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The frequency of pattern occurrence in
random walks

Sergi Elizalde1† and Megan Martinez1‡

1Department of Mathematics, Dartmouth College, Hanover, NH 03755.

Abstract. In the past decade, the use of ordinal patterns in the analysis of time series and dynamical systems has
become an important tool. Ordinal patterns (otherwise known as a permutation patterns) are found in time series
by taking n data points at evenly-spaced time intervals and mapping them to a length-n permutation determined by
relative ordering. The frequency with which certain patterns occur is a useful statistic for such series. However, the
behavior of the frequency of pattern occurrence is unstudied for most models. We look at the frequency of pattern
occurrence in random walks in discrete time, and we define a natural equivalence relation on permutations under
which equivalent patterns appear with equal frequency, regardless of probability distribution. We characterize these
equivalence classes applying combinatorial methods.

Résumé. Au cours de la dernière décennie, l’utilisation des motifs ordinaux dans l’analyse des séries chronologiques
et systèmes dynamiques est devenu un outil important. Des motifs ordinaux (autrement appelés motifs de permuta-
tions) se trouvent dans les séries chronologiques en prenant n points de données au intervalles de temps uniformément
espacées et les faisant correspondre à une permutation de longueur n déterminée par leur ordre relatif. La fréquence
avec laquelle certains motifs apparaissent est une statistique utile pour ces séries. Toutefois, le comportement de la
fréquence d’apparition de ces motifs n’a pas été étudié pour la plupart des modèles. Nous regardons la fréquence
d’occurrence des motifs dans les marches aléatoires en temps discret, et nous définissons une relation d’équivalence
naturelle sur des permutations dans laquelle les motifs équivalents apparaissent avec la même fréquence, quelle que
soit la distribution de probabilité. Nous caractérisons ces classes d’équivalence utilisant des méthodes combinatoires.

Keywords: permutation pattern; random walk; time series analysis; ordinal pattern; pattern frequency

1 Introduction
Time series analysis deals with the extraction of information from sequences of data points, typically mea-
sured at uniform time intervals. Understanding the characteristics of the data enables better predictions
of the future behavior of a phenomenon. There are a number of different statistical methods that can be
applied to the study of time series. A relatively new method involves the analysis of its “ordinal patterns.”
This approach, pioneered in the dynamical systems community by Bandt, Keller and Pompe [5, 4] and
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surveyed by Amigó [1], is particularly amenable to a combinatorial treatment. For one-dimensional de-
terministic time series that arise from iterating a map, combinatorial analyses of the ordinal patterns for
specific maps have appeared in [2, 7, 8, 3]. However, perhaps surprisingly, very little is known about the
behavior of ordinal patterns in a random setting.

In this paper we study, from a combinatorial perspective, the ordinal patterns that occur in random
walks. We define an equivalence relation on permutations, which we conjecture determines when two
patterns occur with the same probability in any random walk, and we provide a combinatorial characteri-
zation of the equivalence classes. We expect such a characterization to be useful in many of the applica-
tions of ordinal patterns in random walks that have recently appeared in the dynamical systems literature.
Such applications include the analysis of stock indices and economic indicators, both to quantify the ran-
domness of certain time periods in the series [10], and to show that the degree of market inefficiency is
correlated with the number of missing patterns [11]. In the related setting of Gaussian processes with
stationary increments, the frequency of ordinal patterns has been estimated in [9] and computed exactly
for some small patterns in [6].

Permutation patterns are found in a time series by taking n data points at evenly-spaced time intervals
and mapping them to a length-n permutation determined by relative ordering. For example, a sequence
4.8,−4.1, 3.1, 5.2 would map to the permutation 3124 ∈ S4. The frequencies of the patterns that occur
are measured and used to make conclusions about the behavior of the data. Central to this analysis is an
understanding of the frequency with which patterns occur in a random time series.

Among the different models that are used for random time series, one of the most basic and applicable
is a one-dimensional random walk in discrete time. To construct such a walk, take n− 1 independent and
identically distributed (i.i.d.) continuous random variables X1, X2, . . . , Xn−1; we call these steps. The
walker starts at 0, and at time i the walker is atX1+X2+. . .+Xi. It is easy to see that not all permutation
patterns occur with equal probability in such a random walk. For example, if the Xi’s are chosen from a
distribution that only takes positive values, then the pattern 123 . . . n will occur with probability 1.

