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The polytope of Tesler matrices
(extended abstract)
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Abstract. We introduce the Tesler polytope Tesn(a), whose integer points are the Tesler matrices of size n with hook
sums a1, a2, . . . , an ∈ Z≥0. We show that Tesn(a) is a flow polytope and therefore the number of Tesler matrices is
given by the type An Kostant partition function evaluated at (a1, a2, . . . , an,−

∑n
i=1 ai). We describe the faces of

this polytope in terms of “Tesler tableaux” and characterize when the polytope is simple. We prove that the h-vector
of Tesn(a) when all ai > 0 is given by the Mahonian numbers and calculate the volume of Tesn(1, 1, . . . , 1) to be a
product of consecutive Catalan numbers multiplied by the number of standard Young tableaux of staircase shape.

Résumé. On présente le polytope de Tesler Tesn(a), dont les points réticuilaires sont les matrices de Tesler de taille
n avec des sommes des équerres a1, a2, . . . , an ∈ Z≥0. On montre que Tesn(a) est un polytope de flux. Donc le
nombre de matrices de Tesler est donné par la fonction de Kostant de type An évaluée à (a1, a2, . . . , an,−

∑n
i=1 ai).

On décrit les faces de ce polytope en termes de “tableaux de Tesler” et on caractérise quand le polytope est simple.
On montre que l’h-vecteur de Tesn( a), quand tous les ai > 0, est donnée par le nombre de permutations avec un
nombre donné d’inversions et on calcule le volume de Tesn(1, 1, . . . , 1) comme un produit de nombres de Catalan
consécutives multiplié par le nombre de tableaux standard de Young en forme d’escalier.

Keywords: Tesler matrices, flow polytopes, Kostant partition function

1 Introduction
Tesler matrices have played a major role in the works [1][8][9] in the context of diagonal harmonics. We
examine them from a different perspective in this paper: we study the polytope, which we call the Tesler
polytope, consisting of upper triangular matrices with nonnegative real entries with the same restriction
as Tesler matrices.

Let Un(R≥0) be the set of n× n upper triangular matrices with nonnegative real entries. The k
th

hook
sum of a matrix (xi,j) in Un(R≥0) is the sum of all the elements of the kth row minus the sum of the
elements in the kth column excluding the term in the diagonal: xk,k +

∑n
j=k+1 xk,j −

∑k−1
i=1 xi,k. Given
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Fig. 1: The seven 3 × 3 Tesler matrices with hook sums (1, 1, 1). Six of them are vertices of the graph (depicted in
gray) of the Tesler polytope Tesn(1, 1, 1).

a length n vector a = (a1, a2, . . . , an) ∈ (Z≥0)n of nonnegative integers, the Tesler polytope Tesn(a)
with hook sums a is the set of matrices in Un(R≥0) where the kth hook sum equals ak, for k = 1, . . . , n:

Tesn(a) = {(xi,j) ∈ Un(R≥0) | xk,k +

n∑

j=k+1

xk,j −
k−1∑

i=1

xi,k = ak, 1 ≤ k ≤ n}.

The lattice points of Tesn(a) are called Tesler matrices with hook sums a. These are n × n up-
per triangular matrices B = (bi,j) with nonnegative integer entries such that for k = 1, . . . , n, bk,k +∑n

j=k+1 bk,j −
∑k−1

i=1 bi,k = ak. The set and number of such matrices are denoted by Tn(a) and Tn(a)
respectively. See Figure 1 for an example of the seven Tesler matrices in T3(1, 1, 1) and [14, A008608]
for the sequence {Tn(1, 1, . . . , 1)} added by Glenn Tesler in the late 1990s.

Tesler matrices reappeared recently in Haglund’s study of diagonal harmonics [9] and their combi-
natorics and further properties were explored in [1][8][12]. The flavor of the results obtained for Tesler
matrices in connection with diagonal harmonics is illustrated by the following example. For the definitions
regarding the polynomial in N[q, t] in the left hand side of (1.1) we refer the reader to [9].

