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Y -meshes and generalized pentagram maps

Max Glick† and Pavlo Pylyavskyy‡

Department of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA

Abstract. We introduce a rich family of generalizations of the pentagram map sharing the property that each generates

an infinite configuration of points and lines with four points on each line. These systems all have a description as

Y -mutations in a cluster algebra and hence establish new connections between cluster theory and projective geometry.

Résumé. Nous introduisons une famille de généralisations de l’application pentagramme. Chacune produit une con-

figuration infinie de points et de lignes avec quatre points sur chaque ligne. Ces systèmes ont une description des

Y -mutations dans une algèbre amassée, un nouveau lien entre la théorie d’algèbres amassées et la géométrie projec-

tive.

Keywords: pentagram map, discrete dynamical systems, cluster algebras

1 Introduction

The pentagram map, introduced by R. Schwartz [14] is a discrete dynamical system defined on the space

of polygons in the projective plane. Figure 1(a) gives an example of the pentagram map, which we denote

T . Although the underlying construction is simple, the resulting system has many amazing properties

including the following:

• V. Ovsienko, Schwartz, and S. Tabachnikov [12] established that the pentagram map is a completely

integrable system. Further work in this direction was conducted by those same authors [13], F.

Soloviev [16], and M. Gekhtman, M. Shapiro, Tabachnikov, and A. Vainshtein [5].

• Schwartz [15] showed that the continuous limit of the pentagram map is the Boussineq equation.

• The first author [4] proved that the pentagram map can be described in certain coordinates as muta-

tions in a cluster algebra.

The pentagram map has been generalized and modified in many ways with the hope that some or all

of these properties continue to hold. Work of B. Khesin and Soloviev [6, 7, 8], Gekhtman, Shapiro,

Tabachnikov and Vainshtein [5] and G. Mari Beffa [9, 10, 11] all pursue this idea. Of the three listed

properties, it seems that a connection to cluster algebras is the most resistant to being pushed forward,

with only [5] achieving a generalization of the cluster description of T .
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(a) An application of the pentagram map with input A

and output B = T (A).
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(b) Part of a Y -mesh produced by the penta-

gram map.

Fig. 1:

We propose a new family of generalized pentagram maps, all of which have a description in terms of

cluster algebras. Our family includes the higher pentagram maps of Gekhtman et al. [5], some of those

introduced by Khesin and Soloviev [6, 7], as well as a wide variety of new systems. Already for the

systems of Khesin and Soloviev, the cluster structure is new.

For the pentagram map, the connection to cluster algebras comes by way of certain projectively natural

coordinates on the space of polygons. Specifically, if A is a polygon and Pi,j is the ith vertex of T j(A)
(using the indexing method suggested by Figure 1(a)) then

Pi,j , Pi+2,j , Pi,j+1, Pi+1,j+1

are collinear for all i, j ∈ Z (see Figure 1(b)). The cross ratios of such quadruples play the role of y-

variables in the associated cluster algebra. To obtain more systems admitting a cluster description, we

reverse engineer the property of producing collinear points in a specified pattern.

Definition 1.1 Let a, b, c, d ∈ Z
2 be distinct and assume a2 ≤ b2 ≤ c2 ≤ d2. Say that S = {a, b, c, d}

is a Y -pin if b2 < c2 and the vectors b − a, c − a, d − a generate all of Z2. When S is a Y -pin, we will

always assume its elements are called a, b, c, d and that a2 ≤ b2 ≤ c2 ≤ d2.

Definition 1.2 Let S = {a, b, c, d} be a Y -pin and suppose D ≥ 2. A Y -mesh of type S and dimension

D is a grid of points Pi,j and lines Li,j in RP
D with i, j ∈ Z which together span all of RPD and such

that

• Pr+a, Pr+b, Pr+c, Pr+d all lie on Lr and are distinct for all r ∈ Z
2

• Lr−a, Lr−b, Lr−c, Lr−d (all of which contain Pr) are distinct for all r ∈ Z
2.

Note that the points determine the lines (for example, via Lr = 〈Pr+a, Pr+b〉) so we usually consider

only the points.
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Given four points x1, x2, x3, x4 ∈ RP
1 = R ∪ {∞}, their cross ratio is defined to be

[x1, x2, x3, x4] =
(x1 − x2)(x3 − x4)

(x2 − x3)(x4 − x1)
.

