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Introduction

A k-triangulation of a regular convex n-gon is a maximal set of edges of the n-gon such that no k+1 of them mutually cross. J. Jonsson showed non-bijectively that the number of k-triangulations of an (n+2k+1)-gon was equal to the number of plane partitions of height at most k in a staircase in [START_REF] Jonsson | Generalized triangulations and diagonal-free subsets of stack polyominoes[END_REF]. L. Serrano and C. Stump proved this result bijectively in [START_REF] Serrano | Generalized triangulations, pipe dreams, and simplicial spheres[END_REF], synthesizing work in [START_REF] Billey | Some combinatorial properties of Schubert polynomials[END_REF][START_REF] Fomin | Reduced words and plane partitions[END_REF][START_REF] Pilaud | Multitriangulations, pseudotriangulations and primitive sorting networks[END_REF][START_REF] Woo | Catalan numbers and Schubert polynomials for w = 1(n + 1)[END_REF].

Theorem 1 ([26])

There is an explicit bijection between k-triangulations of an (n+2k+1)-gon and plane partitions of height at most k in a staircase of size n. D. Soll and V. Welker introduced centrally symmetric k-triangulations of a 2n-gon as a type B analogue of k-triangulations [START_REF] Soll | Type-B generalized triangulations and determinantal ideals[END_REF]. They conjectured that the number of centrally symmetric k-triangulations of a 2(n+k)-gon was equal to the number of plane partitions in an n × n × k box (and proved it as a lower bound). Their formula was subsequently proven non-bijectively by M. Rubey and C. Stump [START_REF] Rubey | Crossings and nestings in set partitions of classical types[END_REF]. The main result of this abstract may be interpreted as a bijective proof of this fact.

Theorem 2 There is an explicit bijection between centrally symmetric k-triangulations of a 2(n+k)-gon and plane partitions of height at most k in a square of size n. Examples of Theorems 1 and 2 are given in Figures 2, 3, and4. To explain our approach to the bijection, we provide some additional context. V. Pilaud and M. Pocchiola introduced a duality between the k-stars in a k-triangulation and pseudolines, and showed that k-triangulations may be interpreted as certain pseudoline arrangements [START_REF] Pilaud | Multitriangulations, pseudotriangulations and primitive sorting networks[END_REF]. C. Stump rephrased this bijection in Coxeter-theoretic language [START_REF] Stump | A new perspective on k-triangulations[END_REF], and a generalization of k-triangulations to all finite Coxeter groups was subsequently defined by C. Ceballos, J.-P. Labbé, and C. Stump [START_REF] Ceballos | Subword complexes, cluster complexes, and generalized multi-associahedra[END_REF]. Their construction recovers k-triangulations in type A n and centrally symmetric k-triangulations in type B n .

Following [START_REF] Ceballos | Subword complexes, cluster complexes, and generalized multi-associahedra[END_REF], define S c (W, k) to be the set of subwords for w • in the (non-reduced) word c k w • (c), where c is a Coxeter element and w • (c) is the c-sorting word for w • (see the discussion before Definition 7). In crystallographic type, let J (W, k) := J (Φ + (W ) × [k]) be the set of plane partitions of height k in the positive root poset Φ + (W ) (see Definition 15). In types H 3 and I 2 (m), we use D. Armstrong's surrogate "root posets" [START_REF] Armstrong | Generalized noncrossing partitions and combinatorics of Coxeter groups[END_REF].

Theorem 3 ([6, 32]) For W = A n , B n , H 3 , or I 2 (m) and k > 0, | S c (W, k)| = | J (W, k)|.
For W a finite Coxeter group, let R(W ) be the set of reduced words for the longest element w • , and if W is additionally a Weyl group then let L(W ) be the set of linear extensions of the positive root poset Φ + (W ). P. Edelman and C. Greene found a bijection between R(W ) and L(W ) in type A n , and M. Haiman proved the corresponding result in type B n (confirming a conjecture of R. Proctor) [START_REF] Edelman | Balanced tableaux[END_REF][START_REF] Haiman | Dual equivalence with applications, including a conjecture of Proctor[END_REF]. In the noncrystallographic types H 3 and I 2 (m), it was observed in [START_REF] Williams | Cataland[END_REF] that linear extensions of D. Armstrong's "root posets" also satisfy a similar bijection with R(W ).