Example 1.1 When a = 1 := (1, 1, . . . , 1) ∈ Zn, Haglund [9] showed that

∂np1
∇en =

(−1)n

(1− t)n(1− q)n
∑

A∈Tn(1,1,...,1)

∏

i,j

wt(aij), (1.1)

where wt(b) = −(1− t)(1− q) qb−tb
q−t if b > 0 and wt(0) = 1.

The starting point for our investigation is the observation stated in the next lemma.

Lemma 1.2 The Tesler polytope Tesn(a) is a flow polytope Flown(a),

Tesn(a) ∼= Flown(a). (1.2)

We now define flow polytopes to make Lemma 1.2 clear. For an illustration of the correspondence of
polytopes in Lemma 1.2 see Figure 2.

Given a = (a1, a2, . . . , an), let Flown(a) be the flow polytope of the complete graph kn+1 with
netflow ai on vertex i for i = 1, . . . , n and the netflow on vertex n+ 1 is −∑n

i=1 ai. This polytope is the
set of functions f : E → R≥0, called flows, from the edge set E = {(i, j) | 1 ≤ i < j ≤ n+ 1} of kn+1

http://oeis.org/A008608
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(1, 1, 1,−3) = 1(e1 − e2) + 1(e1 − e4) +
1(e2 − e3) + 1(e2 − e4) + 2(e3 − e4)

Fig. 2: Correspondence between a 3×3 Tesler matrix with hook sums (1, 1, 1), an integer flow in the complete graph
k4 and a vector partition of (1, 1, 1,−3) into ei − ej 1 ≤ i < j ≤ 4.

to the set of nonnegative real numbers such that for k = 1, . . . , n,
∑

j>s f(k, j) −∑i<k f(i, k) = ak.
This forces

∑n
i=1 f(i, n+ 1) =

∑n
i=1 ai.

The typeAn Kostant partition functionKAn
(a′) is the number of ways of writing a′ := (a,−∑n

i=1 ai)
as an N-combination of the type An positive roots ei − ej , 1 ≤ i < j ≤ n + 1 without regard to order.
Kostant partition functions are useful in representation theory to calculate tensor product and weight mul-
tiplicities. The value KAn

(a′) is also the number of lattice points of the polytope Flown(a). Thus the
following lemma is immediate from Lemma 1.2.

Lemma 1.3 The number Tn(a) of Tesler matrices with hook sums (a1, a2, . . . , an) is given by the value
KAn(a′) of the Kostant partition function at (a1, . . . , an,−

∑n
i=1 ai),

Tn(a) = KAn(a′). (1.3)

In the next example we include a brief discussion of another flow polytope of the complete graph,
namely, Flown(1, 0, . . . , 0).

Example 1.4 The polytope Flown(1, 0, . . . , 0) is known as the Chan-Robbins-Yuen polytope [6, 7]. It
has dimension

(
n
2

)
and 2n−1 vertices. Stanley-Postnikov (unpublished), and Baldoni-Vergne [3, 4] proved

that the normalized volume of this polytope is given by a value of the Kostant partition function (see
(3.2)). Then Zeilberger [16] used a variant of the Morris constant term identity [13] to compute this
Kostant partiton function as the product of the first n− 2 Catalan numbers.

volFlown(1, 0, . . . , 0) = KAn−1
(0, 1, 2, . . . , n− 2,−

(
n−1
2

)
) =

n−2∏

i=0

1

i+ 1

(
2i

i

)
. (1.4)

The study of Tesn(a): Examples 1.1 and 1.4 served as our inspiration for studying the Tesler polytope
Tesn(a) ∼= Flown(a). In Section 2 we prove that for any vector a ∈ (Z≥0)n of nonnegative integers, the
polytope Tesn(a) has dimension

(
n
2

)
and at most n! vertices, all of which are integral. When a ∈ (Z>0)n

consists entirely of positive entries, we prove that Tesn(a) has exactly n! vertices. In this case, these
vertices are the permutation Tesler matrices of order n, which are the n×n Tesler matrices with at most
one nonzero entry in each row.