Define a map p : Rn−1 → Sn where p(X1, . . . , Xn−1) = π if the entries of the permutation π have the
same relative ordering as the walk Z0, Z1, . . . , Zn−1, where Zi = X1 + · · ·+Xi for all i (with Z0 = 0).
More precisely, p(X1, . . . , Xn−1) = π if π(i) = |{k | Zk ≤ Zi}| for all i. If the associated random walk
contains repeated values, i.e. Zi = Zj for some i, j, it will be our convention to leave p undefined. Since
we only deal with continuous distributions, the probability of having repeated values is zero.

While not all permutations occur in the image of p with equal probability, it turns out that there are
certain classes of permutations that do have equal probability of occurring, regardless of the probability
distribution chosen for the Xi’s. For example, the pattern 132 will always occur with equal probability as
213, since p(X1, X2) = 132 if and only if p(X2, X1) = 213. In general, the reverse-complement of a
permutation will occur with equal probability as the permutation itself. It turns out that such equivalencies
are not restricted to reverse-complements, but are littered across Sn. For example, 1432 and 2143 also
occur with equal probability because p(X1, X2, X3) = 1432 if and only if p(X2, X1, X3) = 2143.

In this paper we define an equivalence relation on permutations that arises naturally from the above
examples. It has the property that any two permutations π and τ in the same equivalence class satisfy
P(p(X1, . . . , Xn−1) = π) = P(p(X1, . . . , Xn−1) = τ) for any continuous probability distribution on
the Xi (as long as they are i.i.d.). Our main result, stated in Section 2, gives a complete characterization
of the equivalence classes. Sections 3, 4, and 5 introduce the tools and ideas used in the proof. Finally, in
Section 6 we conjecture that the converse property holds, that is, if two permutations occur equally often
for any continuous probability distribution on the Xi, then they are equivalent under our definition.
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2 Equivalence on Permutations
We define a natural equivalence relation on permutations π, τ ∈ Sn, which is suggested by the above
examples. We let π ∼ τ if there exists some ρ ∈ Sn−1 such that for every x1, . . . , xn ∈ R, we have
p(x1, . . . , xn−1) = π if and only if p(xρ(1), . . . , xρ(n−1)) = τ . If X1, . . . , Xn−1 are i.i.d. random
variables, then the sequences (X1, . . . , Xn−1) and (Xρ(1), . . . , Xρ(n−1)) have the same joint probability
distribution, and so π ∼ τ implies that P(p(X1, . . . , Xn−1) = π) = P(p(X1, . . . , Xn−1) = τ) for any
continuous probability distribution on the random variables Xi.

The main result of this paper precisely characterizes the equivalence classes for∼. Our characterization
is best illustrated by displaying permutations π ∈ Sn on an n × n grid by filling the boxes (i, π(i)) for
1 ≤ i ≤ n with a dot. Our convention is that the (i, j) box is in the ith column from the left and the jth
row from the bottom, as in cartesian coordinates.

Let us introduce a few definitions. A block in a permutation is a set of consecutive entries whose values
also form a consecutive set. On the grid, a block is a square subgrid with a dot in each row and column,
which implies that the regions right, left, above, and below a block are empty. A cylindrical block is a
generalization of this notion where the requirement of consecutive positions is relaxed by considering 1
and n to be consecutive. If we identify the left and right edges of our n× n grid, then a cylindrical block
is a square subgrid of the resulting cylinder with a dot in each row and column. Note that a cylindrical
block can be either a regular block or a block that spans the left and right sides of the grid. We say that a
cylindrical block is bordered if it has at least three entries, and the entries with highest and lowest value
occur precisely at the outer positions, regardless of which one is on which side (see Figure 1).

(a) The bordered cylindrical
block 1 3 4 2 5.

(b) The unbordered cylindrical
block 5 10 7 9 8 6.

(c) The bordered cylindrical
block 10 7 9 8 6.

Fig. 1: Examples of bordered and unbordered cylindrical blocks in π = 8 6 1 3 4 2 5 10 7 9.

Given a permutation that contains a bordered cylindrical block, we can generate another permutation by
performing a flip on the bordered cylindrical block. For a regular block, a flip is simply a 180◦ rotation of
the contents of the block. For a cylindrical block that spans the left/right boundary, a flip is akin to a 180◦

rotation, except the entries on the left side of the block are rotated and moved to the right and vice-versa,
while the entries that are not part of the block are shifted right or left accordingly (see Figure 2). Recall
that the reverse-complement operation on π corresponds to a 180◦ rotation of the whole n×n grid, which
is a block, but not necessarily bordered. Our main theorem characterizes equivalence classes in Sn in
terms of flips:

Theorem 2.1 Let π, τ ∈ Sn. Then π ∼ τ if and only if τ can be obtained from π through a sequence of
flips of bordered cylindrical blocks and the reverse-complement operation.
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π = 5712634

7→

5637124

7→

5637124 τ = 3176254

Fig. 2: A sequence of flips of bordered cylindrical blocks that maps π = 5712634 to τ = 6371245.

