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Sign variation, the Grassmannian, and total
positivity

Steven N. Karp1†

1Department of Mathematics, University of California, Berkeley, USA

Abstract. The totally nonnegative Grassmannian is the set of k-dimensional subspaces V of Rn whose nonzero
Plücker coordinates (i.e. k× k minors of a k× n matrix whose rows span V ) all have the same sign. Total positivity
has been much studied in the past two decades from an algebraic, combinatorial, and topological perspective, but
first arose in the theory of oscillations in analysis. It was in the latter context that Gantmakher and Krein (1950) and
Schoenberg and Whitney (1951) independently showed that a subspace V is totally nonnegative iff every vector in V ,
when viewed as a sequence of n numbers and ignoring any zeros, changes sign fewer than k times. We generalize this
result, showing that the vectors in V change sign fewer than l times iff certain sequences of the Plücker coordinates
of some generic perturbation of V change sign fewer than l − k + 1 times. We give an algorithm which constructs
such a generic perturbation. Also, we determine the positroid cell of each totally nonnegative V from sign patterns of
vectors in V . These results generalize to oriented matroids.

Résumé. La grassmannienne totalement non négative est l’ensemble des sous-espaces V de Rn de dimension k dont
coordonnées plückeriennes non nulles (mineurs de l’ordre k d’une matrice k × n dont les lignes engendrent V ) ont
toutes le même signe. La positivité totale a beaucoup été étudiée durant les deux dernières décennies d’une perspective
algébrique, combinatoire, et topologique, mais a pris naissance dans la théorie analytique des oscillations. C’est dans
ce contexte que Gantmakher et Krein (1950) et Schoenberg et Whitney (1951) ont indépendamment démontré qu’un
sous-espace V est totalement non négatif ssi chaque vecteur dans V , lorsque considéré comme une séquence de n

nombres et dont on ignore les zéros, change de signe moins de k fois. Nous généralisons ce résultat, démontrant
que les vecteurs dans V changent de signe moins de l fois ssi certaines séquences des coordonnées plückeriennes
d’une perturbation générique de V changent de signe moins de l − k + 1 fois. Un algorithme construisant une telle
perturbation gérérique est obtenu. De plus, nous déterminons la cellule positroı̈de de chaque V totalement non négatif
à partir des données de signe des vecteurs dans V . Ces résultats sont valides pour les matroı̈des orientés.

Keywords: sign variation, totally nonnegative Grassmannian, oriented matroid, positroid, Grassmann necklace

1 Introduction
The (real) Grassmannian Grk,n is the set of k-dimensional subspaces of Rn. Given V ∈ Grk,n, take a
k× n matrix A whose rows span V ; then for k-subsets I ⊆ {1, · · ·, n}, we let ∆I(V ) be the k× k minor
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of A with columns I . (The ∆I(V ) depend on our choice of A only up to a global constant.) If all nonzero
∆I have the same sign, then V is called totally nonnegative. For example, the span of (1, 0, 0,−1) and
(−1, 2, 1, 3) is a totally nonnegative element of Gr2,4. The set of such V , called the totally nonnegative
Grassmannian, has become a hot topic in algebraic combinatorics in the past two decades. The general
algebraic study of total positivity (for reductive algebraic groups G and partial flag varieties G/P ) was
initiated by Lusztig [Lus94]. The totally nonnegative Grassmannian (the particular case G/P = Grk,n)
was later studied from a combinatorial perspective by Postnikov [Pos]. Of particular interest to us is
the stratification of the totally nonnegative Grassmannian by whether each ∆I is zero or nonzero. This
stratification is a cell decomposition, which was conjectured by Lusztig [Lus94] and proved by Rietsch
[Rie99] (for the general case G/P ), and later proved combinatorially by Postnikov [Pos]. Total positivity
originated, however, in the 1930’s in oscillation theory in analysis, where positivity conditions on matrices
can imply special oscillation and spectral properties. It was in this context that Gantmakher and Krein
[GK50], and independently Schoenberg and Whitney [SW51], proved the first result about (what would
later be called) the totally nonnegative Grassmannian.

Theorem 1.1 (5.3 of [GK50], [SW51]). An element V of Grk,n is totally nonnegative iff all vectors in V
(viewed as sequences of n numbers, ignoring any zeros) change sign fewer than k times.

For example, the two vectors (1, 0, 0,−1) and (−1, 2, 1, 3) each change sign exactly once, and we can
check that any vector in their span changes sign at most once. Every element of Grk,n has a vector which
changes sign at least k − 1 times (put a k × n matrix whose rows span V into row reduced echelon form,
and take the alternating sum of the rows), so the totally nonnegative elements are those whose vectors
change sign as few times as possible.

There are two main results in this paper. The first generalizes Theorem 1.1 to all V ∈ Grk,n by giving a
criterion for when the vectors in V change sign fewer than l times, in terms of the ∆I(V ). (Theorem 1.1 is
the case l = k; see Corollary 4.7 for details.) The second shows, in the case that V is totally nonnegative,
how to determine the cell of V in the cell decomposition of the totally nonnegative Grassmannian.

We now describe our first main result, split into two parts (Theorem 1.2 and Theorem 1.4). For more
details see Section 2, specifically Theorem 2.1 and Theorem 2.7.