The value of the cross ratio is that it is invariant under projective transformations. Given a Y -mesh

P = (Pi,j)i,j∈Z of type S = {a, b, c, d}, let

yr(P ) = −[Pr+a, Pr+c, Pr+b, Pr+d] (1.1)

for all r ∈ Z
2.

Theorem 1.3 Fix a Y -mesh of type S = {a, b, c, d} and let yr = yr(P ). Then

yr+a+byr+c+d =
(1 + yr+a+c)(1 + yr+b+d)

(1 + y−1
r+a+d)(1 + y−1

r+b+c)
(1.2)

for all r ∈ Z
2. Moreover, there exists a quiver QS and a sequence of mutations so that the y-variables

transform according to (1.2).

The second part of Theorem 1.3, namely the construction of the desired quiver, can be seen as an

extension of work of A. Fordy and R. Marsh [3].

Theorem 1.3 ignores the fundamental issue of whether Y -meshes actually exist for given type S and

dimension D. In the case S = {(0, 0), (2, 0), (0, 1), (1, 1)} and D = 2, we have seen that such Y -meshes

can be constructed by iterating the pentagram map. It is not hard to show for the same S that D = 2 is

the only case that is realizable. Our main result is a description of which pairs S and D can be obtained,

with an explicit definition of the corresponding pentagram like map in all realizable cases. First we need

some definitions and notation.

Let UD be the space of infinite polygons A with vertices . . . , A−1, A0, A1, A2, . . . in RP
D, considered

modulo projective equivalence. Let UD,m denote the space of m-tuples (A(1), . . . , A(m)) of polygons,

also modulo projective equivalence. Let πj : UD,m → UD denote the jth projection map. For A ∈ UD,m,

let 〈A〉 denote the span (i.e. affine hull) of the points of A.

Throughout we let A(j) denote the jth row of a grid (Pi,j)i,j∈Z, that is A
(j)
i = Pi,j . We consider bi-

rational maps F of UD,m (or subvarieties thereof) of the form F (A(1), . . . , A(m)) = (A(2), . . . , A(m+1))
and iterate F and F−1 to define A(j) for all j ∈ Z.

Definition 1.4 Let S = {a, b, c, d} be a Y -pin. Let X ⊆ UD,m and assume 〈A〉 = RP
D for generic

A ∈ X . Say F : X → X as above is an S-map if for all r and generic A ∈ X , the points

Pr+a, Pr+b, Pr+c, Pr+d are collinear and distinct. Call m the order of the S-map and D the dimen-

sion.

By way of notation, let D(S) = 2α − 1 where α is the area of the convex hull of S (note D(S) is an

integer by Pick’s formula).

Theorem 1.5 Let S = {a, b, c, d} be a Y -pin.

1. If 2 ≤ D ≤ D(S) then there exists an S-map in dimension D of order m = d2 − a2.

2. If D > D(S) then no Y -mesh of type S exists in dimension D.
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2 Definition of the S-maps

2.1 The S-map in the plane

We begin by introducing the S-map in the plane, which will capture most of the essential components of

the general definition.

Proposition 2.1 Let S be a Y -pin with D(S) > 1 and let P be a Y -mesh of type S. Then

Pr+c+d = 〈Pr+a+c, Pr+b+c〉 ∩ 〈Pr+a+d, Pr+b+d〉. (2.1)

and

Pr+a+b = 〈Pr+a+c, Pr+a+d〉 ∩ 〈Pr+b+c, Pr+b+d〉. (2.2)

for all r ∈ Z
2.

Let m = d2 − a2. We impose relations on U2,m of two types (L1) and (L2) defined as follows:

• (L1) Pr+a, Pr+b, Pr+c are collinear

• (L2) Pr+b, Pr+c, Pr+d are collinear

Note that a relation like Pr+a, Pr+b, Pr+d collinear would never fit within m consecutive rows since

m = d2 − a2. Define X2,S ⊆ U2,m by all relevant (L1) and (L2) relations. Specifically, A =
(A(1), . . . , A(m)) ∈ X2,S if and only if (L1) holds for all r with −a2 < r2 ≤ m − c2 and (L2) holds for

all r with −b2 < r2 ≤ m− d2. Recall here the identification Pi,j = A
(j)
i .