Theorem 4 ( [START_REF] Edelman | Balanced tableaux[END_REF][START_REF] Haiman | Dual equivalence with applications, including a conjecture of Proctor[END_REF][START_REF] Stanley | On the number of reduced decompositions of elements of Coxeter groups[END_REF][START_REF] Williams | Cataland[END_REF]) For W = A n , B n , H 3 , or I 2 (m), there is a bijection between R(W ) and L(W ).

Ignoring redundancies like D 3 ∼ = A 3 , neither Theorem 4 nor Theorem 3 holds in other finite types (for this reason the types A n , B n , H 3 , and I 2 (m) are called "coincidental" in [START_REF] Williams | Cataland[END_REF]). Since A n , B n , H 3 , and I 2 (m) each have a linear Coxeter diagram, we may permanently fix c to be a product of simple reflections from left to right in the diagram and write S(W, k) := S c (W, k).

In this language, we now explain the bijection of Theorem 1 to motivate our bijection in Theorem 2. In type A n and for k = 1, A. Woo used an observation of [START_REF] Billey | Some combinatorial properties of Schubert polynomials[END_REF] to induce P. Edelman and C. Greene's bijective proof of Theorem 4 into a bijective proof of Theorem 3 [START_REF] Woo | Catalan numbers and Schubert polynomials for w = 1(n + 1)[END_REF]. L. Serrano and C. Stump subsequently extended A. Woo's construction to all k, explicitly connecting V. Pilaud and M. Pocchiola's pseudoline arrangements with E. Miller and A. Knutson's subword complex [START_REF] Knutson | Subword complexes in Coxeter groups[END_REF][START_REF] Serrano | Generalized triangulations, pipe dreams, and simplicial spheres[END_REF]. This theorem may be summarized as saying that in type A n , there is a "combinatorial lift" of Theorem 4 to Theorem 3:

S(A n , k) Theorem 3 , , / / R(A n ) Theorem 4 / / L(A n ) / / J (A n , k) . (1) 
Surprisingly, the analogous procedure in the remaining types-types B n , H 3 , and I 2m -does not quite work. In this paper, we propose a similar result in type B n , proving a conjecture from [START_REF] Williams | Cataland[END_REF]. Our bijection is most easily explained using the cube of Figure 2, which displays the relationships between reduced words R, linear extensions L, subwords S, and plane partitions J of both type B n and for the parabolic quotient A n 2n-1 := A {sn} 2n-1 (see Definition 11 for the definitions of R, L, S, and J for A n 2n-1 ).

R(A n 2n-1 ) Fully commutative (C L R : Corollary 12) Little map (L R : Theorem 18) L(A n 2n-1 ) Rectification (R L : Theorem 16) R(B n ) Kraśkiewicz Insertion (K : Theorem 4) L(B n ) S(B n , k) No known bijection Theorem 2 J (B n , k) S(A n 2n-1 , k)
Fully commutative (C J S : Corollary 14)

Little map (L S : Proposition 21)

J (A n 2n-1 , k)
No known bijection Fig. 2: The bijections between R, L, S, and J for Bn and A n 2n-1 .

In this cube, two vertices are connected by a solid line iff they are equinumerous. The dotted lines represent where a "combinatorial lift" may take place-for example, linear extensions are maximal chains of order ideals and reduced words are maximal chains in the weak order. Note that one can draw similar cubes in types A n , H 3 , and I 2 (m) [START_REF] Williams | Cataland[END_REF].

Our bijection between centrally symmetric k-triangulations and plane partitions may be interpreted as

KR : S(B n , k) / / R(B n ) K / / L(B n ) R L / / L(A n 2n-1 ) / / J (A n 2n-1 , k) , (2) 
which-as with L. Serrano and C. Stump's type A n result [START_REF] Serrano | Generalized triangulations, pipe dreams, and simplicial spheres[END_REF]-is again a "combinatorial lift" of Theorem 4, but now combined with a necessary extra step to the parabolic quotient. Figure 2 suggests the second, more direct, path

LC : S(B n , k) L S / / S(A n 2n-1 , k) C J S / / J (A n 2n-1 , k) , (3) 
which is based on the type B n Little map. We prove Theorem 2 by showing that LC is a bijection and also show that LC = KR.

