was moreover shown not to hold in general, even with S ⊆ R, for
irreducible infinite Coxeter groups, see [Müh00].

Proposition 4.1, particularly for classical Coxeter systems, is known to experts, but we have not been
able to find a proof in the literature (for example, the property is stated in [Bes03, §1.1] without proof).
The only proof we can give is case-by-case (reducing the problem to irreducible groups, then checking
that there is no abstract group isomorphism between two different Coxeter systems; see [RRS14, §4.3] for
details).

4.2 Regular generating sets for well-generated reflection groups
In order to obtain an analogous characterization of Coxeter elements for arbitrary well-generated groups
(not only Coxeter and Shephard groups), we need to introduce some well-behaved generating sets of these
groups. Any irreducible well-generated group of rank n can be minimally generated by n reflections.
Much work has been devoted to finding well-behaved presentations by generators and relations such that
the generating set consists of n reflections. For the general case of an arbitrary irreducible well-generated
group, there is no canonical presentation analogous to the Coxeter presentation discussed above. However,
a uniform approach has been given by D. Bessis [Bes15], using the geometry of the braid group of W and
a construction known as the dual braid monoid. From Bessis’ presentations, one can obtain a minimal
generating set for W , consisting of n reflections r1, . . . , rn such that the product r1 · · · rn is e2iπ/h-regular
(see [RRS14, §4.2] for details).

The presentations of W obtained in earlier works can be obtained from Bessis’ presentations by remov-
ing redundancies. In particular, the standard presentations of Coxeter groups and of Shephard groups can
be obtained this way. In the general case, one can also recover the presentations described by Coxeter
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in [Cox67], and the presentations given in [BMR98] (see also [BM04] and [MM10a, §6]). Such well-
behaved presentations are gathered in the table [Mic14], and are implemented explicitly in the package
CHEVIE [GHL+96] of GAP.

It turns out that some of these presentations feature a generating set which has a stronger property defined
below.

Definition 4.3 Let W be an irreducible well-generated group of rank n, together with a set S of n gener-
ating reflections. We call S a regular generating set for W if:

(1) any reflection in W is conjugate to a power of a reflection in S;

(2) the product, in any order, of all the elements in S is a Coxeter element, i.e., a regular element of order h.

This definition might appear to be somewhat artificial; it is introduced because it contains everything
needed to state and prove characterization (v) of Theorem 3.1 (see [RRS14, §4.2] for details). The following
proposition ensures that such regular presentations indeed exist for any well-generated group.

Proposition 4.4 Any irreducible well-generated group W admits a presentation whose set of generators
is a regular generating set. More precisely, the following presentations satisfy Properties (1) and (2):

(i) for W real: the standard Coxeter presentation (arising from the chamber geometry);

(ii) for W Shephard group: the standard “generalized Coxeter presentation” for W ;

(iii) for any W : the explicit presentations in [Mic14] implemented in CHEVIE.

Remark 4.5 Given our construction of a generating set from Bessis’ presentations, Proposition 4.4 im-
plies that for an e2iπ/h-regular element c, there exists a reduced decomposition (r1, . . . , rn) of c such that
the product, in any order, of r1, . . . , rn is a Coxeter element (i.e., regular of order h). This property does
not depend on the choice of c as an e2iπ/h-regular element, or even as a Coxeter element (this follows
easily from Proposition 3.2). Note however that it does depend in general on the chosen reduced decom-
position. There may exist reduced decompositions (r′1, . . . , r

′
n) of c such that for some σ ∈ Sn, the product

r′σ(1) . . . r
′
σ(n) is not a Coxeter element. For example, in type D4, consider the reduced decomposition

c = s · t · uvu · u (where s, t, u, v are the standard Coxeter generators, u being the central one in the
diagram). Then the product s · uvu · t · u has order 4 6= 6 = h and is thus not a Coxeter element.