Theorem 1.2. (i) If the vectors in V ∈ Grk,n change sign fewer than l times, then (∆J∪{i}(V ))i/∈J
changes sign fewer than l − k + 1 times for all (k − 1)-subsets J ⊆ {1, · · ·, n}.
(ii) If V ∈ Grk,n such that ∆I(V ) 6= 0 for all k-subsets I ⊆ {1, · · ·, n}, and (∆J∪{i}(V ))i/∈J changes
sign fewer than l− k + 1 times for all (k − 1)-subsets J ⊆ {1, · · ·, n}, then the vectors in V change sign
fewer than l times.

Example 1.3. Let V ∈ Gr2,4 be the row span of the matrix
[
1 0 −2 3
0 2 1 4

]
. Then ∆I(V ) 6= 0 for

all 2-subsets I ⊆ {1, 2, 3, 4}, so the fact that the vectors in V change sign fewer than l := 3 times is
equivalent to the fact that the 4 sequences

(∆{1,2}(V ),∆{1,3}(V ),∆{1,4}(V )) = (2, 1, 4),

(∆{1,2}(V ),∆{2,3}(V ),∆{2,4}(V )) = (2, 4,−6),

(∆{1,3}(V ),∆{2,3}(V ),∆{3,4}(V )) = (1, 4,−11),

(∆{1,4}(V ),∆{2,4}(V ),∆{3,4}(V )) = (4,−6,−11)

each change sign fewer than l − k + 1 = 2 times. 3
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Part (ii) of Theorem 1.2 applies only to generic elements of Grk,n, i.e. those V such that ∆I(V ) 6= 0 for
all I . In the case that V is not generic, we show how to construct a generic perturbation W of V , such
that if the vectors in V change sign fewer than l times, then so do the vectors in W . (A perturbation of
V is an element V ′ ∈ Grk,n such that for all k-subsets I ⊆ {1, · · ·, n} with ∆I(V ) nonzero, ∆I(V

′) is
also nonzero with the same sign as ∆I(V ).) This gives the following generalization of Theorem 1.2 to
non-generic V .

Theorem 1.4. The vectors in V ∈ Grk,n change sign fewer than l times iff there exists a generic pertur-
bation V ′ of V such that

(∆J∪{i}(V
′))i/∈J changes sign fewer than l − k + 1 times for all (k − 1)-subsets J ⊆ {1, · · ·, n}. (1)

By a certain algorithm (see Theorem 2.7) we can construct a generic perturbation W of V ∈ Grk,n such
that the vectors in V change sign fewer than l times iff (1) holds for V ′ = W .

The algorithm involves perturbing one coordinate of V by an adjacent coordinate at most 2(n−1)(n−k)
times; see Theorem 2.7 for the details.

The natural framework in which to consider sign patterns of vectors in V , and signs of the ∆I(V ), is
that of oriented matroids. Our results hold in this context, suitably interpreted in the language of oriented
matroids (see Section 4), and are more general because while every subspace gives rise to an oriented
matroid, not every oriented matroid comes from a subspace.

We now describe our second main result. For each totally nonnegative V ∈ Grk,n, we define the
positroid of V as the set of k-subsets I of {1, · · ·, n} such that ∆I(V ) is nonzero. The stratification
of the totally nonnegative Grassmannian by positroids is a cell decomposition [Rie99, Pos]. We also
define the Grassmann necklace of V as the n-tuple (I1, · · ·, In) of k-subsets of {1, · · ·, n}, where Ij is the
lexicographically minimal I such that ∆I(V ) 6= 0, with respect to the total order ≤j on {1, · · ·, n} given
by j <j j + 1 <j · · · <j n <j 1 <j · · · <j j − 1. Postnikov [Pos] showed that the positroid of V is
uniquely determined by its Grassmann necklace.

How can we determine the positroid of V , or equivalently its Grassmann necklace, from the sign pat-
terns of vectors in V ? Given a subset I ⊆ {1, · · ·, n} and a sign vector ω ∈ {+,−}I , we say that
V realizes ω if there exists a vector in V whose restriction to I has signs given by ω. For example,
if (2, 3,−2,−1) ∈ V , then V realizes (+,−,−) on {1, 3, 4}. It is not difficult to show that for all
V ∈ Grk,n, we have ∆I(V ) 6= 0 iff V realizes all 2k sign vectors in {+,−}I . Furthermore, we poten-
tially have to check all of the 2k sign vectors, since given any ω ∈ {+,−}I (and assuming n > k), there
exists a V ∈ Grk,n which realizes all 2k sign vectors in {+,−}I except for±ω. However, in the case that
V is totally nonnegative, we show that we need only check 2k particular sign vectors in {+,−}I to verify
that ∆I(V ) 6= 0, and moreover that we can use these sign vectors to pick out the Grassmann necklace of
V .

Theorem 1.5. Suppose that V ∈ Grk,n is totally nonnegative.
(i) (Positroid criterion) Let J be a k-subset of {1, · · ·, n}. Then ∆J(V ) 6= 0 iff V realizes all 2k
sign vectors in {+,−}J which alternate between every pair of consecutive components, with at most
one exceptional pair. (For example, if k = 5 these sign vectors are (+,−,+,−,+), (+,+,−,+,−),
(+,−,−,+,−), (+,−,+,+,−), (+,−,+,−,−), and their negations.)
(ii) (Grassmann necklace criterion) Let (I1, · · ·, In) be the Grassmann necklace of V . Then Ij is the
j-Gale minimum among all k-subsets J of {1, · · ·, n} such that V realizes a sign vector on J which al-
ternates except precisely from component max({i ∈ J : i < j}) to component min({i ∈ J : i ≥ j})
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(if both components exist). (For example, if J = {1, 4, 6, 8, 9} and j = 7, then such a sign vector is
(+,−,+,+,−) or its negation. The j-Gale order is given by {i1 <j · · · <j ik} ≤j-Gale {i′1 <j · · · <j
i′k} iff i1 ≤j i′1, · · ·, ik ≤j i′k.)