It is clear that Theorem 1 is a bijective version of Theorem 3 in type A n , but this is not immediately the case for Theorem 2. Indeed, although R. Proctor proved that | J (B n , k)| = | J (A n 2n-1 , k)| by interpreting each side as a representation of Lie algebras and then equating them with a branching rule [START_REF] Proctor | Shifted plane partitions of trapezoidal shape[END_REF], we do not know of a bijection between plane partitions of height k in a trapezoid and in a square. Without such a correspondence, Theorem 2 fails to provide a bijection between S(B n , k) and J (B n , k).

The remainder of this abstract is structured as follows. In Section 2, we recall the correspondence between k-triangulations and centrally symmetric k-triangulations and certain subwords of types A and B. In Section 3, we give the bijections for fully commutative elements, explaining the outer square of Figure 2. In Section 4, we relate reduced words and linear extensions of types A n 2n-1 and B n , explaining the top square of Figure 2. In Section 5, we recall Theorem 1 in greater detail. In Section 6, we state and prove our bijection between centrally symmetric k-triangulations and plane partitions in a box, establishing Theorem 2. Finally, in Section 7, we discuss generalizations and future directions of research.

k-Triangulations and Subwords

In this section, we introduce k-triangulations and we recall the bijection between k-triangulations of an (n+2k+1)-gon and S(A n , k) and centrally symmetric k-triangulations of an 2(n+k)-gon and S(B n , k).

Definition 5 A k-triangulation T of a regular convex n-gon is a maximal set of diagonals of the n-gon such that no k+1 of them are mutually crossing. We write Tri A (n, k) for the set of all such T . A centrally symmetric k-triangulation T of a 2n-gon is k-triangulation that is invariant under rotation of the 2n-gon by π radians. We write Tri B (2n, k) for the set of all such T . The simplicial complex generated by all subsets of elements of Tri A (n, k) generalizes the type A n associahedron, which is obtained for Tri A (n+3, 1). In [START_REF] Jonsson | Generalized triangulations and diagonal-free subsets of stack polyominoes[END_REF], J. Jonsson enumerated Tri A (n, k). The centrally symmetric k-triangulations were introduced to generalize R. Simion's type B n associahedron; |Tri B (2n, k)| was conjectured in [START_REF] Soll | Type-B generalized triangulations and determinantal ideals[END_REF] and proven non-bijectively in [START_REF] Rubey | Crossings and nestings in set partitions of classical types[END_REF].

Theorem 6 ( [START_REF] Jonsson | Generalized triangulations and diagonal-free subsets of stack polyominoes[END_REF][START_REF] Rubey | Crossings and nestings in set partitions of classical types[END_REF]) The number of k-triangulations and centrally symmetric k-triangulations are given by

|Tri A (n+2k+1, k)| = 1≤i≤j≤n i + j + 2k i + j and |Tri B (2(n+k), k)| = k h=1 n i=1 n j=1 h + i + j -1 h + i + j -2 .
Our main theorem, Theorem 2, is therefore a bijective proof of this enumeration for Tri B (2(n+k), k).

An edge is called k-relevant if it has at least k vertices on either side (not including its end points). The k-relevant edges are exactly those that could be involved in a (k+1)-crossing, so that every k-triangulation contains all non-k-relevant edges. A k-star is a set of edges of the form {v j v j+k : j ∈ Z 2k+1 }, for some set of vertices v 0 , v 1 , . . . , v 2k that are in order clockwise about the n-gon. By extending properties of triangles to k-stars, V. Pilaud and P. Santos defined an analogue of the Tamari lattice on k-triangulations [START_REF] Pilaud | Multitriangulations as complexes of star polygons[END_REF]. Drawing on the structure given by the k-stars and a duality-which we do not explain here, although see the remark after Theorem 8-between k-stars and pseudolines, V. Pilaud and M. Pocchiola discovered an elegant bijection between multitriangulations and certain pseudoline arrangements [START_REF] Pilaud | Multitriangulations, pseudotriangulations and primitive sorting networks[END_REF]. It is most efficient for our purposes to describe these pseudoline arrangements using a restatement of this bijection due to C. Stump in type A n and due to C. Ceballos, J. P. Labbé, and C. Stump for all finite Coxeter groups [START_REF] Ceballos | Subword complexes, cluster complexes, and generalized multi-associahedra[END_REF][START_REF] Stump | A new perspective on k-triangulations[END_REF].

