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Introduction

Tesler matrices have played a major role in the works [START_REF] Armstrong | Combinatorics of Tesler matrices in the theory of parking functions and diagonal harmonics[END_REF][8] [START_REF] Haglund | A polynomial expression for the Hilbert series of the quotient ring of diagonal coinvariants[END_REF] in the context of diagonal harmonics. We examine them from a different perspective in this paper: we study the polytope, which we call the Tesler polytope, consisting of upper triangular matrices with nonnegative real entries with the same restriction as Tesler matrices.

Let U n (R ≥0 ) be the set of n × n upper triangular matrices with nonnegative real entries. The k th hook sum of a matrix (x i,j ) in U n (R ≥0 ) is the sum of all the elements of the k th row minus the sum of the elements in the k th column excluding the term in the diagonal:

x k,k + n j=k+1 x k,j - k-1 i=1
x i,k . Given † karola@math.cornell.edu Partially supported by an NSF Postdoctoral Research Fellowship DMS-1103933. ‡ ahmorales@math.ucla.edu Was supported by a postdoctoral fellowship from CRM-ISM and LaCIM. § bprhoades@math.ucsd.edu Partially supported by NSF grant DMS-1068861. a length n vector a = (a 1 , a 2 , . . . , a n ) ∈ (Z ≥0 ) n of nonnegative integers, the Tesler polytope Tes n (a) with hook sums a is the set of matrices in U n (R ≥0 ) where the k th hook sum equals a k , for k = 1, . . . , n:

Tes n (a) = {(x i,j ) ∈ U n (R ≥0 ) | x k,k + n j=k+1 x k,j - k-1 i=1 x i,k = a k , 1 ≤ k ≤ n}.
The lattice points of Tes n (a) are called Tesler matrices with hook sums a. These are n × n upper triangular matrices B = (b i,j ) with nonnegative integer entries such that for k = 1, . . . , n, b k,k

+ n j=k+1 b k,j - k-1 i=1 b i,k = a k .
The set and number of such matrices are denoted by T n (a) and T n (a) respectively. See Figure 1 for an example of the seven Tesler matrices in T 3 (1, 1, 1) and [14, A008608] for the sequence {T n (1, 1, . . . , 1)} added by Glenn Tesler in the late 1990s.

Tesler matrices reappeared recently in Haglund's study of diagonal harmonics [START_REF] Haglund | A polynomial expression for the Hilbert series of the quotient ring of diagonal coinvariants[END_REF] and their combinatorics and further properties were explored in [START_REF] Armstrong | Combinatorics of Tesler matrices in the theory of parking functions and diagonal harmonics[END_REF][8] [START_REF] Levande | Special Cases of the Parking Functions Conjecture and Upper-Triangular Matrices[END_REF]. The flavor of the results obtained for Tesler matrices in connection with diagonal harmonics is illustrated by the following example. For the definitions regarding the polynomial in N[q, t] in the left hand side of (1.1) we refer the reader to [START_REF] Haglund | A polynomial expression for the Hilbert series of the quotient ring of diagonal coinvariants[END_REF].

Example 1.1 When a = 1 := (1, 1, . . . , 1) ∈ Z n , Haglund [START_REF] Haglund | A polynomial expression for the Hilbert series of the quotient ring of diagonal coinvariants[END_REF] showed that

∂ n p1 ∇e n = (-1) n (1 -t) n (1 -q) n A∈Tn(1,1,...,1) i,j wt(a ij ), (1.1) 
where wt(b) = -(1t)(1q) q b -t b q-t if b > 0 and wt(0) = 1. The starting point for our investigation is the observation stated in the next lemma. (1.2)

We now define flow polytopes to make Lemma 1.2 clear. For an illustration of the correspondence of polytopes in Lemma 1.2 see Figure 2.