Neither (i) nor (ii) hold for all V ∈ Grk,n; see Example 3.8 and Example 3.3. For further details on
Theorem 1.5 see Section 3, specifically Corollary 3.6 and Corollary 3.4.

Example 1.6. Let V ∈ Gr3,5 be the row span of the matrix

2 1 0 0 3
0 0 1 0 0
0 0 0 1 1

, which is totally non-

negative. Part (i) of Theorem 1.5 states that for 3-subsets I of {1, 2, 3, 4, 5}, we have ∆I(V ) 6= 0
iff the 3 sign vectors (+,−,+), (+,+,−), (+,−,−) on I are realized by V . For I = {1, 3, 5},
the vectors (2, 1,−1, 0, 3), (2, 1, 1,−4,−1), (2, 1,−1,−4,−1) in V realize the sign vectors (+,−,+),
(+,+,−), (+,−,−) on I , so ∆{1,3,5}(V ) 6= 0. (We do not need to check that (+,+,+), the re-
maining sign vector on I up to sign, is realized.) For I = {1, 4, 5}, the vectors (2, 1, 0,−1, 2) and
(2, 1, 0,−4,−1) in V realize the sign vectors (+,−,+) and (+,−,−) on I , but no vector in V real-
izes the sign vector (+,+,−) on I , so ∆{1,4,5}(V ) = 0. Part (ii) of Theorem 1.5 for j = 1 states
that the lexicographic minimum I1 = {1, 3, 4} of the positroid of V is also the Gale minimum of
{{1, 3, 4}, {1, 3, 5}, {1, 4, 5}, {2, 3, 4}, {2, 3, 5}, {2, 4, 5}, {3, 4, 5}}, the set of 3-subsets of {1, 2, 3, 4, 5}
on which V realizes the alternating sign vector (+,−,+). 3

Acknowledgements. I thank Lauren Williams, my advisor, for many helpful conversations and sug-
gestions. I also thank Sylvie Corteel and the Laboratoire d’Informatique Algorithmique: Fondements et
Applications at Université Paris Diderot for hosting me while I conducted this work.

2 Sign changes and the Grassmannian
In this section we characterize the maximum number of times a vector in V changes sign, in terms of
the Plücker coordinates of V . In the case that V is generic, we give a direct criterion (Theorem 2.1);
otherwise, we show how to perturb V into a generic subspace, whence we may apply the same criterion
to the perturbation (Theorem 2.7).

We introduce some terminology. Let Grk,n denote the Grassmannian of k-dimensional subspaces of
Rn. Given V ∈ Grk,n, take a k × n matrix A whose rows span V . For I ∈

(
[n]
k

)
, we define the Plücker

coordinate ∆I(V ) as the minor ofAwhich uses the columns in I (where
(
[n]
k

)
denotes the set of k-subsets

of [n] := {1, · · ·, n}). Note that if A′ is another k× n matrix whose rows span V , then the corresponding
minors of A and A′ are equal up to multiplication by a global nonzero constant. Hence ∆(V ) is well-
defined in the projective space P(n

k)−1. Also, for v ∈ Rn and I ⊆ [n], we say that v alternates on I if the
components of v alternate sign on I , i.e. I = {i1, · · ·, ik} (i1 < · · · < ik) and vi1vi2 , vi2vi3 , · · ·, vik−1

vik
are all negative. For example, (3, 1,−2) alternates on {1, 3} and {2, 3}, but not on {1, 2}. The number of
sign changes of v ∈ Rn is one less than the maximum size of a subset I ⊆ [n] on which v is alternating.
For example, (3, 1,−2) changes sign once.

We say that V ∈ Grk,n is generic if ∆I(V ) 6= 0 for all I ∈
(
[n]
k

)
. We have the following criterion for

when the vectors in a generic V change sign fewer than l times.

Theorem 2.1. (i) If the vectors in V ∈ Grk,n change sign fewer than l times, then (∆J∪{i}(V ))i/∈J
changes sign fewer than l − k + 1 times for all J ∈

(
[n]
k−1
)
.
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(ii) If V ∈ Grk,n is generic and (∆J∪{i}(V ))i/∈J changes sign fewer than l−k+1 times for all J ∈
(
[n]
k

)
,

then the vectors in V change sign fewer than l times.

We give an example which shows that part (ii) above does not hold for all V ∈ Grk,n.