Let (W, S) be a finite Coxeter system. A Coxeter element c = s π1 s π2 • • • s πn is a product of the simple reflections S in any order. Since we will only consider types A n , B n , H 3 , and I 2 (m), we now permanently fix a reduced word c-and hence a Coxeter element c-in each type to be the product from left to right of the following labelings of the Coxeter diagrams by simple reflections: Theorem 8 [START_REF] Ceballos | Subword complexes, cluster complexes, and generalized multi-associahedra[END_REF][START_REF] Pilaud | Multitriangulations, pseudotriangulations and primitive sorting networks[END_REF] There are bijections between S(A n , k) and Tri A (n+2k+1, k), and between S(B n , k) and Tri B (2(n+k), k).

A n B n H 3 I 2 (m) s 1 s 2 • • • s n-1 s n s 0 4 s 1 • • • s n-2 s n-1 s 1 5 s 2 s 3 s 1 m s 2 For w ∈ W , a subword for w in a (possibly infinite) word a = a 1 a 2 a 3 • • • with a i ∈ S is a reduced word a i1 a i2 • • • a i for w such that i 1 < i 2 < • • • i . The c
In type A n , the bijection of Theorem 8 associates k-relevant edges with letters of c k w • (c). In type B n , the bijection associates k-relevant symmetric pairs of edges with letters. For example, see Figures 3 and4. For more details, see the excellent examples in [START_REF] Ceballos | Subword complexes, cluster complexes, and generalized multi-associahedra[END_REF].

Correspondences for Fully Commutative Elements

This section briefly describes the square of Figure 2 containing the objects R(A n 2n-1 ), L(A n 2n-1 ), S(A n 2n-1 , k), and J (A n 2n-1 , k). Let (W, S) be a finite Coxeter system and for w ∈ W let R(w) be the set of reduced words in the simple generators S for w. Any two reduced words w, w ∈ R(w) may be transformed to each other using only braid moves-that is, the graph on R(w) with edges given by braid moves is connected. We say that w and w lie in the same commutation class if one may be transformed into the other using only commutations.

Definition 9 An element w ∈ W is fully commutative iff all reduced words for w lie in the same commutation class.

For w fully commutative, the interval in the weak order [e, w] is a distributive lattice (and coincides with corresponding interval in the Bruhat order) [START_REF] Stembridge | On the fully commutative elements of Coxeter groups[END_REF]. To see this, we construct its poset of join-irreducibles.

Fix w ∈ W and let w = w 1 • • • w be a reduced word for w, so that w i ∈ S and = (w) is the length of w. Define a partial order ≺ w on [ ] by the transitive closure of the relations i ≺ w j if i < j and w i w j = w j w i . This partial ordering defines a "root poset" Φ + (w) on [ ] called a heap [START_REF] Stembridge | On the fully commutative elements of Coxeter groups[END_REF][START_REF] Viennot | Heaps of pieces, I: Basic definitions and combinatorial lemmas[END_REF]. We may label the elements of Φ + (w) by replacing i by a i . If w, w are any two reduced words for a fully commutative element w, then it is not difficult to see that Φ + (w) and Φ + (w ) are isomorphic. We may therefore refer to the heap Φ + (w) of a fully commutative w ∈ W .

Recall that a linear extension of a finite poset P with elements is a bijection L : P → [ ] such that if p ≺ P p ∈ P, then L(p) < L(p ). The weak order interval [e, w] is now described by Φ + (w).

Theorem 10 ( [START_REF] Stembridge | On the fully commutative elements of Coxeter groups[END_REF]) For w fully commutative, there is a bijection between L(Φ + (w)) and R(w). This induces a bijection between J (Φ + (w)) and the elements in the interval [e, w].