Given a = (a 1 , a 2 , . . . , a n ), let Flow n (a) be the flow polytope of the complete graph k n+1 with netflow a i on vertex i for i = 1, . . . , n and the netflow on vertex n + 1 is -n i=1 a i . This polytope is the set of functions f :

E → R ≥0 , called flows, from the edge set E = {(i, j) | 1 ≤ i < j ≤ n + 1} of k n+1 1 1 1 -3 1 0 0 1 1 2 0 1 0 1 1 2 (1, 1, 1, -3) = 1(e 1 -e 2 ) + 1(e 1 -e 4 ) +
1(e 2e 3 ) + 1(e 2e 4 ) + 2(e 3e 4 )

Fig. 2: Correspondence between a 3 × 3 Tesler matrix with hook sums (1, 1, 1), an integer flow in the complete graph k4 and a vector partition of

(1, 1, 1, -3) into ei -ej 1 ≤ i < j ≤ 4.
to the set of nonnegative real numbers such that for k = 1, . . . , n, j>s f (k, j)

-i<k f (i, k) = a k . This forces n i=1 f (i, n + 1) = n i=1 a i . The type A n Kostant partition function K An (a )
is the number of ways of writing a := (a, -n i=1 a i ) as an N-combination of the type A n positive roots e ie j , 1 ≤ i < j ≤ n + 1 without regard to order. Kostant partition functions are useful in representation theory to calculate tensor product and weight multiplicities. The value K An (a ) is also the number of lattice points of the polytope Flow n (a). Thus the following lemma is immediate from Lemma 1.2.

Lemma 1.3

The number T n (a) of Tesler matrices with hook sums (a 1 , a 2 , . . . , a n ) is given by the value K An (a ) of the Kostant partition function at (a 1 , . . . , a n , -

n i=1 a i ), T n (a) = K An (a ). (1.3) 
In the next example we include a brief discussion of another flow polytope of the complete graph, namely, Flow n (1, 0, . . . , 0).

Example 1.4

The polytope Flow n (1, 0, . . . , 0) is known as the Chan-Robbins-Yuen polytope [START_REF] Chan | On the volume of the polytope of doubly stochastic matrices[END_REF][START_REF] Chan | On the volume of a certain polytope[END_REF]. It has dimension n 2 and 2 n-1 vertices. Stanley-Postnikov (unpublished), and Baldoni-Vergne [START_REF] Baldoni | Kostant partitions functions and flow polytopes[END_REF][START_REF] Baldoni | Morris identities and the total residue for a system of type A r . Noncommutative Harmonic Analysis[END_REF] proved that the normalized volume of this polytope is given by a value of the Kostant partition function (see (3.2)). Then Zeilberger [START_REF] Zeilberger | Proof of conjecture of Chan, Robbins, and Yuen Electron[END_REF] used a variant of the Morris constant term identity [START_REF] Morris | Constant Term Identities for Finite and Affine Root Systems: Conjectures and Theorems[END_REF] to compute this Kostant partiton function as the product of the first n -2 Catalan numbers.

vol Flow n (1, 0, . . . , 0) = K An-1 (0, 1, 2, . . . , n -2, -n-1 2 ) = n-2 i=0 1 i + 1 2i i . (1.4) 
The study of Tes n (a): Examples 1.1 and 1.4 served as our inspiration for studying the Tesler polytope Tes n (a) ∼ = Flow n (a). In Section 2 we prove that for any vector a ∈ (Z ≥0 ) n of nonnegative integers, the polytope Tes n (a) has dimension n 2 and at most n! vertices, all of which are integral. When a ∈ (Z >0 ) n consists entirely of positive entries, we prove that Tes n (a) has exactly n! vertices. In this case, these vertices are the permutation Tesler matrices of order n, which are the n × n Tesler matrices with at most one nonzero entry in each row.

Recall that if P is a d-dimensional polytope, the f -vector f (P ) = (f 0 , f 1 , . . . , f d ) of P is given by letting f i equal the number of faces of P of dimension i. The f -polynomial of P is the corresponding generating function to the f -polynomial of P by the equation

d i=0 f i (x -1) i = d i=0 h i x i . The coefficient sequence (h 0 , h 1 , . . . , h d ) of the h-polynomial of P is called the h-vector of P .
In Section 2 we characterize the vectors a ∈ (Z ≥0 ) n for which the Tesler polytope Tes n (a) is simple (Theorem 2.7). In particular, we show that Tes n (a) is simple whenever a ∈ (Z >0 ) n . In this case, the sum of its h-vector entries is given by

( n 2 ) i=0 h i = f 0 . Since Tes n (a) for a ∈ (Z >0 ) n has n! vertices, this implies that ( n 2 ) i=0 h i = n!. One might expect that the h-polynomial ( n 2 ) i=0 h i x i of Tes n (a)
is the generating function of some interesting statistic on permutations. Indeed, we show in Section 2 that the h-polynomial of the Tesler polytope is the generating function for Coxeter length.