Example 2.2. Let V ∈ Gr2,4 be the row span of the matrix
[
1 0 1 0
0 1 0 1

]
. Note that the 4 sequences of

Plücker coordinates

(∆{1,2}(V ) : ∆{1,3}(V ) : ∆{1,4}(V )) = (1 : 0 : 1),

(∆{1,2}(V ) : ∆{2,3}(V ) : ∆{2,4}(V )) = (1 : −1 : 0),

(∆{1,3}(V ) : ∆{2,3}(V ) : ∆{3,4}(V )) = (0 : −1 : 1),

(∆{1,4}(V ) : ∆{2,4}(V ) : ∆{3,4}(V )) = (1 : 0 : 1)

each change sign fewer than l−k+1 = 2 times (where we take l := 3), but the vector (1,−1, 1,−1) ∈ V
changes sign l = 3 times. Note that if we were forced to pick a sign for ∆{1,3}(V ), then either the first or
third sequence above would change sign twice. This motivates the introduction of perturbations below.3

Given V, V ′ ∈ Grk,n, we say that V ′ is a perturbation of V if for all I ∈
(
[n]
k

)
with ∆I(V ) nonzero,

∆I(V
′) is also nonzero and has the same sign as ∆I(V ). It is not hard (using the theory of oriented

matroids; see Definition 4.3) to show that if the vectors in V ′ change sign fewer than l times, then so do
the vectors in V . Conversely, however, if the vectors in V change sign fewer than l times, it is not obvious
that there exists a nontrivial perturbation V ′ of V whose vectors also change sign fewer than l times. This
is what we now show, leading up to a generalization of Theorem 2.1 to such non-generic V (Theorem 2.7).
We build our perturbations using sequences of elementary perturbations called i→ε j-perturbations.

Definition 2.3 (i →ε j-perturbation). Let i, j ∈ [n] be distinct and ε ∈ {+,−}. Given V ∈ Grk,n,
take a k × n matrix A = [x(1)| · · · |x(n)] whose rows span V , where x(1), · · ·, x(n) ∈ Rk are column
vectors. For α ∈ R, let V ′ ∈ Grk,n be the row span of the k × n matrix A′ := [x(1)| · · · |x(j−1)|x(j) +
αx(i)|x(j+1)| · · · |x(n)]. (Note that V ′ depends only on α, not on our choice of A.) We say that V ′ is an
i→ε j-perturbation of V if α is nonzero, has the same sign as ε, and is sufficiently small that if I ∈

(
[n]
k

)
indexes a nonzero minor of A, then the I-minor of A′ is also nonzero with the same sign.

The possible values of α form an open interval between 0 and some number, or ±∞, with sign ε.

Example 2.4. Let V ∈ Gr2,4 be the row span of the matrix A :=

[
1 0 2 0
0 3 −1 4

]
, and for α < 0 let

V ′ ∈ Gr2,4 be the row span of the perturbed matrix A′ :=

[
1 0 2 α
0 3 −1 4

]
. Note that the {3, 4}-minor

of A equals 8, and the {3, 4}-minor of A′ equals 8 + α, so we should pick α > −8 so that these minors
agree in sign. In fact, for any α ∈ (−8, 0) the I-minors of A and A′ have the same sign whenever the
I-minor of A is nonzero (for I ∈

(
[4]
2

)
), whence V ′ is a 1→− 4-perturbation of V . 3

If the vectors in V ∈ Grk,n change sign fewer than l times, then certain i→ε j-perturbations preserve
this property, and are in fact sufficient to perturb V into a generic subspace.
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Lemma 2.5. (i) If the vectors in V ∈ Grk,n change sign fewer than l times, then so do the vectors in any
(i+ 1)→+ i-, i→+ (i+ 1)-, 1→(−1)l−1 n-, or n→(−1)l−1 1-perturbation of V (for any i ∈ [n− 1]).
(ii) Applying the sequence of perturbations

2→ 1, 3→ 2, · · ·, n→ (n− 1), 1→ n, 2→ 1, 3→ 2, · · ·, (n− 1)→ (n− 2)

in order from left to right n − k times to any V ∈ Grk,n gives a generic subspace. (Here an i → j-
perturbation denotes either of the i →ε j-perturbations for ε ∈ {+,−}; the sign of ε is not important.)
Similarly, applying the sequence of perturbations

2→ 1, 3→ 2, · · ·, n→ (n− 1), (n− 1)→ n, (n− 2)→ (n− 1), · · ·, 1→ 2

in order from left to right n− k times to any V ∈ Grk,n gives a generic subspace.

Note that part (i) above follows in general from the specific case of 2→+ 1-perturbations, by the following
symmetries: if the vectors in the row span of the matrix [x(1)| · · · |x(n)] change sign fewer than l times,
then so do the vectors in the row span of the cyclic shift [x(2)| · · · |x(n)|(−1)l−1x(1)] and the reversal
[x(n)| · · · |x(1)]. Also note that part (ii) above gives two specific algorithms for constructing a generic
perturbation of any V ∈ Grk,n in 2(n− 1)(n− k) < 2n2 steps.

Example 2.6. Let V ∈ Gr2,3 be the row span of the matrix
[
0 1 3
1 0 0

]
, whose vectors change sign fewer

than l := 2 times. Then V is not generic, but we can get a generic subspace by applying a 1 →− 3-

perturbation, which gives the row span of
[
0 1 3
1 0 α

]
(α < 0), or by applying a 1 →+ 2-perturbation,

which gives the row span of
[
0 1 3
1 β 0

]
(β > 0). The vectors in these two subspaces change sign fewer

than l = 2 times.
Note that we cannot make V generic by applying only 2 → 1- and 3 → 2-perturbations. Also note

that, for example, applying a 1 →− 2-perturbation gives the row span of
[
0 1 3
1 γ 0

]
(γ < 0), which has

a vector (e.g. (− 2
γ ,−1, 3)) that changes sign twice. 3

Theorem 2.7. The vectors in V ∈ Grk,n change sign fewer than l times iff there exists a generic pertur-
bation V ′ of V such that (∆J∪{i}(V

′))i/∈J changes sign fewer than l − k + 1 times for all J ∈
(

[n]
k−1
)
.