Recall that if P is a d-dimensional polytope, the f -vector f(P ) = (f0, f1, . . . , fd) of P is given by
letting fi equal the number of faces of P of dimension i. The f -polynomial of P is the corresponding
generating function

∑d
i=0 fix

i. A polytope P is simple if each of its vertices is incident to dim(P )

edges. If P is a simple polytope, the h-polynomial of P is the polynomial
∑d

i=0 hix
i which is related
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to the f -polynomial of P by the equation
∑d

i=0 fi(x − 1)i =
∑d

i=0 hix
i. The coefficient sequence

(h0, h1, . . . , hd) of the h-polynomial of P is called the h-vector of P .
In Section 2 we characterize the vectors a ∈ (Z≥0)n for which the Tesler polytope Tesn(a) is simple

(Theorem 2.7). In particular, we show that Tesn(a) is simple whenever a ∈ (Z>0)n. In this case, the

sum of its h-vector entries is given by
∑(n

2)
i=0 hi = f0. Since Tesn(a) for a ∈ (Z>0)n has n! vertices,

this implies that
∑(n

2)
i=0 hi = n!. One might expect that the h-polynomial

∑(n
2)

i=0 hix
i of Tesn(a) is the

generating function of some interesting statistic on permutations. Indeed, we show in Section 2 that the
h-polynomial of the Tesler polytope is the generating function for Coxeter length.

Theorem 1.5 (Theorem 2.7, Corollary 2.9) Let a ∈ (Z>0)n be a vector of positive integers. The polytope
Tesn(a) is a simple polytope and its h-vector is given by the Mahonian numbers, that is, hi is the number
of permutations of {1, 2, . . . , n} with i inversions. We have

(n
2)∑

i=0

fi(x− 1)i =

(n
2)∑

i=0

hix
i = [n]!x,

where [n]!x =
∏n

i=1(1 + x+ x2 + · · ·+ xi−1) and the fi are the f -vector entries of Tesn(1).

Just as the Chan-Robbins-Yuen polytope Tesn(1, 0, . . . , 0) ∼= Flown(1, 0, . . . , 0) has a product for-
mula for its normalized volume involving Catalan numbers, so does the Tesler polytope Tesn(1) :=
Tesn(1, 1, . . . , 1).

Theorem 1.6 (Corollary 3.5) The normalized volume of the Tesler polytope Tesn(1), or equivalently of
the flow polytope Flown(1, 1, . . . , 1) equals

volTesn(1) = volFlown(1, 1, . . . , 1) =

(
n
2

)
! · 2(n

2)
∏n

i=1 i!

= |SY T(n−1,n−2,...,1)| ·
n−1∏

i=0

Cat(i), (1.5)

where Cat(i) = 1
i+1

(
2i
i

)
is the ith Catalan number and |SY T(n−1,n−2,...,1)| is the number of Standard

Young Tableaux of staircase shape (n− 1, n− 2, . . . , 1).

The proof of this result is sketched in Section 3. The proof uses the following new iterated constant
term identity similar to the Morris constant term identity [13].

Lemma 3.4 1 For n ≥ 2 and nonnegative integers a, c we have that

CTxn
· · ·CTx1

(x1 + x2 + · · ·+ xn)(a−1)n+c(n
2)

n∏

i=1

x−a+1
i

∏

1≤i<j≤n

(xi − xj)−c =

= Γ
(
1 + (a− 1)n+ c

(
n
2

)) n−1∏

i=0

Γ(1 + c/2)

Γ(1 + (i+ 1)c/2)Γ(a+ ic/2)
,

where CTy f(y) means the constant term in y of f(y) and Γ(·) is the Gamma function. In particular, the
value at a = c = 1 yields (1.5).
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For details on the proofs please see the complete version [11] of this paper.

2 The face structure of Tesn(a)
Let a ∈ (R≥0)n. The aim of this section is to describe the face poset of Tesn(a). It will turn out that
the combinatorial isomorphism type of Tesn(a) only depends on the positions of the zeros in the integer
vector a.

Let rstcn denote the reverse staircase of size n; the Ferrers diagram of rstc4 is shown below.