Proving this result requires us to delve into the structure of permutations. Our aim is to understand how
we can permute the steps of one permutation (seen as a random walk) to get another. For real numbers
x1, . . . , xn−1 to satisfy p(x1, . . . , xn−1) = π, there are some forced relationships among them. For
example, if p(x1, x2, x3) = 1423, then x1 + x2 > 0 and x1 > x3, among other relations.

It will be convenient to draw each step of π (seen as a walk) as a vertical, directed edge. In the coordinate
plane, we draw edge ei as the line segment that connects (i, π(i)) to (i, π(i + 1)), directed upwards if
π(i + 1) > π(i) and downwards otherwise. Define sgn(ei) = sgn(π(i + 1) − π(i)). We denote the
(unordered) set of n − 1 edges corresponding to π by Eπ and call it its edge diagram (see Figure 3). We
think of the y-coordinates 1, 2, . . . , n as vertices, and of ei as a directed edge from π(i) to π(i+ 1). With
this interpretation, a sequence of edges ei, ei+1, . . . , ej−1 forms a path from vertex π(i) to vertex π(j).

X1

X2

X3

X4
X5

X6
7→

5

7

1
2

6

3
4

e1 e2 e3 e4 e5 e6

1
2
3
4
5
6

Edge diagram for π


0 0 0 0 1 1
−1 −1 −1 −1 −1 −1
1 0 0 0 0 0
0 1 1 1 1 0
0 0 −1 −1 −1 0
0 0 1 0 0 0


L(π)

Fig. 3: The permutation π = 5712634, its edge diagram, and its matrix L(π).

We partition the y-axis of our edge diagram into the intervals 1 = [1, 2], 2 = [2, 3], . . . , n− 1 =
[n − 1, n], that we call levels. We can then write each edge as a formal sum of the levels it covers:
ei =

∑π(i+1)−1
j=π(i) j when π(i) < π(i + 1) and ei = −

∑π(i)−1
j=π(i+1) j when π(i + 1) < π(i). Notice that

letting L(π) be the (n− 1)× (n− 1) matrix with entries −1, 0, 1 where

(L(π))ij =

{
sgn(π(i+ 1)− π(i))), if π(i) ≤ j < π(i+ 1) or π(i+ 1) ≤ j < π(i),

0, otherwise,

then we have that ei =
∑n−1
j=1 (L(π))ij · j, that is, e1

...
en−1

 = L(π) ·

 1
...

n− 1

 . (1)
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For ease of notation, we write j ∈ ei if (L(π))ij 6= 0.
The following lemma, whose proof is omitted in this extended abstract, states that L is a group homo-

morphism between Sn andGLn−1(C). Thus, L gives a representation of the symmetric group, which can
be shown to be isomorphic to the standard representation.

Lemma 2.2 For every π, τ ∈ Sn, we have L(τπ) = L(π)L(τ).

Noticing that L maps the identity permutation to the identity matrix, it follows from Lemma 2.2 that
L(π−1) = L(π)−1, and, in particular, thatL(π) is always invertible. Additionally, sinceL(π) andL(π−1)
are matrices with integral entries, they have integral determinants, and so det(L(π)) = ±1.

In order to classify equivalence classes, we first show that π ∼ τ if and only if L(π) and L(τ) are
related by permutations of rows and columns. In the following lemma, Pρ denotes the permutation matrix
associated to ρ; that is, (Pρ)ij equals 1 if ρ(i) = j and 0 otherwise.

Lemma 2.3 For π, τ ∈ Sn, π ∼ τ if and only if there exist σ, ρ ∈ Sn−1 such that Pρ−1L(π)Pσ = L(τ).

The proof of this lemma uses the fact that if we let Dπ = {x ∈ Rn−1 | p(x) = π}, then multiplication
by L(π) is a bijection from Rn−1>0 to Dπ . Thus, if ρ ∈ Sn−1 is such that (x1, . . . , xn−1) ∈ Dπ if and only
if (xρ(1), . . . , xρ(n−1)) ∈ Dτ , then multiplication by L(π−1)PρL(τ) is a bijection from Rn−1>0 to itself.
Since this matrix and its inverse have non-negative integer entries, it must be a permutation matrix Pσ .