Proof: The first statement is clear from the definitions: a linear extension L : Φ + (w) → [ ] corresponds to the reduced word i=1 w L -1 (i) . For the second statement, fix an order ideal I of Φ + (w), choose any linear extension L of Φ + (w) with initial part in I-that is, such that L(j) ≤ |I| for j ∈ I. The element in [e, w] corresponding to I is then

|I| i=1 w L -1 (i) . 2 
We remark that Theorem 10 already gives us the flavor of a "combinatorial lift," since it uses the correspondence between L(Φ + (w)) and R(w) to induce a bijection between J (Φ + (w)) and [e, w].

Let J ⊆ S be a subset of the simple generators and let W J be the corresponding parabolic subgroup of W generated by J. The parabolic quotient W J is the set of minimal coset representatives for W/W J [START_REF] Björner | Combinatorics of Coxeter groups[END_REF]. For finite W , the parabolic quotient W J has a longest element w J

• and

W J is the interval [e, w J • ]. Definition 11 Let w {sn} • be the longest element of A n 2n-1 := A {sn} 2n-1 . We write R(A n 2n-1 ) := R(w {sn} • ), L(A n 2n-1 ) := L(Φ + (w {sn} • )), S(A n 2n-1 , k) := S(c k+n , w {sn} • ), J (A n 2n-1 , k) := J (Φ + (w {sn} • ) × [k]).
It is easy to check that Φ + (w

{sn} •
) is an n × n square-the inversions of w {sn} •

are the order filter in the root poset Φ + (A 2n-1 ) generated by the simple root α n . Since the element w {sn} • is fully commutative, Theorem 10 implies the following corollary [START_REF] Stembridge | On the fully commutative elements of Coxeter groups[END_REF].

Corollary 12 There is a bijection C L R between R(A n 2n-1 ) and L(A n 2n-1 ). We now explain the map between S(A n 2n-1 , k) and J (A n 2n-1 , k). Let w ∈ W be a fully commutative element, and fix a reduced word

w = w 1 w 2 • • • w with w i ∈ S. For such a w, let t w,i = w 1 • • • w i-1 w i w i-1 • • • w 1 . Let a = a 1 a 2 • • • a r
with a i ∈ S be a (possibly non-reduced) word in the simple reflections. For each letter w i of w, let a(i) := {j : j = i t for some 1 ≤ t ≤ in some w = a i1 • • • a i ∈ S(a, w) such that t w,i = t w ,j } be the set of letters of a corresponding to the letter w i of w in some subword of S(a, w). Since w is fully commutative, the set {a(i) : 1 ≤ i ≤ } does not depend on the initial choice w. Define the set of triples

Φ + (a, w) := {(i, a, b) : 1 ≤ i ≤ , a < b ∈ a(i) with no c ∈ a(i) for which a < c < b}.
We now endow Φ + (a, w) with a partial order given by the transitive closure of the relations (i, a, b) a (i, b, c) and (j, c, d) a (i, a, b) if i < j, w i and w j don't commute, and a < c. We call this partial ordering the subword heap for w with respect to a, and denote it by Φ + (a, w) [START_REF] Williams | Cataland[END_REF].

Theorem 13 ([32]) For w ∈ W fully commutative, there is a bijection between J (Φ + (a, w)) and S(a, w).

Proof: An order ideal I ∈ J (Φ + (a, w)) corresponds to the subword a i1 • • • a i of S(a, w), where for 1 ≤ j ≤ , we set i j := min ({a : (j, a, b) ∈ I} ∪ {max{b : (j, a, b) ∈ Φ + (a, w)}}) .

2

Since c = s 1 s 2 • • • s 2n-1 , w {sn} •
is fully commutative, and w {sn} • has the explicit reduced word

(s n • • • s 2n-1 )(s n-1 • • • s 2n-2 ) • • • (s 1 • • • s n ), Theorem 13

implies the following corollary.

Corollary 14 There is a bijection C J S between S(A n 2n-1 , k) and J (A n 2n-1 , k).

Reduced Words, Linear Extensions, and Little Bumps

This section describes the square of Figure 2 containing R(B n ), L(B n ), R(A n 2n-1 ), and L(A n 2n-1 ).