Define A(m+1) ∈ U2 using (2.1) (in the case r2 = m+ 1− c2 − d2) and define A(0) ∈ U2 using (2.2)

(in the case r2 = −a2 − b2). Write

F (A) = (A(2), . . . , A(m+1))

G(A) = (A(0), . . . , A(m−1))

Proposition 2.2 Generically, F (A) ∈ X2,S and G(A) ∈ X2,S . Moreover F,G : X2,S → X2,S are

inverse as rational maps.

We now fix notation T2,S : X2,S → X2,S for the map F constructed above. Starting from A ∈ X2,S ,

we can iterate T2,S and T−1
2,S to fill up the whole Pi,j array, and all (L1) and (L2) relations will hold. It

follows that generically Pr+a, Pr+b, Pr+c, and Pr+d are collinear.

Example 2.3 Let S = {(−1, 1), (1, 2), (0, 3), (0, 4)} and D = 2. Figure 2 illustrates the S-map

T2,S : X2,S → X2,S

A triple of enclosed points indicates that said points are collinear (as are any triple in the same relative

position). In this example, the (L1) relation is Pi−1,1, Pi+1,2, Pi,3 collinear for all i and the (L2) relation

is Pi+1,1, Pi,2, Pi,3 collinear for all i. The space X2,S ⊆ U2,3 consists of triples of infinite polygons

satisfying these relations.

The two line segments indicate the construction of a Pi,4, specifically the one marked by a ∗. The

S-map T2,S is defined by

Pi,4 = 〈Pi−1,1, Pi+1,2〉 ∩ 〈Pi−1,2, Pi+1,3〉.
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Fig. 2: The Y -pin S = {(−1, 1), (1, 2), (0, 3), (0, 4)} (left) and the corresponding S-map (right).

2.2 Higher dimensional S-maps

Now suppose D > 2, but keep m = d2 − a2. The identities (2.1) and (2.2) still follow from the definition

of a Y -mesh. The only new feature is a certain coplanarity condition (P3), which is needed in addition to

(L1) and (L2) from before:

• (P3) Pr+a+c, Pr+a+d, Pr+b+c, Pr+b+d are coplanar.

Define XD,S ⊆ UD,m by A ∈ XD,S if and only if the Pi,j = A
(j)
i satisfy (L1), (L2), and (P3) for all

relevant r. Specifically, (L1) should hold for −a2 < r2 ≤ m − c2, (L2) should hold for −b2 < r2 ≤
m− d2, and (P3) should hold for −a2 − c2 < r2 ≤ m− b2 − d2.

The maps F : XD,S → XD,S and G : XD,S → XD,S are defined using (2.1) and (2.2) as before. By a

(P3) relation, the four points used in the construction are coplanar making it possible to join them in pairs

and intersect the resulting lines.

Proposition 2.4 The maps F and G do in fact map XD,S to XD,S , and they are inverse to each other.

Let TD,S : XD,S → XD,S denote the map F . Apply TD,S forwards and backwards to build the full

Pi,j array. It follows as usual from the (L1) and (L2) relations that

Pr+a, Pr+b, Pr+c, Pr+d

are collinear for all r ∈ Z
2.

We seem to have obtained an S-map in all dimensions D. What is missing is the requirement that the

resulting Y -meshes actually span all of RPD rather than some proper subspace. Theorem 1.5 then boils

down to being able to understand generic elements of XD,S .

Proposition 2.5 If D ≤ D(S) then generic A ∈ XD,S span all of RPD. If D > D(S) then every

A ∈ XD,S actually lies in some D(S) dimensional subspace.
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Fig. 3: The S-map for S = {(−1, 1), (1, 1), (0, 2), (0, 3)}.

3 Connection with other pentagram maps

Example 3.1 Fix p, q relatively prime with 1 ≤ q < p. Let S = {(0, 0), (p, 0), (0, 1), (q, 1)} and D = 2.