We use the “matrix coordinates” {(i, j) | 1 ≤ i ≤ j ≤ n} to describe the cells of rstcn. An a-Tesler
tableau T is a 0, 1-filling of rstcn which satisfies the following three conditions:

1. for 1 ≤ i ≤ n, if ai > 0, there is at least one 1 in row i of T ,

2. for 1 ≤ i < j ≤ n, if T (i, j) = 1, then there is at least one 1 in row j of T , and

3. for 1 ≤ j ≤ n, if aj = 0 and T (i, j) = 0 for all 1 ≤ i < j, then T (j, k) = 0 for all j ≤ k ≤ n.

For example, if n = 4 and a = (7, 0, 3, 0), then three a-Tesler tableaux are shown below. We write the
entries of a in a column to the left of a given a-Tesler tableau.

7 0 1 1 1
0 0 0 1
3 1 1
0 1

7 1 0 1 0
0 0 0 0
3 0 1
0 1

7 1 1 1 0
0 1 1 0
3 1 0
0 0

The dimension dim(T ) of an a-Tesler tableau T is
∑n

i=1(ri − 1), where

ri =

{
the number of 1’s in row i of T if row i of T is nonzero,
1 if row i of T is zero.

From left to right, the dimensions of the tableaux shown above are 3, 1, and 3.
Given two a-Tesler tableaux T1 and T2, we write T1 ≤ T2 to mean that for all 1 ≤ i ≤ j ≤ n we

have T1(i, j) ≤ T2(i, j). Moreover, we define a 0, 1-filling max(T1, T2) of rstcn by max(T1, T2)(i, j) =
max(T1(i, j), T2(i, j)).

We start with two lemmas on a-Tesler tableaux. Our first lemma states that any two zero-dimensional
a-Tesler tableaux are componentwise incomparable.

Lemma 2.1 Let a ∈ (R≥0)n and let T1 and T2 be two a-Tesler tableaux with dim(T1) = dim(T2) = 0.
If T1 ≤ T2, then T1 = T2.

Our next lemma states that the operation of componentwise maximum preserves the property of being
an a-Tesler tableau.
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Lemma 2.2 Let a ∈ (R≥0)n and let T1 and T2 be two a-Tesler tableaux. Then T := max(T1, T2) is also
an a-Tesler tableau.

The analogue of Lemma 2.2 for min(T1, T2) is false; the componentwise minimum of two a-Tesler
tableaux is not in general an a-Tesler tableau. Faces of the Tesler polytope Tesn(a) and a-Tesler tableaux
are related by taking supports.

Lemma 2.3 Let a ∈ (R≥0)n and let F be a face of the Tesler polytope Tesn(a). Define a function
T : rstcn → {0, 1} by T (i, j) = 0 if the coordinate equality xi,j = 0 is satisfied on the face F and
T (i, j) = 1 otherwise. Then T is an a-Tesler tableau.

Lemma 2.3 shows that every face F of Tesn(a) gives rise to an a-Tesler tableaux T . We denote by
φ : F 7→ T the corresponding map from faces of Tesn(a) to a-Tesler tableaux; we will see that φ
is a bijection. We begin by showing that φ bijects vertices of Tesn(a) with zero-dimensional a-Tesler
tableaux.

Lemma 2.4 Let a ∈ (R≥0)n. The map φ bijects the vertices of Tesn(a) with zero-dimensional a-Tesler
tableaux.

We are ready to characterize the face poset of Tesn(a).

Theorem 2.5 Let a ∈ (R≥0)n. The support map φ : F 7→ T gives an isomorphism from the face
poset of Tesn(a) to the set of a-Tesler tableaux, partially ordered by ≤. For any face F , we have that
dim(F ) = dim(φ(F )).

Given any vector a ∈ (R≥0)n, we let ε(a) ∈ {0,+}n be the associated signature; for example,
ε(7, 0, 3, 0) = (+, 0,+, 0). Theorem 2.5 implies that the combinatorial isomorphism type of Tesn(a)
depends only on the signature ε(a).

As a first application of Theorem 2.5, we determine the dimension of Tesn(a) and give an upper bound
on the number of its vertices. When a ∈ Zn

>0 the result about the dimensionality also follows from [3].
Observe that if a1 = 0, the first rows of the matrices in Tesn(a) vanish and we have the identification
Tesn(a) = Tesn−1(a2, a3, . . . , an). We may therefore restrict to the case where a1 > 0.