Reduced Words and Linear Extensions

This section provides more detail on the highly nontrivial Theorem 4. In particular, we describe the bijections between R(B n ) and L(B n ) and between R(A n ) and L(A n ). When w is not fully commutative, R(w) becomes a connected graph only when we are allowed both commutations and the longer braid moves of W (see Theorem 3.3.1 in [START_REF] Björner | Combinatorics of Coxeter groups[END_REF]). The theory of the previous section therefore cannot be applied to general reduced words. Remarkably, there is a poset that often behaves like a heap for the longest element w • of W . Recall that a general Coxeter group has a correspondence between its reflections T := {wsw -1 : s ∈ S} and its positive roots [START_REF] Björner | Combinatorics of Coxeter groups[END_REF].

Definition 15

The root poset Φ + (W ) is the partial order on the positive roots of W defined by α < β iff α -β is a nonnegative linear combination of positive roots.

This relationship between the root poset and the longest element is examined in more detail in [START_REF] Williams | Cataland[END_REF][START_REF] Williams | Bijactions in Cataland[END_REF], where it is related to Catalan combinatorics (we note that Conjecture 4.4 of [START_REF] Williams | Bijactions in Cataland[END_REF] is still open).

Theorem 4 ([7, 10, 14, 32]) When W is of type A n , B n , H 3 , or I 2 (m), there is a bijection between L(W ) and R(W ). Under this bijection, the initial segments L -1 ({1, 2, . . . , i}) of a linear extension L and w • = a 1 a 2 • • • a i of a reduced word w • determine each other (this may be interpreted as the existence of explicit insertion procedures that take reduced words to linear extensions).

Note that Theorem 4 does not continue to hold in other types-for example, | L(D 4 )| = 2400, but | R(D 4 )| = 2316. Kraśkiewicz insertion is the insertion procedure K : R(B n ) → L(B n ), due to W. Kraśkiewicz [START_REF] Kraśkiewicz | Reduced decompositions in hyperoctahedral groups[END_REF][START_REF] Lam | Bn Stanley symmetric functions[END_REF].

In [START_REF] Haiman | Dual equivalence with applications, including a conjecture of Proctor[END_REF], M. Haiman introduced a bijection called rectification between L(A n 2n-1 ) and L(B n ). Given a square tableau, which we prefer to think of as an element of L(A n 2n-1 ), one performs jeu-de-taquin slides until arriving at a tableau of trapezoidal shape, which we see as an element of L(B n ).

Theorem 16 ([9]

) There is a promotion-equivariant bijection R L : L(A n 2n-1 ) → L(B n ).

Little Bumps

D. Little introduced Little bumps in [START_REF] Little | Combinatorial aspects of the Lascoux-Schützenberger tree[END_REF]. These are a bijective realization of algebraic identities on Stanley symmetric functions derived from Monk's rule for Schubert polynomials, particularly the transition equations introduced by A. Lascoux and M.-P. Schützenberger [START_REF] Lascoux | Schubert polynomials and the Littlewood-Richardson rule[END_REF]. Little bumps act at the level of reduced words by successively incrementing or decrementing the simple reflections in the word until a new reduced word (of the same length) is obtained. T. Lam conjectured that two reduced words have the same Edelman-Greene recording tableau iff they differ by a sequence of Little bumps. Z. Hamaker and B. Young proved this conjecture in [START_REF] Hamaker | Relating Edelman-Greene insertion to the Little map[END_REF], and showed that Little bumps preserve the Q-tableau.

In [START_REF] Billey | Transition equations for isotropic flag manifolds[END_REF], S. Billey demonstrated transition equations for type C Stanley symmetric functions. The type B Little bumps, introduced by S. Billey, Z. Hamaker, A. Roberts and B. Young in [START_REF] Billey | Coxeter-Knuth graphs and a signed Little map for type B reduced words[END_REF], are a bijective realization of these, and other, equations. As the following theorem shows, the type B Little bumps relate to Kraśkiewicz insertion in the same way that Little bumps relate to Edelman-Greene insertion. (i,j) is labeled by (w (i) ) -1 (j) and entries with the same label are connected from left to right. The trajectory of i in b is the sequence {(w (j) ) -1 (i)} j=0 , and corresponds to the entries of the wiring diagram labeled i.