Theorem 1.5 (Theorem 2.7, Corollary 2.9) Let a ∈ (Z >0 ) n be a vector of positive integers. The polytope Tes n (a) is a simple polytope and its h-vector is given by the Mahonian numbers, that is, h i is the number of permutations of {1, 2, . . . , n} with i inversions. We have

( n 2 ) i=0 f i (x -1) i = ( n 2 ) i=0 h i x i = [n]! x , where [n]! x = n i=1 (1 + x + x 2 + • • • + x i-1
) and the f i are the f -vector entries of Tes n (1). Just as the Chan-Robbins-Yuen polytope Tes n (1, 0, . . . , 0) ∼ = Flow n (1, 0, . . . , 0) has a product formula for its normalized volume involving Catalan numbers, so does the Tesler polytope Tes n (1) := Tes n (1, 1, . . . , 1). 

vol Tes n (1) = vol Flow n (1, 1, . . . , 1) = n 2 ! • 2 ( n 2 ) n i=1 i! = |SY T (n-1,n-2,...,1) | • n-1 i=0 Cat(i), (1.5) 
where

Cat(i) = 1 i+1 2i i is the i th Catalan number and |SY T (n-1,n-2,...,1) | is the number of Standard Young Tableaux of staircase shape (n -1, n -2, . . . , 1).
The proof of this result is sketched in Section 3. The proof uses the following new iterated constant term identity similar to the Morris constant term identity [START_REF] Morris | Constant Term Identities for Finite and Affine Root Systems: Conjectures and Theorems[END_REF].

Lemma 3.4 1 For n ≥ 2 and nonnegative integers a, c we have that

CT xn • • • CT x1 (x 1 + x 2 + • • • + x n ) (a-1)n+c( n 2 ) n i=1
x -a+1 i 1≤i<j≤n

(x i -x j ) -c = = Γ 1 + (a -1)n + c n 2 n-1 i=0 Γ(1 + c/2) Γ(1 + (i + 1)c/2)Γ(a + ic/2) ,
where CT y f (y) means the constant term in y of f (y) and Γ(•) is the Gamma function. In particular, the value at a = c = 1 yields (1.5).

For details on the proofs please see the complete version [START_REF] Mészáros | The Tesler Polytope[END_REF] of this paper.

2 The face structure of Tes n (a)

Let a ∈ (R ≥0 ) n . The aim of this section is to describe the face poset of Tes n (a). It will turn out that the combinatorial isomorphism type of Tes n (a) only depends on the positions of the zeros in the integer vector a.

Let rstc n denote the reverse staircase of size n; the Ferrers diagram of rstc 4 is shown below.

We use the "matrix coordinates" {(i, j) | 1 ≤ i ≤ j ≤ n} to describe the cells of rstc n . An a-Tesler tableau T is a 0, 1-filling of rstc n which satisfies the following three conditions:

1. for 1 ≤ i ≤ n, if a i > 0, there is at least one 1 in row i of T , 2. for 1 ≤ i < j ≤ n, if T (i, j) = 1,
then there is at least one 1 in row j of T , and 3. for 1 ≤ j ≤ n, if a j = 0 and T (i, j) = 0 for all 1 ≤ i < j, then T (j, k) = 0 for all j ≤ k ≤ n.

For example, if n = 4 and a = (7, 0, 3, 0), then three a-Tesler tableaux are shown below. We write the entries of a in a column to the left of a given a-Tesler tableau.