Corollary 2.6 Let a = (a1, . . . , an) ∈ (R≥0)n and assume a1 > 0. The polytope Tesn(a) has dimen-
sion

(
n
2

)
and at most n! vertices. Moreover, the polytope Tesn(a) has exactly n! vertices if and only if

a2, a3, . . . , an−1 > 0.

Theorem 2.5 can also be used to characterize when Tesn(a) is a simple polytope.

Theorem 2.7 Let a = (a1, . . . , an) ∈ (R≥0)n and let ε(a) = (ε1, . . . , εn) ∈ {0,+}n be the associated
signature. Assume that ε1 = +. The polytope Tesn(a) is a simple polytope if and only if n ≤ 3 or ε(a) is
one of +n,+n−10,+0+n−2 or +0 +n−3 0.

We now focus on the case of greatest representation theoretic interest in the context of diagonal har-
monics: where ε(a) = +n, so that every entry of a is a positive integer. The combinatorial isomorphism
type of Tesn(a) is immediate from Theorem 2.5. We denote by ∆d the d-dimensional simplex in Rd+1

defined by ∆d := {(x1, . . . , xd+1) ∈ Rd+1 | x1 + · · ·+ xd+1 = 1, x1 ≥ 0, . . . , xd+1 ≥ 0}.
Corollary 2.8 Let a ∈ (R>0)n be a vector of positive integers. The face poset of the Tesler polytope
Tesn(a) is isomorphic to the face poset of the Cartesian product of simplices ∆1 ×∆2 × · · · ×∆n−1.
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Corollary 2.9 Let a ∈ (R>0)n be a vector of positive integers. The h-polynomial of the Tesler polytope
Tesn(a) is the Mahonian distribution

(n
2)∑

i=0

hix
i = [n]!x = (1 + x)(1 + x+ x2) · · · (1 + x+ x2 + · · ·+ xn−1).

Corollaries 2.8 and 2.9 are also true for Tesler polytopes Tesn(a), where ε(a) = +n−10. In light
of Theorem 2.7, it is natural to ask for an analog to these results when ε(a) is of the form +0+n−2 or
+0 +n−3 0. Such an analog is provided by the following corollary.

Corollary 2.10 Let a ∈ (R≥0)n and assume that ε(a) has one of the forms +0+n−2 or +0 +n−3 0. Let
P be the quotient polytope (∆n−2 ×∆n−1)/ ∼, where we declare (p, q) ∼ (p′, q) whenever q ∈ ∆n−1
belongs to the facet of ∆n−1 defined by x2 = 0 and p, p′ ∈ ∆n−2.

The face poset of the polytope Tesn(a) is isomorphic to the face poset of the Cartesian product ∆1 ×
∆2 × · · ·∆n−3 × P . Moreover, we have that Tesn(a) has 2(n − 1)! vertices and h-polynomial (1 +
xn−1)[n− 1]!x.

Remark 2.11 When a ∈ (R>0)n is a vector of positive integers, Theorem 2.5 can be deduced from results
of Hille [10]. In particular, if Q denotes the quiver on the vertex set Q0 = [n + 1] with arrows i → j
for all 1 ≤ i < j ≤ n + 1 and if θ : Q0 → R denotes the weight function defined by θ(i) = ai for
1 ≤ i ≤ n and θ(n + 1) = −a1 − · · · − an, then the Tesler polytope Tesn(a) is precisely the polytope
∆(θ) considered in [10, Theorem 2.2]. By the argument in the last paragraph of [10, Theorem 2.2] and
[10, Proposition 2.3], the genericity condition on θ in the hypotheses of [10, Theorem 2.2] is equivalent to
every entry of a being positive. The conclusion of [10, Theorem 2.2] is essentially the same as the special
case of Theorem 2.5 when a ∈ (R>0)n. When some entries of a are zero, in the terminology of [10] the
weight function θ lies on a wall, and the results of [10] do not apply to Tesn(a).