Then m = 1 − 0 = 1. The (L1) and (L2) relations do not fit, so arbitrary polygons are allowed, i.e.

X2,S = U2. Letting Ai = Pi,1 and Bi = Pi,2, equation (2.1) (applied at r = (i − q, 0)) implies

T2,S(A) = B where

Bi = 〈Ai−q, Ai+p−q〉 ∩ 〈Ai, Ai+p〉. (3.1)

In words, B is formed by taking distance p diagonals of A, and then intersecting diagonals that are a

distance q apart. The case p = 2, q = 1 corresponds to the pentagram map.

Note the convex hull of S is a trapezoid of area (p+ q)/2 so D(S) = p+ q− 1. If 2 < D ≤ p+ q− 1
then XD,S ⊆ UD is defined by a (P3) relation

XD,S = {A ∈ UD : Ai, Ai+q , Ai+p, Ai+p+q coplanar for all i}.

The map TD,S is defined by (3.1) as before. In the case q = 1, Gekhtman, Shapiro, Tabachnikov, and

Vainshtein [5] extensively studied the corresponding systems (TD,S in our notation, Tp+1 in theirs). They

call these maps higher pentagram maps and the polygons on which they act corrugated polygons.

Example 3.2 Let S = {(−1, 1), (1, 1), (0, 2), (0, 3)} and D = 3. Figure 3 illustrates the corresponding

map. Letting Ai = Pi,1 and Bi = Pi,2, we have (A,B) ∈ X3,S if and only if Ai−1, Bi, Ai+1 collinear

and Ai−1, Ai+1, Bi−1, Bi+1 coplanar for all i. The S-map is T3,S(A,B) = (B,C) where

Ci = 〈Ai−1, Ai+1〉 ∩ 〈Bi−1, Bi+1〉.

Surprisingly, the polygon C can be determined from A alone via

Ci = 〈Ai−2, Ai, Ai+2〉 ∩ 〈Ai−1, Ai+1〉,

that is C = F (A) for F : U3 → U3 the short diagonal hyperplane map of Khesin and Soloviev [6].

The map F in the previous example is not itself an S-map. More precisely, it does not trace out a full

Y -mesh, but rather every second row of a Y -mesh. A large family of S-maps are related in a similar way
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to so-called (I, J)-maps defined by Khesin and Soloviev [7]. Fix D ≥ 2 and let I = (s1, . . . , sD−1),
J = (t1, . . . , tD−1). Given A ∈ UD define the I-hyperplanes of A to be

Hi = 〈Ai, Ai+s1 , Ai+s1+s2 , . . . , Ai+s1+...+sd−1
〉.

Define a new polygon B whose vertices are the J-intersections of the Hi

Bi−i0 = Hi ∩Hi+t1 ∩Hi+t1+t2 ∩ . . . ∩Hi+t1+...+td−1
.

Everything is defined up to some uniform shift i0 of indices. The map TI,J : UD → UD is TI,J(A) = B.

A basic property of these maps is that they are birational. In fact, if I = (s1, . . . , sD−1), J =
(t1, . . . , tD−1) then T−1

I,J = TJ∗,I∗ where I∗ = (sD−1, . . . , s1) and J∗ = (tD−1, . . . , t1). We can

always take the sk and tk to be positive, but it will be convenient to allow negative values as well. There

is no problem with the definition provided the partial sums of I are all distinct and similarly for J .

Say that a Y -pin S is horizontal if a2 = b2. Applying a translation and by choice of a we can assume

a2 = b2 = 0 and 0 = a1 < b1. Let p = c2 and q = d2. In order to have b− a, c− a, d− a span all of Z2,

it must be the case that p, q are relatively prime.

Conjecture 3.3 Suppose S is horizontal as above. Then the map π1 : Xp+q,S → Up+q is surjective. Re-

stricting to twisted configurations, i.e. A satisfying A
(j)
i+n = φ(A

(j)
i ) for some fixed n ≥ 1 and projective

transformation φ, the map π1 is finite-to-one.