7 0 1 1 1 0 0 0 1 3 1 1 0 1 7 1 0 1 0 0 0 0 0 3 0 1 0 1 7 1 1 1 0 0 1 1 0 3 1 0 0 0
The dimension dim(T ) of an a-Tesler tableau T is n i=1 (r i -1), where

r i = the number of 1's in row i of T if row i of T is nonzero, 1 if row i of T is zero.
From left to right, the dimensions of the tableaux shown above are 3, 1, and 3.

Given two a-Tesler tableaux T 1 and T 2 , we write T 1 ≤ T 2 to mean that for all

1 ≤ i ≤ j ≤ n we have T 1 (i, j) ≤ T 2 (i, j). Moreover, we define a 0, 1-filling max(T 1 , T 2 ) of rstc n by max(T 1 , T 2 )(i, j) = max(T 1 (i, j), T 2 (i, j)).
We start with two lemmas on a-Tesler tableaux. Our first lemma states that any two zero-dimensional a-Tesler tableaux are componentwise incomparable.

Lemma 2.1 Let a ∈ (R ≥0 ) n and let T 1 and T 2 be two a-Tesler tableaux with dim(T 1 ) = dim(T 2 ) = 0. If T 1 ≤ T 2 , then T 1 = T 2 .
Our next lemma states that the operation of componentwise maximum preserves the property of being an a-Tesler tableau.

Lemma 2.2 Let a ∈ (R ≥0 ) n and let T 1 and T 2 be two a-Tesler tableaux. Then T := max(T 1 , T 2 ) is also an a-Tesler tableau.

The analogue of Lemma 2.2 for min(T 1 , T 2 ) is false; the componentwise minimum of two a-Tesler tableaux is not in general an a-Tesler tableau. Faces of the Tesler polytope Tes n (a) and a-Tesler tableaux are related by taking supports.

Lemma 2.3 Let a ∈ (R ≥0 ) n and let F be a face of the Tesler polytope Tes n (a). Define a function T : rstc n → {0, 1} by T (i, j) = 0 if the coordinate equality x i,j = 0 is satisfied on the face F and T (i, j) = 1 otherwise. Then T is an a-Tesler tableau.

Lemma 2.3 shows that every face F of Tes n (a) gives rise to an a-Tesler tableaux T . We denote by φ : F → T the corresponding map from faces of Tes n (a) to a-Tesler tableaux; we will see that φ is a bijection. We begin by showing that φ bijects vertices of Tes n (a) with zero-dimensional a-Tesler tableaux.

Lemma 2.4 Let a ∈ (R ≥0 ) n . The map φ bijects the vertices of Tes n (a) with zero-dimensional a-Tesler tableaux.

We are ready to characterize the face poset of Tes n (a). Given any vector a ∈ (R ≥0 ) n , we let (a) ∈ {0, +} n be the associated signature; for example, (7, 0, 3, 0) = (+, 0, +, 0). Theorem 2.5 implies that the combinatorial isomorphism type of Tes n (a) depends only on the signature (a).

As a first application of Theorem 2.5, we determine the dimension of Tes n (a) and give an upper bound on the number of its vertices. When a ∈ Z n >0 the result about the dimensionality also follows from [START_REF] Baldoni | Kostant partitions functions and flow polytopes[END_REF]. Observe that if a 1 = 0, the first rows of the matrices in Tes n (a) vanish and we have the identification Tes n (a) = Tes n-1 (a 2 , a 3 , . . . , a n ). We may therefore restrict to the case where a 1 > 0.

Corollary 2.6 Let a = (a 1 , . . . , a n ) ∈ (R ≥0 ) n and assume a 1 > 0. The polytope Tes n (a) has dimension n 2 and at most n! vertices. Moreover, the polytope Tes n (a) has exactly n! vertices if and only if a 2 , a 3 , . . . , a n-1 > 0.

Theorem 2.5 can also be used to characterize when Tes n (a) is a simple polytope. Theorem 2.7 Let a = (a 1 , . . . , a n ) ∈ (R ≥0 ) n and let (a) = ( 1 , . . . , n ) ∈ {0, +} n be the associated signature. Assume that 1 = +. The polytope Tes n (a) is a simple polytope if and only if n ≤ 3 or (a) is one of + n , + n-1 0, +0+ n-2 or +0 + n-3 0.