Remark 2.12 When a ∈ (R>0)n is a vector of positive integers, the simplicity of Tesn(a) guaranteed by
Theorem 2.7 had been observed previously in the context of flow polytopes. The condition that every entry
in a is positive is equivalent to a lying in the “nice chamber” defined by Baldoni and Vergne in [3, p.
458]. In [5, p. 798], Brion and Vergne observe that this condition on a implies the simplicity of Tesn(a).
The simplicity of Tesn(a) in this case can also be derived from Hille’s characterization of the face poset
[10] using exactly the same argument as in the proof of Theorem 2.7.

3 Volume of the Tesler polytope Tesn(1)
The aim of this section is to sketch the proof of Theorem 1.6 through a sequence of results. For ease of
reading the section is broken down into several subsections. We start by previous results on volumes and
Ehrhart polynomials of flow polytopes and then prove specific lemmas regarding Tesn(1).

In this section we work in the field of iterated formal Laurent series with m variables as discussed by
Haglund, Garsia and Xin in [8, §4]. We choose a total order of the variables: x1, x2, . . . , xm to extract
iteratively coefficients, constant coefficients, and residues of an element f(x) in this field. We denote
these respectively by

CTxm · · ·CTx1 f, [xa] := [xam
m · · ·xa1

1 ]f, Resxm · · ·Resx1 f.

For more on these iterative coefficient extractions see [15, §2].
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3.1 Generating function of KAn(a
′) and the Lidskii formulas

Recall that by Lemmas 1.2 and 1.3 we have that the normalized volume volTesn(a) equals the normalized
volume volFlown(a) and that the number Tn(a) of Tesler matrices is given by the Kostant partition
function KAn

(a′). By definition, the latter is given by the following iterated coefficient extraction.

KAn
(a′) = [xa′ ]

∏

1≤i<j≤n+1

(1− xix−1j )−1. (3.1)

Assume that a = (a1, a2, . . . , an) satisfies ai ≥ 0 for i = 1, . . . , n. Then the Lidskii formulas [3,
Proposition 34, Theorem 37] state that

volFlown(a) =
∑

i

( (
n
2

)

i1, i2, . . . , in

)
ai11 · · · ainn ·KAn−1

(i1 − n+ 1, i2 − n+ 2, . . . , in), (3.2)

and

KAn
(a′) =

∑

i

(
a1 + n− 1

i1

)(
a2 + n− 2

i2

)
· · ·
(
an
in

)
·KAn−1(i1 − n+ 1, i2 − n+ 2, . . . , in), (3.3)

where both sums are over weak compositions i = (i1, i2, . . . , in) of
(
n
2

)
with n parts which we denote as

i |=
(
n
2

)
, `(i) = n.

Example 3.1 The Tesler polytope Tes3(1, 1, 1) ∼= Flow3(1, 1, 1) has normalized volume 4 since by (3.2)

volFlow3(1, 1, 1) =

(
3

3, 0, 0

)
KA2

(1,−1, 0) +

(
3

2, 1, 0

)
KA2

(0, 0, 0) + 0 = 1 · 1 + 3 · 1 = 4.

And this polytope has T3(1, 1, 1) = KA3
(1, 1, 1,−3) = 7 lattice points (the seven 3 × 3 Tesler matrices

with hook sums (1, 1, 1); see Figure 1). Indeed by (3.3)

KA3(1, 1, 1,−3) =

(
1 + 2

3

)(
1 + 1

0

)
KA2(1,−1, 0) +

(
1 + 2

2

)(
1 + 1

1

)
KA2(0, 0, 0) = 7.

Example 3.2 [3] If one uses (3.2) on the Chan-Robbins-Yuen polytope Tesn(e1) one obtains

volTesn(1, 0, . . . , 0) = KAn−1
(−
(
n−1
2

)
,−n+ 2, . . . ,−1, 0),

since the only composition i that does not vanish is i1 =
(
n
2

)
, i2 = 0, . . . , in = 0. This is equivalent to

the first identity in Example 1.4.

Next, we use (3.2) and the generating series (3.1) of Kostant partition functions to write the volume of
Tesn(1) as an iterated constant term of a formal Laurent series.