Explicitly, let W be obtained from V ∈ Grk,n by applying the sequence of perturbations

2→+ 1, 3→+ 2, · · ·, n→+ (n− 1), 1→(−1)l−1 n, 2→+ 1, 3→+ 2, · · ·, (n− 1)→+ (n− 2)

in order from left to right n− k times, or by applying the sequence of perturbations

2→+ 1, 3→+ 2, · · ·, n→+ (n− 1), (n− 1)→+ n, (n− 2)→+ (n− 1), · · ·, 1→+ 2

in order from left to right n − k times, so that W is a generic perturbation of V . Then the following are
equivalent:
(i) the vectors in V change sign fewer than l times;
(ii) the vectors in W change sign fewer than l times; and
(iii) (∆J∪{i}(W ))i/∈J changes sign fewer than l − k + 1 times for all J ∈

(
[n]
k−1
)
.
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In principle the results in this section are about components of vectors in subspaces, and their Plücker
coordinates, only up to sign (zero, positive, or negative). There is an object M(V ) which, given V ∈
Grk,n, records precisely the vectors of V up to sign, or equivalently the Plücker coordinates ∆(V ) up to
sign; it is called the oriented matroid associated to V . There is a general notion of an oriented matroid,
among which those of the formM(V ) comprise the strict subset of realizable oriented matroids. All the
results in this section generalize naturally to oriented matroids, using the following dictionary:

subspaces oriented matroids
sign vectors of vectors in V covectors ofM(V )

∆(V ), up to sign the chirotope χM(V )

V is generic M(V ) is uniform
V ′ is a perturbation of V M(V ) ≤M(V ′)

We also generalize i→ε j-perturbation to oriented matroids. We give precise statements in Section 4.

3 Positroids from sign patterns
We say that V ∈ Grk,n is totally nonnegative if ∆I(V ) ≥ 0 for all I ∈

(
[n]
k

)
(or equivalently, ∆I(V ) ≤ 0

for all I ∈
(
[n]
k

)
, since ∆(V ) is defined in projective space). Let Gr≥0k,n be the subset of Grk,n of totally

nonnegative elements, called the totally nonnegative Grassmannian. The goal of this section is to describe
several ways to recover the positroid cell of a given V ∈ Gr≥0k,n from the sign patterns of vectors in V .

For V ∈ Grk,n, letM(V ) := {I ∈
(
[n]
k

)
: ∆I(V ) 6= 0} be the matroid of V . In the case that V is totally

nonnegative, we call M(V ) a positroid. Postnikov [Pos] showed that the positroid stratification of Gr≥0k,n
(i.e. its partition into equivalence classes, where V ∼ W iff M(V ) = M(W )) is a cell decomposition,
which coincides with the one earlier conjectured by Lusztig [Lus94] and proven by Rietsch [Rie99] in the
more general context of total positivity in partial flag varieties G/P . Postnikov constructed in particular,
for each stratum, a homeomorphism between Rd>0 and the stratum using a certain bicolored planar graph

1

23

4

b

e

a d

c

7−→
[
1 0 −abc −(c+ ac)
0 1 1/e acd

] (
a, b, c, d, e > 0,

abcde = 1

)

Fig. 1: A homeomorphism from R4
>0 to the cell of Gr≥0

2,4 labeled by the positroid M =
(
[4]
2

)
.

drawn inside a disk. He also showed that for V ∈ Gr≥0k,n, the positroid M(V ) is uniquely determined by

its Grassmann necklace (I1, · · ·, In) ∈
(
[n]
k

)n
, where Ij (for j ∈ [n]) is the lexicographic minimum of

M(V ) with respect to the total order ≤j on [n] given by j <j j + 1 <j · · · <j n <j 1 <j · · · <j j − 1.
For example, the Grassmann necklace of the positroid M =

(
[4]
2

)
is ({1, 2}, {2, 3}, {3, 4}, {4, 1}).

Given V ∈ Gr≥0k,n, how can we determine the positroid M(V ), or equivalently its Grassmann necklace,
from the sign vectors of V , i.e. those ω ∈ {0,+,−}n such that some vector in V has signs given by ω?
It follows from the theory of oriented matroids (see Section 4) that for any V ∈ Grk,n, given the signs
(either 0, +, or −) of all Plücker coordinates ∆I(V ), we can determine the sign vectors of V , and vice
versa. Hence we can recover M(V ) from the sign vectors of V . We now focus on criteria for V ∈ Gr≥0k,n
which take advantage of the special properties of the totally nonnegative Grassmannian.
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We begin by examining the Schubert cell of V , which is labeled by I1, the lexicographic minimum of
M(V ). We use the Gale partial order ≤Gale, which is the partial order of

(
[n]
k

)
given by

I ≤Gale J ⇐⇒ i1 ≤ j1, i2 ≤ j2, · · ·, ik ≤ jk

for subsets I = {i1, · · ·, ik} (i1 < · · · < ik), J = {j1, · · ·, jk} (j1 < · · · < jk) of [n].

Proposition 3.1. Suppose that V ∈ Gr≥0k,n and I ∈
(
[n]
k

)
is the lexicographic minimum of M(V ).