We now focus on the case of greatest representation theoretic interest in the context of diagonal harmonics: where (a) = + n , so that every entry of a is a positive integer. The combinatorial isomorphism type of Tes n (a) is immediate from Theorem 2.5. We denote by

∆ d the d-dimensional simplex in R d+1 defined by ∆ d := {(x 1 , . . . , x d+1 ) ∈ R d+1 | x 1 + • • • + x d+1 = 1, x 1 ≥ 0, . . . , x d+1 ≥ 0}.
Corollary 2.8 Let a ∈ (R >0 ) n be a vector of positive integers. The face poset of the Tesler polytope Tes n (a) is isomorphic to the face poset of the Cartesian product of simplices

∆ 1 × ∆ 2 × • • • × ∆ n-1 .
Corollary 2.9 Let a ∈ (R >0 ) n be a vector of positive integers. The h-polynomial of the Tesler polytope Tes n (a) is the Mahonian distribution

( n 2 ) i=0 h i x i = [n]! x = (1 + x)(1 + x + x 2 ) • • • (1 + x + x 2 + • • • + x n-1 ).
Corollaries 2.8 and 2.9 are also true for Tesler polytopes Tes n (a), where (a) = + n-1 0. In light of Theorem 2.7, it is natural to ask for an analog to these results when (a) is of the form +0+ n-2 or +0 + n-3 0. Such an analog is provided by the following corollary.

Corollary 2.10 Let a ∈ (R ≥0 ) n and assume that (a) has one of the forms +0+ n-2 or +0 + n-3 0. Let P be the quotient polytope (∆ n-2 × ∆ n-1 )/ ∼, where we declare (p, q) ∼ (p , q) whenever q ∈ ∆ n-1 belongs to the facet of ∆ n-1 defined by x 2 = 0 and p, p ∈ ∆ n-2 .

The face poset of the polytope Tes n (a) is isomorphic to the face poset of the Cartesian product

∆ 1 × ∆ 2 × • • • ∆ n-3 × P . Moreover, we have that Tes n (a) has 2(n -1)! vertices and h-polynomial (1 + x n-1 )[n -1]! x .
Remark 2.11 When a ∈ (R >0 ) n is a vector of positive integers, Theorem 2.5 can be deduced from results of Hille [START_REF] Hille | Quivers, Cones and Polytopes[END_REF]. In particular, if Q denotes the quiver on the vertex set ] is essentially the same as the special case of Theorem 2.5 when a ∈ (R >0 ) n . When some entries of a are zero, in the terminology of [START_REF] Hille | Quivers, Cones and Polytopes[END_REF] the weight function θ lies on a wall, and the results of [START_REF] Hille | Quivers, Cones and Polytopes[END_REF] do not apply to Tes n (a). Remark 2.12 When a ∈ (R >0 ) n is a vector of positive integers, the simplicity of Tes n (a) guaranteed by Theorem 2.7 had been observed previously in the context of flow polytopes. The condition that every entry in a is positive is equivalent to a lying in the "nice chamber" defined by Baldoni and Vergne in [3, p. 458]. In [5, p. 798], Brion and Vergne observe that this condition on a implies the simplicity of Tes n (a). The simplicity of Tes n (a) in this case can also be derived from Hille's characterization of the face poset [START_REF] Hille | Quivers, Cones and Polytopes[END_REF] using exactly the same argument as in the proof of Theorem 2.7.

Q 0 = [n + 1] with arrows i → j for all 1 ≤ i < j ≤ n + 1 and if θ : Q 0 → R denotes the weight function defined by θ(i) = a i for 1 ≤ i ≤ n and θ(n + 1) = -a 1 -• • • -a n ,

Volume of the Tesler polytope Tes n (1)

The aim of this section is to sketch the proof of Theorem 1.6 through a sequence of results. For ease of reading the section is broken down into several subsections. We start by previous results on volumes and Ehrhart polynomials of flow polytopes and then prove specific lemmas regarding Tes n [START_REF] Armstrong | Combinatorics of Tesler matrices in the theory of parking functions and diagonal harmonics[END_REF].