Lemma 3.3

volTesn(1) = CTxn · · ·CTx1 (x1 + · · ·+ xn)(
n
2)

∏

1≤i<j≤n

(xj − xi)−1, (3.4)

where CTxn
· · ·CTx1

f denotes the iterated constant term of f .
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3.2 A Morris-type constant term identity
Let ek = ek(x1, x2, . . . , xn) denote the kth elementary symmetric polynomial. In particular e1 = x1 +
x2 + · · · + xn. For n ≥ 2 and nonnegative integers a, c we define Ln(a, c) to be the following iterated
constant term:

Ln(a, c) := CTxn
· · ·CTx1

e
(a−1)n+c(n

2)
1

n∏

i=1

x−a+1
i

∏

1≤i<j≤n

(xi − xj)−c. (3.5)

Note that by Lemma 3.3 we have that

volTesn(1) = Ln(1, 1). (3.6)

Next we give a product formula for Ln(a, c) that for a = c = 1 yields (1.5). We postpone the proof to
the next section.

Lemma 3.4 For n ≥ 2 and nonnegative integers a, c we have that

Ln(a, c) := CTxn
· · ·CTx1

e
(a−1)n+c(n

2)
1

n∏

i=1

x−a+1
i

∏

1≤i<j≤n

(xi − xj)−c

equals

Ln(a, c) = Γ
(
1 + (a− 1)n+ c

(
n
2

)) n−1∏

i=0

Γ(1 + c/2)

Γ(1 + (i+ 1)c/2)Γ(a+ ic/2)
, (3.7)

where Γ(·) is the Gamma function.

Corollary 3.5

Ln(1, c) = Γ(1 + c
(
n
2

)
)

n−1∏

i=0

Γ(1 + c/2)

Γ(1 + c(i+ 1)/2)Γ(1 + ic/2)
= (c

(
n
2

)
)!

2c(
n
2)+n−cn(2c− 1)!!n∏n−1

i=0 (ci+ 1)!
.

and in particular

Ln(1, 1) =

(
n
2

)
! · 2(n

2)
∏n

i=1 i!
= |SY T(n−1,n−2,...,1)| ·

n−1∏

i=1

Cat(i).

where |SY T(n−1,n−2,...,1)| denotes the number of Standard Young Tableaux of staircase shape (n−1, n−
2, . . . , 1).

The following remarks give an alternate constant term description for Ln(a, c) which resembles a
known constant term identity.

Remark 3.6 Consider the constant term of (1− e1)−1
∏n

i=1 x
−a+1
i

∏
1≤i<j≤n(xi − xj)−c. Since (1−

e1)−1 =
∑

k≥0 e
k
1 then by linearity of CTxn

· · ·CTx1
and degree considerations it follows that

Ln(a, c) = CTxn · · ·CTx1 (1− e1)−1
n∏

i=1

x−a+1
i

∏

1≤i<j≤n

(xi − xj)−c. (3.8)
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Remark 3.7 A similar iterated constant term identity to (3.7) is Zeilberger’s version of the Morris con-
stant term identity [16] used to prove (1.4): for n ≥ 2 and nonnegative integers a, b, c let

Mn(a, b, c) := CTxn · · ·CTx1

n∏

i=1

x−a+1
i (1− xi)−b

∏

1≤i<j≤n

(xi − xj)−c (3.9)

then Mn(a, b, c) =

n−1∏

j=0

Γ(1 + c/2)Γ(a+ b− 1 + (n+ j − 1)c/2)

Γ(1 + (j + 1)c/2)Γ(a+ jc/2)Γ(b+ jc/2)
.