Proposition 3.4 Suppose S is horizontal as above. Let (Pi,j)i,j∈Z be a Y -mesh of type S and dimension

p+ q. As usual, let A(j) be the polygon . . . , P0,j , P1,j . . .. Assuming Conjecture 3.3,

A(j+pq) = TI,J(A
(j))

where I = (s, s, . . . , s), J = (s, . . . , s, t, s, . . . , s), s = b1 > 0, t = qc1 − pd1 − (q − 1)b1, and the

unique t of J is in position p. Note for this statement to make sense we must add the assumption that the

partial sums of J are all distinct, which is true for instance whenever t > 0.

In words, the map TI,J traces out every pqth row of a Y -mesh. Hence the S-map Tp+q,S can be thought

of as a pqth root of TI,J , up to the conjecturally finite cover π1. The process can be reversed and any I , J
as above can be realized, assuming s, t are relatively prime and the position of the t is relatively prime to

D. Taking inverses we also get such pairs with I and J reversed.

Table 1 lists some (I, J)-maps in three dimensions along with the corresponding S. The list includes

the short diagonal hyperplane map [6], the dented and deep dented maps [7], and an unnamed map in-

vestigated numerically in [8]. To fit the short diagonal map I = (2, 2), J = (1, 1) in our framework, it

is necessary to rewrite J in the equivalent form J = (−1, 2). For these examples we can verify Conjec-

ture 3.3. In general, we get many but not all of the systems that Khesin and Soloviev have proven to be

integrable. For instance, if D = 4 our setup cannot handle the dented map I = (1, 2, 1), J = (1, 1, 1)
because the dent is in position 2 which is not relatively prime to D.

4 Decreasing the order
We have focused on constructing S-maps of given type S and dimension D, when possible. Rather than

also determine the possible orders m for the maps, we have simply fixed m = d2 − a2, which works. It is

natural to look for the smallest order possible, but this value is not known in general. In this section, we

address the case D = 2 proving that the minimal order is m = max(c2 − a2, d2 − b2).
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Map name I J S
Short diagonal (2, 2) (1, 1) {(0, 0), (2, 0), (1, 1), (1, 2)}
Dented (1, 2) (1, 1) {(0, 0), (1, 0), (2,−1), (1,−2)}
Deep dented (1, t) (1, 1) {(0, 0), (1, 0), (t,−1), (t− 1,−2)}
? (2, 2) (1, 2) {(0, 0), (2, 0), (2, 1), (1, 2)}

Tab. 1: The Y -pin S associated with several (I, J)-maps.

Example 4.1 Recall Example 2.3 in which S = {(−1, 1), (1, 2), (0, 3), (0, 4)} and D = 2. Let Ai =
Pi,1, Bi = Pi,2, and Ci = Pi,3 for all i ∈ Z. Note for (A,B,C) ∈ X2,S , the twisted polygons A and B
can be arbitrary, and for a generic choice of such, C is uniquely determined. Indeed, we must have

Ci = 〈Ai−1, Bi+1〉 ∩ 〈Ai+1, Bi〉 (4.1)

Hence T2,S has a smaller order analogue F : U2,2 → U2,2 given by F (A,B) = (B,C) for C as in (4.1).

The general construction depends on which of c2 − a2 and d2 − b2 is larger. We present the case

d2 − b2 ≥ c2 − a2. For the remainder of the section, let m′ = d2 − b2. Define a new space X ′ ⊆ U2,m′

by (L1) relations alone, that is A ∈ X ′ if and only if (L1) holds for all r with −a2 < r2 ≤ m′ − c2.

Now for A ∈ X ′ define F (A) = (A(2), . . . , A(m′+1)) where A(m′+1) is defined by

Pr+c+d = 〈Pr+2c, Pr+b+c〉 ∩ 〈Pr+a+d, Pr+b+d〉

for r ∈ Z
2 with r2 = m′ + 1− c2 − d2. Define G(A) = (A(0), . . . , A(m′−1)) where A(0) is defined by

Pr+a+b = 〈Pr+a+c, Pr+a+d〉 ∩ 〈Pr+b+c, Pr+2b〉. (4.2)

Proposition 4.2 For generic A ∈ X ′, F (A) and G(A) are also in X ′, and F,G : X ′ → X ′ are inverse

as rational maps. Moreover, F is an S-map of order m′. Lastly, no S-map of smaller order exists for

D = 2.