(i) For all J ∈M(V ), there exists a vector in V which alternates on J .
(ii) If some vector in V alternates on J ∈

(
[n]
k

)
, then I ≤Gale J .

Thus I is the Gale-minimal element of
(
[n]
k

)
on which some vector in V alternates.

Example 3.2. Let V ∈ Gr≥02,4 be the row span of the matrix
[
1 2 0 −1
0 0 1 0

]
. Then no vector in V

alternates on {1, 2}, and (1, 2,−1,−1) ∈ V alternates on {1, 3}, so {1, 3} is the lexicographic minimum
of M(V ). Note that the vector (1, 2, 0,−1) ∈ V alternates on {1, 4} /∈M(V ), so the converse to part (i)
above does not necessarily hold. 3

Part (i) of Proposition 3.1 holds for all V ∈ Grk,n (since J ∈ M(V ) iff V |J = RJ , where V |J denotes
the restriction of V to the coordinates in J), but not part (ii), as the next example shows.

Example 3.3. Let V ∈ Gr3,6 be the row span of the matrix

1 0 −1 −1 1 0
0 1 1 2 0 0
0 0 0 0 0 1

. Then the vector

(1,−1,−2,−3, 1, 0) ∈ V alternates on {1, 2, 5}, and (3, 2,−1, 1, 3, 0) ∈ V alternates on {1, 3, 4}, but
no vector in V alternates on {1, 2, 3} or {1, 2, 4}. Hence {J ∈

(
[6]
3

)
: some vector in V alternates on J}

has no Gale minimum. 3

We can generalize Proposition 3.1 to the entire Grassmann necklace, as follows. Let V ∈ Grk,n and
(I1, · · ·, In) ∈

(
[n]
k

)n
be the Grassmann necklace of V . For j ∈ [n], we define the j-cyclic shift Vj

of V as follows: take a k × n matrix [x(1)| · · · |x(n)] whose rows span V , and let Vj be the row span of
[x(j)|x(j+1)| · · · |x(n)|(−1)k−1x(1)| · · · |(−1)k−1x(j−1)], with columns labeled j, j+1, · · ·, n, 1, · · ·, j−1.
Note that Vj does not depend on our choice of matrix, and if V is totally nonnegative then so is Vj (which
explains why we have the signs (−1)k−1). Then Ij is the lexicographically minimal index of a nonzero
Plücker coordinate of Vj (given our labeling of the columns), and v ∈ Vj alternates on J ∈

(
[n]
k

)
(with

respect to the total order ≤j) iff v ∈ V alternates on J except precisely from component max(J ∩ [1, j))
to component min(J ∩ [j, n]) (if both components exist). For example, if J = {1, 3, 4} and j = 3, then
v = (1, 1, 1,−1) satisfies this condition, but not v = (1, 1,−1, 1). Applying Proposition 3.1 to Vj gives
the following corollary, where ≤j-Gale is the Gale order on

(
[n]
k

)
induced by the total order ≤j on [n].

Corollary 3.4. Suppose that V ∈ Gr≥0k,n has Grassmann necklace (I1, · · ·, In) ∈
(
[n]
k

)n
, and j ∈ [n].

(i) For all J ∈ M(V ), there exists a vector in V which alternates on J except precisely from component
max(J ∩ [1, j)) to component min(J ∩ [j, n]) (if both components exist).
(ii) If some vector in V alternates on J ∈

(
[n]
k

)
except precisely from component max(J ∩ [1, j)) to

component min(J ∩ [j, n]) (if both components exist), then Ij ≤j-Gale J .
Thus Ij is the j-Gale-minimal element of

(
[n]
k

)
on which some vector in V alternates except precisely from

component max(J ∩ [1, j)) to component min(J ∩ [j, n]) (if both components exist).
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Oh [Oh11] explicitly described a positroid in terms of its Grassmann necklace. With Corollary 3.4, we
immediately get a characterization of the positroid of V ∈ Gr≥0k,n in terms of sign patterns of vectors in
V . Given I ⊆ [n] and a sign vector ω ∈ {+,−}I , we say that V realizes ω if there exists a vector in V
whose restriction to I has signs given by ω.

Theorem 3.5 (Theorem 6 of [Oh11]). Suppose that M is a set of k-subsets of [n] which is a matroid
with Grassmann necklace (I1, · · ·, In) ∈

(
[n]
k

)n
. Then M is a positroid iff M = {J ∈

(
[n]
k

)
: Ij ≤j-Gale

J for j ∈ [n]}.

Corollary 3.6. For all V ∈ Gr≥0k,n and I ∈
(
[n]
k

)
, we have I ∈ M(V ) iff V realizes all 2k sign vectors

in {+,−}I which alternate between every pair of consecutive components, with at most one exceptional
pair.

We remark that we can also prove Corollary 3.6 directly from Theorem 1.1, as follows. If I ∈M(V ) then
V |I = RI , and so V realizes all sign vectors on I . Conversely, if I /∈ M(V ), then we take j ∈ [n] \ I
such that V |I∪{j} has rank greater than that of V |I , i.e. there exists a vector v ∈ V with v|I = 0 and
vj 6= 0. Using v, we can extend any sign vector which V realizes on I to a sign vector which V realizes
on I ∪ {j}, with our choice of sign in component j. Since no vector in V alternates on I ∪ {j}, there
is no vector in V which alternates on I except precisely from component max(I ∩ [1, j)) to component
min(I ∩ [j, n]) (if both components exist).