3.3 Sketch of proof of Lemma 3.4 via Baldoni-Vergne recurrence approach
To prove Lemma 3.4 we follow Xin’s [15, §3.5] simplified recursion approach of the proof by Baldoni-
Vergne [4] of the Morris identity (3.9).
Outline of the proof: First, for nonnegative integers n ≥ 2, a, c and ` = 0, . . . , n we introduce the
constants

Cn(`, a, c) := CTxn · · ·CTx1

P` · e1(x1, . . . , xn)(a−1)n+c(n
2)−`

∏n
i=1 x

a−1
i

∏n
i=1(xi − xj)c

,

where P` = `!(n − `)!e`(x1, . . . , xn). Note that Cn(0, a, c) = n!Ln(a, c). Second, we show that
Cn(`, a, c) satisfy certain linear relations (Proposition 3.8). Third, we show that these relations uniquely
determine the constants Cn(`, a, c) (Proposition 3.9). Lastly, in Proposition 3.10 we define C ′n(`, a, c)
as certain products of Gamma functions such that C ′n(0, a, c)/n! coincides with the expression on the
right-hand-side of (3.7). We then show that C ′n(`, a, c) satisfy the same relations as Cn(`, a, c) and since
these relations determine uniquely the constants then C ′n(`, a, c) = Cn(`, a, c). This completes the proof
of the Lemma.

The Cn(`, a, c) satisfy the following relations.

Proposition 3.8 Let Cn(`, a, c) be defined as above then for 1 ≤ ` ≤ n we have:

Cn(`, a, c)

Cn(`− 1, a, c)
=

a− 1 + c(n− `)/2
(a− 1)n+ c

(
n
2

)
− `+ 1

, (3.10)

Cn(n, a, c) = Cn(0, a− 1, c), (3.11)
Cn(n− 1, 1, c) = Cn−1(0, c, c), (if n > 1) (3.12)

Cn(0, 1, 0) = n!, (3.13)
Cn(`, 0, c) = 0. (3.14)

Proof Sketch: The relations (3.11)-(3.14) follow from the same proof as in [15, Theorem 3.5.2].

To prove (3.10), we letU` = e
(a−1)n+c(n

2)−`
1 /(

∏n
i=1 x

a
i

∏n
i=1(xi−xj)c), since CTy g(y) = Resy yg(y)

then Cn(`, a, c) = Resxn · · ·Resx1 P`U`.
Then we show that

∑

w∈Sn

(±1)sgn(w)w ·
(

∂

∂x1
e1x1x2 · · ·x`U`

)
= (3.15)

(
(a− 1)n+ c

(
n
2

)
− `+ 1

)
P`U` − (a− 1 + c(n− `)/2)P`−1U`−1,
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where ± depends on the parity of c. Finally, we take the iterated residue Resxn
· · ·Resx1

of (3.15). Since
the left-hand-side of this equation consists of sums of derivatives with respect to x1, . . . , xn, then its
iterated residue Resx is zero [4, Remark 3(c), p. 15]. This yields

0 =
(
(a− 1)n+ c

(
n
2

)
− `+ 1

)
Cn(`, a, c)− (a− 1 + c(n− `)/2)Cn(`− 1, a, c),

which proves (3.10). 2

We now show that the recurrences (3.10)-(3.14) determine entirely the constants Cn(`, a, c) (same
algorithm as in [4, p. 10]).

Proposition 3.9 [4, p. 10] The recurrences (3.10)-(3.14) determine uniquely the constants Cn(`, a, c).

Next we give an explicit product formula for Cn(`, a, c). This is proved by showing that the formula
satisfies relations (3.10)-(3.14) which by Proposition 3.9 determine uniquely Cn(`, a, c).

Proposition 3.10 If c > 0 or if a > 1 then for 1 ≤ ` ≤ n then

Cn(`, a, c) =
∏̀

j=1

a− 1 + c(n− j)/2
(a− 1)n+ c

(
n
2

)
− j + 1

Cn(0, a, c) (3.16)

if a ≥ 1 then

Cn(0, a, c) = n! · Γ
(
1 + (a− 1)n+ c

(
n
2

)) n−1∏

i=0

Γ(1 + c/2)

Γ(1 + (i+ 1)c/2)Γ(a+ ic/2)
. (3.17)

To conclude, since Cn(0, a, c) = n! ·Ln(a, c) then Lemma 3.4 follows from (3.17) in Proposition 3.10.
By Corollary 3.5 Ln(1, 1) yields the desired formula for the volume of Tesn(1) which completes the
proof of Theorem 1.6.
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We thank François Bergeron for suggesting that flow polytopes were related to Tesler matrices, and Ole
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