If we consider the results of Lemma 2.3 in the context of an edge diagram, σ is applied to the levels
and ρ is applied to the edges. Since the edges of an edge diagram are unordered, we only need to consider
permutations of the levels by σ, as will be stated in Lemma 2.4.

We need a notation that describes edges in terms of levels. For vertices s, t ∈ [n] with s < t in
an edge diagram, we write the interval between s and t as [s, t] and define this to be the union of levels
s∪s+ 1∪. . .∪t− 1. We write an edge ei ∈ Eπ as a directed interval [π(i), π(i+1)]+ (if π(i) < π(i+1))
or [π(i+ 1), π(i)]− (if π(i) > π(i+ 1)) for 1 ≤ i ≤ n−1; the subscripts indicate upwards or downwards
direction, respectively. For example, in Figure 3, the edges in Eπ are e1 = [5, 7]+, e2 = [1, 7]−, e3 =
[1, 2]+, e4 = [2, 6]+, e5 = [6, 3]−, e6 = [3, 4]+. Given an edge e = [i, j]± ∈ Eπ and any interval [s, t],
we write [s, t] ⊆ e if [s, t] ⊆ [i, j] and e ⊆ [s, t] if [i, j] ⊆ [s, t].

Permuting the levels of an edge diagram by σ takes level i and moves it to height σ(i). Intervals and
edges are shifted accordingly: the interval [i, j] is moved to σ.[i, j] = σ(i) ∪ σ(i+ 1) ∪ . . . ∪ σ(j − 1)
(note that σ.[i, j] may no longer be an interval), and the edge [i, j]± is moved to (σ.[i, j])±, where the
sign is preserved. The set of images of elements of Eπ is denoted by Eσ.π , and we say that this is a well-
defined edge diagram if for every edge [i, j]± ∈ Eπ , σ.[i, j] is an interval. If Eσ.π is the edge diagram of a
permutation, we say that Eσ.π is a proper edge diagram and call the corresponding permutation σ.π.

Recall that the edge diagram of a permutation τ forms a path τ(1), τ(2), . . . , τ(n) where the vertices
τ(i) and τ(i+ 1) are connected by an edge ei. A well-defined edge diagram Eσ.π is proper if and only if
its edges form a path. This allows us to ignore the order of the edges in Eπ , since π can be recovered from
the path. This idea is useful when proving the following statement:

Lemma 2.4 Given π, τ ∈ Sn, π ∼ τ if and only if there exists σ ∈ Sn−1 such that Eσ.π = Eτ .

Example 2.5 Let π = 54621873, τ = 73218465 ∈ S8, whose edge diagrams are drawn in Figure 4,
and let σ = 2365471 ∈ S7. Then Eπ = {[4, 5]−, [4, 6]+, [2, 6]−, [1, 2]−, [1, 8]+, [7, 8]−, [3, 7]−} and
Eσ.π = {[3, 7]−, [2, 3]−, [1, 2]−, [1, 8]+, [4, 8]−, [4, 6]+, [5, 6]−} = Eτ . Therefore π ∼ τ .
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5
4

6

2
1

8
7

3

1

2

3

4

5

6

7

Eπ

σ=2365471Z−−−−−−−−→

1 7→ 2

2 7→ 3

3 7→ 6

4 7→ 5

5 7→ 4

6 7→ 7

7 7→ 1

=

Eτ

7

3
2

1

8

4

6
5

Eτ

Fig. 4: π = 54621873 is mapped to τ = 73218463 by applying σ = 2365471. The edges of Eτ are first
displayed in the same order as in Eπ , and then rearranged to form a path.

Definition 2.6 Let π ∈ Sn and σ ∈ Sn−1 such that Eσ.π is well-defined. We say that σ is valid with
respect to π if Eσ.π is proper. If σ is valid with respect to π, we will say that σ acts validly on π.

One of the goals of the next few sections to describe all σ that are valid with respect to π and understand
how they transform π. Note that if σ1, σ2 ∈ Sn−1 are such that Eσ1.π and Eσ2.(σ1.π) are proper edge
diagrams, then Eσ2.(σ1.π) = E(σ2σ1).π . Allowing edge diagrams that are not well-defined (meaning the
edges are not contiguous) would give a group action of Sn−1 on Sn, but for our purposes it is convenient
to restrict only to well-defined diagrams.

3 Valid Flips
In this section, we define an operation on edge diagrams that is analogous to a flip of a bordered cylindrical
block. The remaining sections will then focus on proving that any two equivalent permutations differ by
a sequence of these operations.