Remark 4.6 Alternative presentations, other than the ones in [Mic14], have been given for the five excep-
tional non-Shephard well-generated groups; see in particular [MM10a, §6], where the new generating sets
are obtained from an initial one by applying Hurwitz action. It is natural to ask whether these alternative
presentations are also regular, i.e., whether the product of the generators, in any order, is a regular ele-
ment of order h. It turns out that for G24, G27 and G29, all the alternative presentations are also regular,
whereas forG33 andG34, among the five presentations P1 through P6 described by G. Malle and J. Michel
in [MM10a, §6.4], only the initial presentation P1 is regular.

5 Conjugacy classes of Coxeter elements
Our second main theorem concerns the connection between Coxeter elements and the field of definition
of W . Recall that the field of definition KW is the subfield of C generated by the traces of the elements
in W ⊆ GL(V ). It is known, see e.g. [Ben93, Proposition 7.1.1], that the representation V of W can
be realized over KW . We thus assume from now on that W ⊆ GLn(KW ). We also denote by ΓW :=
Gal(KW /Q) the Galois group of the field extension KW over Q. We next describe an action of ΓW on
the conjugacy classes of Coxeter elements, and show that this action is simply transitive, see Theorem 5.2.

The group ΓW naturally acts on GLn(KW ) by Galois conjugation of the matrix entries. For γ ∈ ΓW ,
we denote by γ̄ the associated automorphism of GLn(KW ). However, this action does not necessarily
preserve W , so we cannot always associate an automorphism of W to γ. For example, if W is the dihedral
group of type H2 = I2(5), then KW = Q(

√
5) and the Galois group ΓW has order 2. But one can check
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that the only involutive automorphisms of I2(5) are inner automorphisms, i.e., are given by conjugation by
an element of W .

Nevertheless, γ̄(W ) is obviously again a complex reflection group, and it turns out that it is always
conjugate to W in GLn(C) (cf. [LT09, Theorem 8.32]). Let g ∈ GLn(C) be such that γ̄(W ) = gWg−1.
We then obtain from γ an automorphism of W given by w 7→ g−1γ̄(w)g. An automorphism obtained this
way is called Galois automorphism of W attached to γ. These automorphisms have been studied in detail
by I. Marin and J. Michel in [MM10b], and we will rely on one of their results, see Proposition 5.1 below.

We first record the following straightforward properties.

(i) The character of a Galois automorphism attached to γ (seen as a representation of W ) is given by
w 7→ γ(trV (w)).

(ii) There are several choices for such an automorphism but one can pass from one to another via conju-
gation by some element in the normalizer NW = NGLn(C)(W ).

(iii) Any Galois automorphism of W is a reflection automorphism.

(iv) Let ψ be a reflection automorphism ofW . Then ψ is a Galois automorphism attached to γ if and only
if the character of ψ (seen as a representation of W ) is the image by γ of the character V , i.e.,

∀w ∈W, trV (ψ(w)) = γ(trV (w)).

We do not necessarily have a natural action of ΓW onW , but using (ii), we get an action of ΓW on the set
of NW -conjugacy classes of elements in W . Note that Springer’s theory (see [Spr74, Theorem 4.2.(iv)])
implies that two regular elements in W having the same eigenvalues are W -conjugate. Therefore, NW -
conjugacy classes of regular elements (and in particular of Coxeter elements) are the same asW -conjugacy
classes. Denote by C(W ) the set of conjugacy classes of Coxeter elements. By Proposition 3.2, reflection
automorphisms stabilize the set of Coxeter elements, so the action of ΓW stabilizes C(W ). Theorem 5.2
below states that the action of ΓW on C(W ) is simply transitive. The transitivity follows from the following
result from [MM10b].

Proposition 5.1 (cf. [MM10b, Theorem 1.2]) Any reflection automorphism of an irreducible complex re-
flection group W is a Galois automorphism (attached to some γ ∈ ΓW ).

Combined with Proposition 3.2, this implies that the action of ΓW is transitive on C(W ). The proof of
the simple transitivity exhibits several other properties related to the field of definition, that we collect in
Theorem 5.2. We use the following notation:

• m1 = d1 − 1, . . . ,mn = dn − 1 are the exponents of W ,

• ϕ(j) (for j ∈ N) is the number of integers in {1, . . . , j} that are coprime to j, and

• ϕW (j) is the number of integers coprime to j among the set of exponents {m1, . . . ,mn}.