In this section we work in the field of iterated formal Laurent series with m variables as discussed by Haglund, Garsia and Xin in [8, §4]. We choose a total order of the variables: x 1 , x 2 , . . . , x m to extract iteratively coefficients, constant coefficients, and residues of an element f (x) in this field. We denote these respectively by

CT xm • • • CT x1 f, [x a ] := [x am m • • • x a1 1 ]f, Res xm • • • Res x1 f.
For more on these iterative coefficient extractions see [15, §2].

Generating function of K An (a ) and the Lidskii formulas

Recall that by Lemmas 1.2 and 1.3 we have that the normalized volume vol Tes n (a) equals the normalized volume vol Flow n (a) and that the number T n (a) of Tesler matrices is given by the Kostant partition function K An (a ). By definition, the latter is given by the following iterated coefficient extraction.

K An (a ) = [x a ] 1≤i<j≤n+1 (1 -x i x -1 j ) -1 . (3.1) 
Assume that a = (a 1 , a 2 , . . . , a n ) satisfies a i ≥ 0 for i = 1, . . . , n. Then the Lidskii formulas [3, Proposition 34, Theorem 37] state that

vol Flow n (a) = i n 2 i 1 , i 2 , . . . , i n a i1 1 • • • a in n • K An-1 (i 1 -n + 1, i 2 -n + 2, . . . , i n ), (3.2) 
and

K An (a ) = i a 1 + n -1 i 1 a 2 + n -2 i 2 • • • a n i n • K An-1 (i 1 -n + 1, i 2 -n + 2, . . . , i n ), (3.3) 
where both sums are over weak compositions i = (i 1 , i 2 , . . . , i n ) of n 2 with n parts which we denote as

i |= n 2 , (i) = n. Example 3.1 The Tesler polytope Tes 3 (1, 1, 1) ∼ = Flow 3 (1, 1, 1) has normalized volume 4 since by (3.2) vol Flow 3 (1, 1, 1) = 3 3, 0, 0 K A2 (1, -1, 0) + 3 2, 1, 0 K A2 (0, 0, 0) + 0 = 1 • 1 + 3 • 1 = 4.
And this polytope has T 3 (1, 1, 1) = K A3 (1, 1, 1, -3) = 7 lattice points (the seven 3 × 3 Tesler matrices with hook sums (1, 1, 1); see Figure 1). Indeed by (3.3)

K A3 (1, 1, 1, -3) = 1 + 2 3 1 + 1 0 K A2 (1, -1, 0) + 1 + 2 2 1 + 1 1 K A2 (0, 0, 0) = 7.
Example 3.2 [START_REF] Baldoni | Kostant partitions functions and flow polytopes[END_REF] If one uses (3.2) on the Chan-Robbins-Yuen polytope Tes n (e 1 ) one obtains vol Tes n (1, 0, . . . , 0) = K An-1 (-n-1 2 , -n + 2, . . . , -1, 0), since the only composition i that does not vanish is i 1 = n 2 , i 2 = 0, . . . , i n = 0. This is equivalent to the first identity in Example 1.4.

Next, we use (3.2) and the generating series (3.1) of Kostant partition functions to write the volume of Tes n (1) as an iterated constant term of a formal Laurent series.

Lemma 3.3 vol Tes n (1) = CT xn • • • CT x1 (x 1 + • • • + x n ) ( n 2 ) 1≤i<j≤n (x j -x i ) -1 , (3.4) 
where CT xn • • • CT x1 f denotes the iterated constant term of f .

A Morris-type constant term identity

Let e k = e k (x 1 , x 2 , . . . , x n ) denote the k th elementary symmetric polynomial. In particular

e 1 = x 1 + x 2 + • • • + x n .
For n ≥ 2 and nonnegative integers a, c we define L n (a, c) to be the following iterated constant term:

L n (a, c) := CT xn • • • CT x1 e (a-1)n+c( n 2 ) 1 n i=1
x -a+1 i 1≤i<j≤n Next we give a product formula for L n (a, c) that for a = c = 1 yields (1.5). We postpone the proof to the next section. Lemma 3.4 For n ≥ 2 and nonnegative integers a, c we have that

(x i -x j ) -c . ( 3 
L n (a, c) := CT xn • • • CT x1 e (a-1)n+c( n 2 ) 1 n i=1 x -a+1 i 1≤i<j≤n (x i -x j ) -c equals L n (a, c) = Γ 1 + (a -1)n + c n 2 n-1 i=0 Γ(1 + c/2) Γ(1 + (i + 1)c/2)Γ(a + ic/2) , (3.7) 
where Γ(•) is the Gamma function.