We will use the following two properties of edge diagrams:

(1) Let {pπ, qπ} = {π(1), π(n)} be the endpoints in the edge diagram for π (assume pπ < qπ). Then for
any i ∈ [n− 1], the number of edges that contain i is odd if i ∈ [pπ, qπ] and even otherwise. So, if σ
is valid with respect to π, then σ.[pπ, qπ] must be an interval.

(2) Define a cycle in an edge diagram to be a sequence of vertices v1, v2, v3, . . . , vk where either [vi, vi+1]+
or [vi+1, vi]− is an edge for every i, and either [vk, v1]+ or [v1, vk]− is an edge. If Eσ.π is well-defined,
then it does not contain a cycle.

Property (1) is straightforward. To prove property (2), one can show that a cycle in Eσ.π would require
the existence of a cycle in Eπ .

Property (1) suggests a slight alteration to our edge diagrams. Since [pπ, qπ] must remain an interval,
any σ that is valid with respect to π must treat [pπ, qπ] as if it were a “phantom” edge. Let [pπ, qπ]± be
an edge such that sgn([pπ, qπ]±) = 1 if π(n) < π(1) and sgn([pπ, qπ]±) = −1 if π(1) < π(n). Define a
modified edge diagram on a permutation π to be E?π = Eπ ∪ [pπ, qπ]?±. The ornamentation on [pπ, qπ]?± is
needed to ensure there is a bijective correspondence between permutations and modified edge diagrams.
This added edge, which converts the path of Eπ into a cycle, will be represented with a dashed line in a
drawing of E?π (see Figure 5). However, [pπ, qπ]?± is mathematically treated like any other edge.
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The terminology from edge diagrams can be naturally extended to modified edge diagrams. For in-
stance, we say that σ.E?π = {σ.e | e ∈ E?π} is well-defined if σ.[i, j] is an interval for every edge
[i, j]± ∈ E?π . Additionally, σ.E?π is proper if Eσ.π is proper.

Lemma 3.1 Let π ∈ Sn and σ ∈ Sn−1 such that σ.E?π is a well-defined edge diagram. Then σ.E?π forms
a cycle if and only if Eσ.π is a proper edge diagram.

The proof of Lemma 3.1 requires using property (2) to show that Eσ.π will form a path whenever σ.E?π
forms a cycle. As a consequence of Lemma 3.1, working with modified edge diagrams is analogous to
working with edge diagrams. Additionally, σ.E?π will be notated as E?σ.π .

Define a flip to be a permutation σ ∈ Sn−1 of the form

σ =
( 1 2 3 ··· i−1 i i+1 ··· j−1 j ··· n−1
1 2 3 ··· i−1 j−1 j−2 ··· i j ··· n−1

)
where j > i+ 1. We say that σ flips the interval [i, j].

Since adjacent transpositions are a particular case of flips, it is clear that flips generate Sn−1. Given any
interval [i, j] in E?π , we say that [i, j] respects E?π if for every e ∈ E?π , e ⊆ [i, j], [i, j] ⊆ e, or [i, j]∩ e = ∅.

Lemma 3.2 Suppose that σ ∈ Sn−1 is a flip of the interval [i, j] (where j > i+ 1). Then σ is valid with
respect to π if and only if [i, j] respects E?π .

We omit the proof of this lemma. The idea is that the cycle in E?π behaves well in relation to the interval
[i, j]. Therefore, flipping [i, j] will simply reorder certain portions of the cycle.

The intervals mentioned in Lemma 3.2 correspond to bordered cylindrical blocks. We therefore call a
flip as described in Lemma 3.2 a valid flip (with respect to π) and the interval it flips a valid interval (in
E?π). In general, we say that σ transforms π by a sequence of valid flips if there exist σ1, . . . , σl ∈ Sn−1
with σlσl−1 · · ·σ1 = σ such that σi is a valid flip with respect to σi−1σi−2 . . . σ1.π for every i.

Lemma 3.3 For every π ∈ Sn, the interval [i, j] is valid in E?π if and only if in the grid of π, the values
[i, j] (which are in positions π−1(i), π−1(i+1), . . . , π−1(j)) form a bordered cylindrical block or [i, j] =
[1, n]. In this case, flipping the valid interval [i, j] in E?π is equivalent to flipping the corresponding
bordered cylindrical block in the grid of π, or, when [i, j] = [1, n], to taking the reverse-complement.

2
3

5
4

6

1
1

2

3

4

5

π = 235461

7→
5

3
4

2

6

1
1

2

3

4

5

τ = 243561 π = 235461

7→

τ = 243561

Fig. 5: Flipping valid interval [2, 6] in the edge diagram for π = 235461 yields the same result as flipping
the bordered cylindrical block with values [2, 6] (and positions [1, 5]) in the grid of π.