For an irreducible, well-generated group W with Coxeter number h, we also denote by GW the setwise
stabilizer of

{
ζm1 , . . . , ζmn

}
in the Galois group Gal(Q(ζ)/Q), where ζ is a primitive h-th root of unity.

Theorem 5.2 Let W be an irreducible well-generated complex reflection group, KW be its field of def-
inition, and C(W ) be the set of conjugacy classes of Coxeter elements of W . The following properties
hold:

(i) the transitive action of ΓW = Gal(KW /Q) on C(W ) is free;

(ii) [KW : Q] = |C(W )| = ϕ(h)/ϕW (h);

(iii) KW is equal to the fixed field Q(ζ)GW ;

(iv) KW is generated by the coefficients of the characteristic polynomial of any Coxeter element of W .
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Remark 5.3 The characterization of KW in (iii) (or in (iv), which is easily seen to be equivalent) has
already been obtained by G. Malle in [Mal99, Theorem 7.1], his proof using a case-by-case check via the
classification. We found it independently by other means but we also need a case-by-case analysis.

The equality |C(W )| = ϕ(h)/ϕW (h) is a direct consequence of Springer’s theory (describing the eigen-
values of a regular elements in terms of the exponents) and is included in the theorem for the sake of clarity.
The proof of Theorem 5.2 goes as follows. We first prove that the four properties (i)–(iv) are equivalent;
this is a case-free proof, except for the use of Proposition 3.2. The theorem is then derived by checking via
the classification that the equality [KW : Q] = ϕ(h)/ϕW (h) is satisfied for any irreducible well-generated
group.

Remark 5.4 Recall that a complex reflection group is a finite Weyl group if and only if its field of definition
is Q. Theorem 5.2(i) thus implies that all regular elements of order h are e2iπ/h-regular if and only if W
is a Weyl group. We also recover the well-known fact that for Weyl groups, the equality ϕW (h) = ϕ(h)
holds, see [Hum90, Proposition 3.20].

Remark 5.5 The intriguing relation in Theorem 5.2(ii) between the field of definition and the residues of
the exponents modulo h yields the question of what happens for badly-generated groups. There are 8 of
them in the exceptional types. For all but G15, the highest invariant degree dn is still a regular number,
so we could define a Coxeter element as a regular element of order dn as for well-generated groups. For
badly-generated groups in the infinite series, dn is regular only for the groups of type G(2d, 2, 2). In these
cases, the equality |C(W )| = ϕ(dn)/ϕW (dn) still holds for the same reasons as for well-generated groups.
Moreover, we have

(i) forG(2d, 2, 2),G7,G11,G12,G19,G22 andG31, one still has [KW : Q] = ϕ(dn)/ϕW (dn), whereas

(ii) for G13 (and also for G15), one has [KW : Q] = 2ϕ(dn)/ϕW (dn).

We do not know of an explanation for these observations. This actually implies that for all the groups listed
in (i), Theorem 5.2 still holds.

6 Regular elements and reflection automorphisms
Some of our results can be extended to regular elements of arbitrary order. In particular, statement (i) below
is a generalized version of Proposition 3.2 (the notations ϕ and ϕW are defined before Theorem 5.2).

Theorem 6.1 Let W be an irreducible complex reflection group, KW be its field of definition, and d be a
regular number for W . Denote by Cd(W ) the set of conjugacy classes of regular elements of order d. Then

(i) the action of reflection automorphisms on W preserves the set of regular elements of order d, and is
transitive on it;

(ii) the natural action of ΓW = Gal(KW /Q) on Cd(W ) is transitive;

(iii) the cardinality of Cd(W ) is ϕ(d)/ϕW (d);

(iv) the integer ϕ(d)/ϕW (d) divides [KW : Q].

Unlike for Coxeter elements, in the general case the action in statement (ii) may be not free. In that
case, ϕ(d)/ϕW (d) is a proper divisor of [KW : Q].
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