Let mD(S) denote the minimal possible order of an S-map in dimension D. We have shown m2(S) =
max(c2 − a2, d2 − b2). In general, it seems m2(S) ≥ m3(S) ≥ . . . ≥ mD(S)(S). We conclude this

section with an example where m3(S) is strictly less than m2(S).

Example 4.3 Let S = {(0, 1), (0, 2), (−1, 3), (1, 5)}. By the results of this section, there is an order

max(3 − 1, 5 − 2) = 3 map F : X → X when D = 2. The map is pictured in Figure 4. The space

X ⊆ U2,3 is defined by the relations

Pi,1, Pi,2, Pi−1,3

collinear, and F is defined by

Pi,4 = 〈Pi−1,1, Pi−2,2〉 ∩ 〈Pi+1,2, Pi+1,3〉.

We claim when D = 3 the order can be reduced to 2. Define X ′ ⊆ U3,2 by requiring that the three

subspaces (one line and two planes)

〈Pi+1,1, Pi+1,2〉, 〈Pi−1,1, Pi−2,2, Pi−2,1〉, 〈Pi,2, Pi−2,1, Pi−3,2〉
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Fig. 4: The S-map for S = {(0, 1), (0, 2), (−1, 3), (1, 5)}.

pass through a common point, for all i. Let Pi,3 be this common point, and define G : X ′ → X ′

accordingly. That the defining relation of X ′ is preserved by G is on the surface a miracle, as is the fact

that the system produces a Y -mesh. However, these results can be proven without much work at this point

by connecting G to the previously defined S-map.

5 The cluster description of S-maps

This section addresses the proof of Theorem 1.3. First, the identity (1.2) can be rewritten in the form “a

product of six cross ratios equals one”. Extracting a minimal set of points and lines needed reduces the

identity to the following.

Lemma 5.1 Let P1, P2, P3, P4 be points and L1, L2, L3, L4 lines, all in general position in RP
2. For

1 ≤ i < k ≤ 4, let

yi,k = [Pi, 〈Pi, Pk〉 ∩ Lj , Pk, 〈Pi, Pk〉 ∩ Ll]

where {j, l} = {1, 2, 3, 4} \ {i, k} are chosen so that i, j, k, l is an even permutation. Then

∏

1≤i<k≤4

yi,j = 1

We now turn to the construction of the quiver, which requires reviewing definitions pertaining to cluster

algebras. Cluster algebras, introduced by S. Fomin and A. Zelevinsky [1] are commutative rings endowed

with certain combinatorial structure. We will restrict ourselves to the case when this extra structure can

be encoded by a quiver. A quiver Q is a directed graph without loops or oriented two-cycles.

Let v be a vertex in a quiverQ. The quiver mutation µv transformsQ into the new quiver µv(Q) defined

as follows:

• For each pair of directed edges u −→ v and v −→ w, add a new edge u −→ w.

• Reverse directions of all edges incident to v.



178 Max Glick and Pavlo Pylyavskyy

1 2 3

4 5 6

1 2 3

4 5 6
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(x1, x2, x3, x4, x5, x6) (x1,
x1x3+x5

x2

, x3, x4, x5, x6)

(y1, y2, y3, y4, y5, y6)
(

y1(1 + y2),
1
y2

, y3(1 + y2), y4,
y5

1+y
−1

2

, y6

)

Fig. 5: An example of a quiver mutation, along with the corresponding birational maps of the x and y variables.

• Remove all oriented two-cycles.

A seed is a pair (Q,x) where x = (xv)v∈V is indexed by the vertex set V of Q. Given a vertex v,

the seed mutation µv transforms (Q,x) into the seed (Q′,x′) = µv(Q,x) where Q′ = µv(Q) as defined

above, x′
u = xu whenever u 6= v, and

xvx
′
v =

∏

v−→w

xw +
∏

w−→v

xw (5.1)

There is an auxiliary notion of Y -seeds (Q,y) with y = (yv)v∈V and an associated mutation rule [2].

Specifically, given a vertex v, µv transforms (Q,y) to the Y -seed (Q′,y′) = µv(Q,y) where Q′ = µv(Q)
and

y′u =











(yv)
−1 u = v

yu

(

∏

u−→v

(1 + yv)

)(

∏

v−→u

(1 + y−1
v )

)−1

, otherwise
(5.2)

Figure 5 gives an example of seed and Y -seed mutations.