For an example of Lemma 3.3, see Figure 5. Now we can restate Theorem 2.1 as follows:

Theorem 3.4 Let π, τ ∈ Sn. Then π ∼ τ if and only if τ can be obtained from π by a sequence of valid
flips.
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In order to prove this theorem, we need to further explore the structure of edge diagrams. The aim of
the definitions and lemmas in the following section will be to decompose our edge diagrams into nested
structures to which we will be able to apply an inductive argument.

4 Irreducible Intervals
For given π ∈ Sn, most permutations of the levels of its edge diagram are not valid. Our induction
argument will rely on the ability to partition the levels of the edge diagram into intervals that remain
intervals under any valid permutation of the levels. We first introduce the idea of an irreducible interval,
which is a maximal interval whose levels remain adjacent under the action of any valid permutation. Then
we show that every edge diagram can be uniquely partitioned into intervals of this type.

Definition 4.1 Let π ∈ Sn. An interval [s, t] in the modified edge diagram of π is said to satisfy the linked
conditions if, for every σ ∈ Sn−1 that is valid with respect to π, the following are true:

(1) The image σ.[s, t] is an interval.

(2) If we let i, j ∈ [n] be such that σ.[s, t] = [i, j], then the ordered tuple (σ(s), σ(s + 1), σ(s +
2), . . . , σ(t− 1)) equals either (i, i+ 1, . . . , j − 1) or (j − 1, j − 2, . . . , i).

Additionally, [s, t] is called an irreducible interval if it is a maximal interval that satisfies the linked
conditions (i.e. for any interval [x, y] such that [s, t] ( [x, y], [x, y] does not satisfy the linked conditions).

Note that any proper subinterval of an irreducible interval will satisfy the linked conditions but will fail
the maximality condition.

Lemma 4.2 For any π ∈ Sn, the interval [1, n] in the modified edge diagram of π can be uniquely
partitioned into irreducible intervals.

Proof: Suppose that [s, t] and [u, v] are irreducible intervals with a nonempty intersection. By the max-
imality condition, [s, t] cannot properly contain [u, v] and vice versa. Without loss of generality, assume
that s ≤ u and t ≤ v. Then [s, t] ∩ [u, v] = [u, t]. Since both [s, t] and [u, v] satisfy the linked conditions,
every σ that is valid with respect to π maps [s, t] and [u, v] to intervals. Since these intervals have non-
empty intersection, it follows that σ maps [s, t] ∪ [u, v] = [s, v] to an interval. In fact, the second linked
condition for [s, t] and [u, v] quickly implies that [s, v] satisfies the condition as well. By the maximality
of irreducible intervals, this is only possible if s = u and t = v. Therefore, any two irreducible intervals
are either disjoint or equal.

Since intervals of width 1 trivially satisfy the linked conditions, it is clear that every level of the edge
diagram is contained in some irreducible interval. The condition on maximality for irreducible intervals
implies that the partition is unique. 2

We let Iπ = {[xi, xi+1] : 0 ≤ i < k}, where x0 = 1 and xk = n, denote the partition of the levels of
some E?π into irreducible intervals. We call Iπ the irreducible partition of π, and we call the xi its borders.

It is not true that every irreducible interval is valid; for instance, interval [1, 4] in Figure 6(c) is irre-
ducible but not valid. However, any valid interval is the union of adjacent irreducible intervals. Indeed,
given an interval [i, j] that is valid (so j > i+ 1) with respect to E?π , we know by Lemma 3.2 that if σ flips
[i, j], then E?σ.π is proper. When j 6= i+ 1, this implies that i and j are borders of the irreducible partition
Iπ , since σ.(i− 1 ∪ i) = i− 1 ∪ j − 1 and σ.(j − 1 ∪ j) = i ∪ j are not intervals.
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Finding irreducible intervals using Definition 4.1 is impractical. A corollary to Theorem 3.4, omitted
in this extended abstract, states that irreducible intervals are completely determined by the valid intervals.
More precisely, any interval [a, b] satisfies the linked conditions if and only if [a, b] is contained in or
disjoint from every valid interval in E?π . Thus, xi is a border of Iπ if and only if xi is an endpoint of
some valid interval. The proof is not obvious; a correspondence between valid intervals in equivalent
permutations is established in order to derive these facts.