By way of contrast to Corollary 3.6, we offer a similar criterion for general V ∈ Grk,n, which is not
difficult to prove using the fact that I ∈M(V ) iff V |I = RI .

Proposition 3.7. For V ∈ Grk,n and I ∈
(
[n]
k

)
, we have I ∈ M(V ) iff V realizes all 2k sign vectors in

{+,−}I .

Moreover, given ω ∈ {+,−}I , we can construct V ∈ Grk,n (assuming n > k) such that V realizes all
2k sign vectors in {+,−}I except for ±ω, by taking v ∈ RI with sign vector ω and letting V |I be the
hyperplane in RI perpendicular to v. Thus for general V ∈ Grk,n, we potentially need to check (up to
sign) that 2k−1 sign vectors on I are realized, whereas if V is totally nonnegative then we need only check
k by Corollary 3.6. We give an explicit example of this phenomenon.

Example 3.8. Let V ∈ Gr3,4 be the row span of the matrix

1 0 −1 0
0 1 −1 0
0 0 0 1

, which is not totally non-

negative, and let I := {1, 2, 3}. Then the vectors (1,−2, 1, 0), (1, 1,−2, 0), (2,−1,−1, 0) in V realize
the sign vectors (+,−,+), (+,+,−), (+,−,−) on I , but I /∈M(V ). 3

The results in this section also hold for oriented matroids, but this gives no new information: by a recent
result of Ardila, Rincón, and Williams [ARW], all oriented matroids which are totally nonnegative (called
positively oriented matroids) come from totally nonnegative subspaces.

4 Results generalized to oriented matroids
In this section we generalize the results of Section 2 to oriented matroids. A comprehensive account of
the theory of oriented matroids, and our reference throughout, is [BLVS+99]. We begin by describing
oriented matroids coming from subspaces of Rn (called realizable oriented matroids), which can serve as
a reference point for our results. For α ∈ R we let sign(α) ∈ {0,+,−} be the sign of α, and for v ∈ RE
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we define the sign vector sign(v) ∈ {0,+,−}E by sign(v)e := sign(ve) for e ∈ E. The support of a sign
vector X ∈ {0,+,−}E is the subset of E which indexes the nonzero components of X . For example,
sign(5, 0,−1, 2) = (+, 0,−,+) has support {1, 3, 4}.
Definition 4.1 (realizable oriented matroids; 1.2 of [BLVS+99]). Let V ∈ Grk,n. The (realizable) ori-
ented matroidM(V ) is uniquely determined by [n] (the ground set ofM(V )) and any one of the following
three objects:
• the set V∗ := {sign(v) : v ∈ V }, called the covectors ofM(V ); or
• the set C∗ := {X ∈ V∗ : X has minimal nonempty support}, called the cocircuits ofM(V ); or
• the function χ :

(
[n]
k

)
→ {0,+,−} (up to multiplication by ±1), called the chirotope ofM(V ), where

χ(I) := sign(∆I(V )) for I ∈
(
[n]
k

)
.

The rank ofM(V ) is k.

A general oriented matroid M is determined by its ground set E (where E is a totally ordered finite
set), and any one of the three objects V∗(M) ⊆ 2{0,+,−}

E

(the covectors), C∗(M) ⊆ 2{0,+,−}
E

(the
cocircuits), or χM :

(
E
k

)
→ {0,+,−} up to multiplication by ±1 (the chirotope), where k is the rank of

M. (Usually one does not require that E is totally ordered, but it will be essential for us here.) The bases
ofM are those I ∈

(
E
k

)
such that χM(I) 6= 0, so χM assigns an orientation (either + or −) to every

basis ofM. The objects V∗(M), C∗(M), and χM are characterized by certain axioms, and each can be
determined from any other; see chapter 3 of [BLVS+99].

We can now begin translating the results of Section 2 to the more general framework of oriented ma-
troids. We say that an oriented matroid of rank k is uniform if every k-subset of its ground set is a basis,
so that V ∈ Grk,n is generic iffM(V ) is uniform.

Theorem 4.2. Suppose thatM is an oriented matroid of rank k with ground set [n], and l ≥ k.
(i) If the covectors ofM change sign fewer than l times, then (χM(J ∪ {i}))i/∈J changes sign fewer than
l − k + 1 times for all J ∈

(
[n]
k−1
)
.

(ii) IfM is uniform and (χM(J ∪{i}))i/∈J changes sign fewer than l−k+ 1 times for all J ∈
(
[n]
k

)
, then

the covectors ofM change sign fewer than l times.

We now describe a partial order on oriented matroids with a fixed ground set, coming from what are
called weak maps in the literature. We use the partial order on sign vectors given by X ≤ Y iff Xe = Ye
for all e ∈ E such that Xe 6= 0 (for X,Y ∈ {0,+,−}E). This also defines a partial order on chirotopes,
regarded as sign vectors in {0,+,−}(

E
k).

Definition 4.3 (partial order on oriented matroids; 7.7.5 of [BLVS+99]). Let M and N be oriented
matroids with ground set E. We say thatM≤ N if for every covector X ofM, there exists a covector Y
of N with X ≤ Y . Then ≤ is a partial order on oriented matroids with ground set E. IfM and N have
the same rank, thenM≤ N iff χM ≤ ±χN .