Definition 5.2 (Fordy and Marsh [3]) Say a quiver Q on vertex set V = {1, 2, . . . ,m} has period one

if µ1(Q) = ρ(Q) where ρ denotes the procedure of relabeling the vertices according to ρ(j) = j + 1 for

1 ≤ j < m and ρ(m) = 1.

Begin with an initial seed (x, Q) with x = (xj)j=1,...,m and Q period one. Perform mutations in the

following order: µ1, µ2, . . . , µm, µ1, µ2, . . .. Call the single new variable produced by the kth mutation

in this sequence xm+k. Then the periodicity of the quiver ensures

xj+mxj =
∏

1→k+1

xj+k +
∏

k+1→1

xj+k

for all j ∈ Z where the products are over arrows in the original quiver Q.

Now suppose we consider a Y -seed with a period one quiver Q and the same mutation sequence. There

are more distinct y-variables because each one is potentially changed by each mutation. However, it is

sufficient to keep track only of those variables that live at vertices that are about to be mutated. Call yj
the variable at the vertex mutated at step j for j ∈ Z.
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Proposition 5.3

yj+myj =

∏

(k+1)→1(1 + yj+m−k)
∏

1→(k+1)(1 + y−1
j+m−k)

We now generalize the notion of period one quivers in order to model certain two dimensional recur-

rences. For this purpose, it is convenient to allow infinite quivers. We will require them however to be

locally finite, meaning that each vertex is connected to only finitely many other vertices. Under this as-

sumption, mutations can be defined as before. In fact, if U is an infinite set of vertices no two of which

are connected by an arrow, then we can define a simultaneous mutation µU at the vertices of U thanks to

the following property.

Proposition 5.4 Assume vertices u and v in Q are not connected by an edge. Then the seed mutations

(or Y -seed mutations) µu and µv commute.

Now fix vertex set V = Z × {1, . . . , l}. Let Q be a quiver on this set and let µ∗,j denote mutation at

the set {(i, j) : i ∈ Z} when defined. Say that Q is period one if

• Q is invariant under the translation (i, j) 7→ (i+ 1, j) of its vertices,

• no two vertices {(i, 1)} are connected by an arrow, and

• µ1(Q) = ρ(Q) where ρ denotes the permutation of the vertices

ρ(i, j) =

{

(i, j + 1), 1 ≤ j < l

(i + i0, 1), j = l

for some fixed shift i0 ∈ Z.

Similarly to the one dimensional case, it is natural to consider the mutation sequenceµ∗,1, . . . , µ∗,l, µ∗,1, . . ..
Given an initial seed (Q,x) we can define xi+i0,j+l to be the variable that xi,j transforms to during the

jth mutation in this sequence. We can define yi,j for i, j ∈ Z to be the y-variables at vertices about to be

mutated in a similar way.

Proposition 5.5

yu+(i0,l)yu =

∏

(0,1)+v→(0,1)(1 + yu+(i0,l)−v)
∏

(0,1)→(0,1)+v(1 + y−1
u+(i0,l)−v

)
(5.3)

In order to match (1.2) and (5.3), we need a period one quiver with prescribed arrows in and out of (0, 1).
The following Proposition guarantees the existence of such a quiver, under certain conditions on these

arrows which is satisfied in our case. The quiver corresponding to S = {(−1, 1), (1, 1), (0, 2), (0, 3)}
(see Example 3.2) is pictured in Figure 6.

Proposition 5.6 Let mv be a collection of integers indexed by v ∈ Z
2 with 1 ≤ v2 ≤ l − 1 such that all

but finitely many mv are zero and mv = m(i0,l)−v for all v. Then there exists a period one quiver Q such

that for all v, there are |mv| arrows from (0, 1) to (0, 1) + v (resp. from (0, 1) + v to (0, 1)) if mv ≥ 0
(resp. mv ≤ 0).
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b b b b b b

Fig. 6: The quiver QS for S = {(−1, 1), (1, 1), (0, 2), (0, 3)}.
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