Although a few permutations only have irreducible intervals of width one, such as 1 2 3 . . . n and
1n (n − 1) . . . 2, permutations often have wide irreducible intervals. For instance, whenever an edge
diagram has an edge of width two, the two levels covered by this edge must remain adjacent, thereby cre-
ating an irreducible interval with width at least 2. In fact, many permutations have one single irreducible
interval [1, n]. Examples of irreducible intervals are given in Figure 6.
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(a) The modified edge diagram for
435216 has two irreducible inter-
vals: [1, 2] and [2, 6].
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(b) The modified edge diagram for
35241 has one irreducible interval:
[1, 5].
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(c) The modified edge diagram for
1327564 has two irreducible inter-
vals: [1, 4] and [4, 7].

Fig. 6: Examples of irreducible intervals

Definition 4.1 and Lemma 4.2 allow us to consider signed permutations of the irreducible intervals of
π, rather than unsigned permutations of the levels, since every σ that is valid with respect to π permutes
and possibly flips its irreducible blocks. Recall that a signed permutation is a bijection µ : [−n] ∪ [n] →
[−n] ∪ [n] (where [−n] ∪ [n] = {−n, . . . ,−1, 1, . . . , n}) such that µ(−i) = −µ(i) for all i ∈ [n].
We write the signed permutation µ as µ(1)µ(2) . . . µ(n), leaving out the images of the negative numbers
since they follow, and writing µ(i) instead of −µ(i). Note that the barring operation is an involution, i.e.
µ(i) = µ(i). Let |µ(i)| denote the entry µ(i) without a bar. We denote the set of signed permutations of
length k by Bk, and the infinite set of all signed permutations by B.

If π ∈ Sn has k irreducible intervals, we can apply a signed permutation µ ∈ Bk to the edge diagram
of π as follows. Each entry of µ describes where the corresponding irreducible interval of π is moved,
and a barred entry indicates that the order of the levels inside the irreducible interval is reversed. As an
example, see Figure 7. We denote the image of applying µ to the irreducible intervals of a modified edge
diagram, E?π , by E?µ.π . If, additionally, this is a proper modified edge diagram, we say that µ is valid with
respect to π and denote the corresponding permutation by µ.π.

We need to generalize our notion of a valid flip to signed permutations. If [xi, xj ] is a valid interval in
E?π , then we say that µ = 1 2 · · · i j j−1 · · · i+1 j+1 · · · k ∈ Bk is a valid flip with respect to π. We
say that µ transforms π by a sequence of valid flips if there exist µ1, . . . , µl ∈ Bk with µlµl−1 · · ·µ1 = µ
such that µi is a valid flip with respect to µi−1µi−2 . . . µ1.π for all i.

We can now restate our main theorem using the irreducible partition.
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Fig. 7: 2 1 3 5 4 6 9 7 8 10 is mapped to 1 3 2 4 7 5 6 8 10 9 by applying µ = 3̄12̄.

Theorem 4.3 Let π, τ ∈ Sn where π has k irreducible intervals. Then π ∼ τ if and only if there exists
some µ ∈ Bk such that E?µ.π = E?τ and µ transforms π by a sequence of valid flips.

5 Cohesive Intervals and Partitions
In this section, we introduce the notion of a cohesive partition, a generalization of the irreducible partition.
We are going to induct on the number of blocks of a partition of the edge diagram of π, so the purpose of
this generalization is to have a method of coarsening the irreducible partition.

Definition 5.1 Let π ∈ Sn with k irreducible intervals. We say that an interval [a, b] is cohesive in π if
(1) [a, b] is a valid interval in E?π , and (2) for every µ ∈ Bk that is valid with respect to π, µ.[a, b] is an
interval.

Condition (2) is difficult to check, since one would in principle have to verify the property for all signed
permutations of length k. Notice that every edge in E?π satisfies condition (2), but most will fail (1). All
irreducible intervals satisfy condition (2), but not necessarily condition (1), as is the case for interval [1, 4]
in Figure 6(c). Some examples of cohesive intervals are given in Figure 8; notice that [1, 7] and [6, 10] are
valid intervals but not cohesive. Since all cohesive intervals are valid, they are the union of consecutive
irreducible intervals; we will sometimes use the borders xi of the irreducible partition to describe them.
For convenience, we write {a0, a1, . . . , al}< to denote the partition into intervals [ai, ai+1] for 0 ≤ i < l.
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Fig. 8: In E?π , where π = 1 10 8 9 7 6 2 4 3 5, the intervals [1, 6], [1, 10], [2, 5], and [7, 10] are cohesive.
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Definition 5.2 A partition P = {xs = a0, a1, a2, . . . , al = xt}< of a cohesive interval [xs, xt] is called
a cohesive partition if [ai, ai+1] is irreducible or cohesive for every 1 ≤ i < l.