Corollary 3.5

L n (1, c) = Γ(1 + c n 2 ) n-1 i=0 Γ(1 + c/2) Γ(1 + c(i + 1)/2)Γ(1 + ic/2) = (c n 2 )! 2 c( n 2 )+n-cn (2c -1)!! n n-1 i=0 (ci + 1)! .
and in particular

L n (1, 1) = n 2 ! • 2 ( n 2 ) n i=1 i! = |SY T (n-1,n-2,...,1) | • n-1 i=1 Cat(i).
where |SY T (n-1,n-2,...,1) | denotes the number of Standard Young Tableaux of staircase shape (n-1, n-2, . . . , 1).

The following remarks give an alternate constant term description for L n (a, c) which resembles a known constant term identity. 

Remark 3.6 Consider the constant term of (1 -e 1 ) -1 n i=1 x -a+1 i 1≤i<j≤n (x i -x j ) -c . Since (1 - e 1 ) -1 = k≥0 e k 1 then by linearity of CT xn • • • CT x1 and degree considerations it follows that L n (a, c) = CT xn • • • CT x1 (1 -e 1 ) -1 n i=1 x -a+1 i 1≤i<j≤n (x i -x j ) -c . ( 3 
M n (a, b, c) := CT xn • • • CT x1 n i=1 x -a+1 i (1 -x i ) -b 1≤i<j≤n (x i -x j ) -c (3.9) then M n (a, b, c) = n-1 j=0 Γ(1 + c/2)Γ(a + b -1 + (n + j -1)c/2) Γ(1 + (j + 1)c/2)Γ(a + jc/2)Γ(b + jc/2) .

Sketch of proof of Lemma 3.4 via Baldoni-Vergne recurrence approach

To prove Lemma 3.4 we follow Xin's [15, §3.5] simplified recursion approach of the proof by Baldoni-Vergne [START_REF] Baldoni | Morris identities and the total residue for a system of type A r . Noncommutative Harmonic Analysis[END_REF] of the Morris identity (3.9). Outline of the proof: First, for nonnegative integers n ≥ 2, a, c and = 0, . . . , n we introduce the constants

C n ( , a, c) := CT xn • • • CT x1 P • e 1 (x 1 , . . . , x n ) (a-1)n+c( n 2 )- n i=1 x a-1 i n i=1 (x i -x j ) c
, where P = !(n -)!e (x 1 , . . . , x n ). Note that C n (0, a, c) = n!L n (a, c). Second, we show that C n ( , a, c) satisfy certain linear relations (Proposition 3.8). Third, we show that these relations uniquely determine the constants C n ( , a, c) (Proposition 3.9). Lastly, in Proposition 3.10 we define C n ( , a, c) as certain products of Gamma functions such that C n (0, a, c)/n! coincides with the expression on the right-hand-side of (3.7). We then show that C n ( , a, c) satisfy the same relations as C n ( , a, c) and since these relations determine uniquely the constants then C n ( , a, c) = C n ( , a, c). This completes the proof of the Lemma.

The C n ( , a, c) satisfy the following relations. 

Fig. 1 :

 1 Fig. 1: The seven 3 × 3 Tesler matrices with hook sums (1, 1, 1). Six of them are vertices of the graph (depicted in gray) of the Tesler polytope Tesn(1, 1, 1).