Note that for V, V ′ ∈ Grk,n, we haveM(V ) ≤M(V ′) iff V ′ is a perturbation of V .
We now generalize i →ε j-perturbation of subspaces to oriented matroids. Let M be an oriented

matroid with ground set E. A single element extension ofM at a is an oriented matroid M̃ with ground
setEt{a} and the same rank asM, such that the covectors ofM are precisely the restriction of covectors
of M̃ to E. Las Vergnas [LV78] studied single element extensions; we refer to his results as given in
[BLVS+99]. For a sign vector X ∈ {0,+,−}E and y ∈ {0,+,−}, we let (X, y)a ∈ {0,+,−}Et{a}
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denote the sign vector whose restriction toE isX and whose ath component is y. By 7.1.4 of [BLVS+99],
there exists a unique function σ : C∗(M) → {0,+,−} such that (C, σ(C))a is a cocircuit of M̃ for all
cocircuits C of M. In this case, we say that M̃ is the single element extension of M at a by σ. (In
general, not all functions σ : C∗(M)→ {0,+,−} give rise to single element extensions.)

Definition 4.4 (i →ε j-perturbation). Let i, j ∈ [n] be distinct and ε ∈ {+,−}. Given an oriented
matroidM with ground set [n], we define the i→ε j-perturbation ofM as the oriented matroid N with
rank k and ground set [n] as follows. If j is in every basis ofM, then we define N := M. Otherwise,
we write M as the single element extension of M′ (with ground set [n] \ {j}) at j by σ : C∗(M′) →
{0,+,−}, and letN be the single element extension ofM′ at j by σ ◦ τ , where τ : C∗(M′)→ {0,+,−}
is given by τ(C) := εCi for C ∈ C∗(M′). (Here (σ ◦ τ)(C) equals σ(C) if σ(C) 6= 0, and τ(C)
otherwise.) Then N is well-defined by 7.2.2 of [BLVS+99], andM≤ N by 7.7.8 of [BLVS+99].

We have the same desirable properties of i→ε j-perturbation of oriented matroids as for subspaces.

Lemma 4.5. Suppose thatM is an oriented matroid of rank k with ground set [n].
(i) If the covectors ofM change sign fewer than l times, then so do the covectors of the (i + 1) →+ i-,
i→+ (i+ 1)-, 1→(−1)l−1 n-, and n→(−1)l−1 1-perturbations ofM (for i ∈ [n− 1]).
(ii) Applying the sequence of perturbations

2→ 1, 3→ 2, · · ·, n→ (n− 1), 1→ n, 2→ 1, 3→ 2, · · ·, (n− 1)→ (n− 2)

in order from left to right n−k times toM gives a uniform oriented matroid. (Here an i→ j-perturbation
denotes either of the i →ε j-perturbations for ε ∈ {+,−}; the sign of ε is not important.) Similarly,
applying the sequence of perturbations

2→ 1, 3→ 2, · · ·, n→ (n− 1), (n− 1)→ n, (n− 2)→ (n− 1), · · ·, 1→ 2

in order from left to right n− k times toM gives a uniform oriented matroid.
(iii) If V ′ is an i→ε j-perturbation of V ∈ Grk,n, thenM(V ′) is the i→ε j-perturbation ofM(V ).

Theorem 4.6. Suppose thatM is an oriented matroid of rank k with ground set [n]. The covectors ofM
change sign fewer than l times iff there exists a uniformM′ ≥M of rank k with ground set [n] such that
(χM′(J ∪ {i}))i/∈J changes sign fewer than l − k + 1 times for all J ∈

(
[n]
k−1
)
.

Explicitly, let N be obtained fromM by applying the sequence of perturbations

2→+ 1, 3→+ 2, · · ·, n→+ (n− 1), 1→(−1)l−1 n, 2→+ 1, 3→+ 2, · · ·, (n− 1)→+ (n− 2)

in order from left to right n− k times, or by applying the sequence of perturbations

2→+ 1, 3→+ 2, · · ·, n→+ (n− 1), (n− 1)→+ n, (n− 2)→+ (n− 1), · · ·, 1→+ 2

in order from left to right n− k times, so that N ≥M is uniform. Then the following are equivalent:
(i) the covectors ofM change sign fewer than l times;
(ii) the covectors of N change sign fewer than l times; and
(iii) (χN (J ∪ {i}))i/∈J changes sign fewer than l − k + 1 times for all J ∈

(
[n]
k−1
)
.
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Finally, we explain how to obtain the generalization of Theorem 1.1 to oriented matroids, as a conse-
quence of these results for l = k. LetM be an oriented matroid of rank k with ground set [n]. We say
thatM is positively oriented if every basis ofM has the same orientation. IfM is positively oriented,
we let N be the uniform positively oriented matroid of rank k with ground set [n]; then N ≥ M, so
the covectors ofM change sign fewer than k times by Theorem 4.6. Conversely, if the covectors ofM
change sign fewer than k times, then by Theorem 4.2(i) any two bases of M with k − 1 elements in
common have the same orientation; it follows from the basis exchange property for (oriented) matroids
that all bases ofM have the same orientation. Hence we have the following corollary.

Corollary 4.7. An oriented matroid of rank k is positively oriented iff its covectors change sign fewer
than k times.

We remark that since all positively oriented matroids are realizable [ARW], the forward direction follows
from [ARW] and Theorem 1.1.
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