Cohesive partitions provide us a more general setting to prove our main theorem: we will consider
signed permutations of the blocks in P that result in a valid modified edge diagram, and show that all such
permutations are sequences of valid flips. We can then prove Theorem 4.3 as a special case, using that
[1, n] is a cohesive interval and the irreducible partition is a cohesive partition.

In the rest of this section, we assume that π ∈ Sn has k irreducible intervals, and we use P =
{a0, a1, a2, . . . , al}< to denote a cohesive partition of the cohesive interval [xs, xt]. The notation [xs, xt]P
is used when considering [xs, xt] as a union of the blocks of P . This is in contrast to [xs, xt], which is
thought of as a union of levels.

In order to consider signed permutations of the blocks for a partition P in a cohesive interval [xs, xt],
we need to introduce a few definitions. Given µ ∈ Bk, its reverse-complement is the signed permutation
with µRC(i) = µ(k − i+ 1) for 1 ≤ i ≤ k. For α1, α2, . . . , αk ∈ B, we define the inflation of µ
by α1, α2, . . . , αk to be the signed permutation obtained by replacing each µ(i) with a block that has
the pattern αi if µ(i) is positive, and αRCi if µ(i) is negative. The relative ordering of the blocks is
determined by the relative unsigned ordering on µ (meaning we consider simply absolute values). We
denote this inflation by µ[α1, α2, . . . , αk]. For example, 31̄2[2̄1, 3̄12̄, 1] = 6̄5 21̄3 4.

In the following definition, 1 stands for the identity permutation of length one and 1t stands for the
identity permutation of length t. We write 1l to denote a sequence of l ones.

Definition 5.3 We say that µ ∈ Bl is valid with respect to [xs, xt]P if 1k−t+s+1[1s, µ′, 1k−t] ∈ Bk is
valid with respect to π, where µ′ = µ[1m0

,1m1
, . . . ,1ml−1

] ∈ Bt−s and mi is the number of irreducible
intervals contained in [ai, ai+1].

Cohesive partitions play an important role in our proof. In some cases, P contains a proper cohesive
interval, which is a cohesive interval [ai, aj ] where j 6= i+1 and (i, j) 6= (0, l). In these cases, we are able
to create two new cohesive partitions, P ′ = {a0, a1, . . . , ai, aj , . . . , al}< and P̃ = {ai, ai+1, . . . , aj}<,
and use them to decompose the action of a valid µ, as described in the following lemma.

Lemma 5.4 Let µ ∈ Bl be valid with respect to [xs, xt]P . If [ai, aj ] is a proper cohesive interval, there
exist α ∈ Bl−j+i+1 and β ∈ Bj−i such that µ = α[1i, β, 1l−j ]. Additionally, β is valid with respect to
[ai, aj ]P̃ .

The idea of the proof, which is omitted in this extended abstract, is that there are only two obvious
choices for our α, β pair. In one of them, α(i) is positive, and in the other it is negative. One can show
that both of these choices make β valid with respect to [xi, xj ]P̃ . Since µ is valid with respect to [xs, xt]P ,
this amounts to examining the behavior of the cycle at the vertices ai and aj after applying β; showing
that both ai and aj have indegree and outdegree one is enough to show that the result is a cycle.

We now have all the tools needed to handle the main theorem. In fact we prove the following more
general statement about cohesive partitions.

Proposition 5.5 Every µ ∈ Bl that is valid with respect to [xs, xt]P transforms [xs, xt]P by a sequence
of valid flips.

The idea of the proof, again omitted, is that if P contains a proper cohesive interval [ai, aj ], we can
then use induction to find a sequence of valid flips that first permutes the intervals inside of [ai, aj ] and
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then the intervals outside of [ai, aj ]. The difficulty comes when there is no proper cohesive interval. We
deal with this case separately and directly in the proof.

Theorem 4.3, and thus its equivalent restatements Theorems 3.4 and 2.1, follow now as a consequence
of Proposition 5.5 taking l = k, s = 0, t = k and P = Iπ , the irreducible partition.

6 Future Work
We have defined a natural equivalence ∼ on permutations and characterized the equivalence classes using
valid flips. We conjecture that our equivalence classes describe precisely when two permutations are
obtained with the same probability in a random walk regardless of the probability distribution on the
steps. We are currently working on proving this statement.

Conjecture 6.1 For π, τ ∈ Sn, P(p(X1, X2, . . . , Xn−1) = π) = P(p(X1, X2, . . . , Xn−1) = τ) for
every probability distribution on the i.i.d. random variables X1, X2, . . . , Xn−1 if and only if π ∼ τ .
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