Lemma 1 . 2

 12 The Tesler polytope Tes n (a) is a flow polytope Flow n (a), Tes n (a) ∼ = Flow n (a).

Theorem 1 . 6 (

 16 Corollary 3.5) The normalized volume of the Tesler polytope Tes n (1), or equivalently of the flow polytope Flow n (1, 1, . . . , 1) equals

Theorem 2 . 5

 25 Let a ∈ (R ≥0 ) n . The support map φ : F → T gives an isomorphism from the face poset of Tes n (a) to the set of a-Tesler tableaux, partially ordered by ≤. For any face F , we have that dim(F ) = dim(φ(F )).

  then the Tesler polytope Tes n (a) is precisely the polytope ∆(θ) considered in [10, Theorem 2.2]. By the argument in the last paragraph of [10, Theorem 2.2] and [10, Proposition 2.3], the genericity condition on θ in the hypotheses of [10, Theorem 2.2] is equivalent to every entry of a being positive. The conclusion of [10, Theorem 2.2

. 5 )

 5 Note that by Lemma 3.3 we have that vol Tes n (1) = L n (1, 1).(3.6)

Proposition 3 . 8 + 1 , ( 3 . 10 ) 2 2 n- 1 i=0Γ( 1 +

 3813102211 Let C n ( , a, c) be defined as above then for 1 ≤ ≤ n we have:C n ( , a, c) C n ( -1, a, c) = a -1 + c(n -)/2 (a -1)n + c n 2 -C n (n, a, c) = C n (0, a -1, c), (3.11) C n (n -1, 1, c) = C n-1 (0, c, c), (if n > 1) (3.12) C n (0, 1, 0) = n!, (3.13) C n ( , 0, c) = 0. (3.14) Proof Sketch: The relations (3.11)-(3.14) follow from the same proof as in [15, Theorem 3.5.2].To prove (3.10), we let U = e i -x j ) c ), since CT y g(y) = Res y yg(y)then C n ( , a, c) = Res xn • • • Res x1 P U .Then we show thatw∈Sn (±1) sgn(w) w • ∂ ∂x 1 e 1 x 1 x 2 • • • x U = (3.15) (a -1)n + c n 2 -+ 1 P U -(a -1 + c(n -)/2)P -1 U -1 ,where ± depends on the parity of c. Finally, we take the iterated residue Res xn • • • Res x1 of (3.15). Since the left-hand-side of this equation consists of sums of derivatives with respect to x 1 , . . . , x n , then its iterated residue Res x is zero [4, Remark 3(c), p. 15]. This yields0 = (a -1)n + c n 2 -+ 1 C n ( , a, c) -(a -1 + c(n -)/2)C n ( -1, a, c),which proves (3.10).We now show that the recurrences (3.10)-(3.14) determine entirely the constants C n ( , a, c) (same algorithm as in[4, p. 10]). Proposition 3.9 [4, p. 10] The recurrences (3.10)-(3.14) determine uniquely the constants C n ( , a, c).Next we give an explicit product formula for C n ( , a, c). This is proved by showing that the formula satisfies relations (3.10)-(3.14) which by Proposition 3.9 determine uniquely C n ( , a, c).Proposition 3.10 If c > 0 or if a > 1 then for 1 ≤ ≤ n then C n ( , a, c) = j=1 a -1 + c(nj)/2 (a -1)n + c n 2j + 1 C n (0, a, c) (3.16) if a ≥ 1 then C n (0, a, c) = n! • Γ 1 + (a -1)n + c n c/2) Γ(1 + (i + 1)c/2)Γ(a + ic/2) .(3.17)To conclude, since C n (0, a, c) = n! • L n (a, c) then Lemma 3.4 follows from (3.17) in Proposition 3.10. By Corollary 3.5 L n (1, 1) yields the desired formula for the volume of Tes n (1) which completes the proof of Theorem 1.6.

  .8) Remark 3.7 A similar iterated constant term identity to (3.7) is Zeilberger's version of the Morris constant term identity[START_REF] Zeilberger | Proof of conjecture of Chan, Robbins, and Yuen Electron[END_REF] used to prove (1.4): for n ≥ 2 and nonnegative integers a, b, c let

d i=0 f i x i . A polytope P is simple if each of its vertices is incident to dim(P ) edges. If P is a simple polytope, the h-polynomial of P is the polynomial d i=0 h i x i which is related
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