A type B Little bump B δ (i,j) on the reduced word b is specified by a covered reflection t (i,j) of w-an inversion of w such that (w • t (i,j) ) + 1 = (w)-and a direction δ ∈ {±1}. Given (i, j), identify the index p in which the inversion (i, j) is introduced in b. Set a = P δ (b, p), where the push P δ fixes b j for j = p and adds δ to b p . Here δ = δ if {w (p-1) (b p ), w (p-1) (b p + 1)} ∩ {i, j} = ∅ and δ = -δ otherwise. This condition ensures that the intersection of the trajectories of i and j in the wiring diagram is moved in the direction δ. Here, a may not be reduced, in which case there is a unique index p = p such that the word s a1 . . . s a p . . . s a is reduced (this follows from the assumption that t (i,j) was a covered reflection and Lemma 21 of [START_REF] Lam | A Little bijection for affine Stanley symmetric functions[END_REF]). Then a p and a p interchange the same values-up to sign-and we set a p := P δ (a, p ), iterating until we obtain a word a that is reduced. This algorithm is guaranteed to finish in finite time by [3, Lemma 3.5], and we set B δ (i,j) (b) = a. As observed in Section 4.1, for a ∈ R(A n 2n-1 ), the mixed insertion recording tableau L R (a) is in L(B n ), and coincides with its Kraśkiewicz recording tableau. Similarly, for b ∈ R(B n ), Theorem 4 implies that its Kraśkiewicz recording tableau also gives Q (b) ∈ L(B n ). Since these insertions are invertible, we obtain a bijection

L R : R(A n 2n-1 ) → R(B n ) by setting L R (a) = b when Q (a) = Q (b).
Theorem 17 tells us that the two reduced words a and b must be connected by a sequence of Little bumps. We now use the type B Little bumps to explicitly construct the bijection L R -1 : R(B n ) → R(A n 2n-1 ). Proposition 18 Define the sequences J k := (-1, 1), (1, 2), . . . , (k -1, k) with J 1 := (-1, 1), and let J be the concatenation J := J n , J n-1 , . . . , J 1 .

Then for b ∈ R(B n ),   (i,j)∈J B +1 (i,j)   b = a, where a ∈ R(A n 2n-1 ) and L R (a) = b.
Using techniques from [START_REF] Billey | Coxeter-Knuth graphs and a signed Little map for type B reduced words[END_REF], this proposition can be reduced to showing the map works as described for a single element of R(B n ), which can then be readily verified for the word c n . For example,

R(B 2 ) 0101 B +1 (-1,1) / / 1201 B +1 (1,2) 
/ / 2301

B +1 (-1,1) / / 2312 ∈ R(A 2 
3 ).

This Little map characterization provides more precise control over the relationship between a ∈ R(A n 2n-1 ) and L R (a) ∈ R(B n ). Recall that the peak set of a word a = a 1 • • • a r is the set Peak(a) := {i : a i-1 < a i > a i+1 }, while its descent set is Des(a) := {i : a i > a i+1 }. T-K. Lam showed that while a and Q (a) have the same peak set, in general they need not have the same descent set [START_REF] Lam | Bn Stanley symmetric functions[END_REF].

1 2 1 2 1 1 2 1 2 1 1 2 1 2 1 1 2 1 2 1 1 2 1 2 1
Fig. 3: From left to right, we have TriA(5, 1), S(A2, 1), and J (An, 1). The graph structure is given by flips. With the proper orientation, the graph at the left recovers the Tamari lattice on Dyck paths.

Lemma 19 Let a ∈ R(A n

2n-1 ). Then Des(a) = Des(L R (a)).

Proof: As observed in the proof of [START_REF] Billey | Coxeter-Knuth graphs and a signed Little map for type B reduced words[END_REF]Lemma 3.6], the only way the descent set can change is when the letter corresponding to the 1 in a consecutive 01 or 10 pattern is pushed to become a 0. The boundary of the (w j , w i )-crossing introduced by the mth inversion in the word a is the union of the trajectory of i from 0 to m and the trajectory of j from m to . The boundary of (w i , w j ) provides a lower bound for the possible locations of inversions in the Little bump B +1 (i,j) (see e.g. [START_REF] Billey | Coxeter-Knuth graphs and a signed Little map for type B reduced words[END_REF]Lemma 3.5]). Observe that the boundary of any bump (i, i + 1) is bounded below by the trajectory of i, which is in the upper half of the corresponding wiring diagram. The value 1 can only be decremented when the boundary is in the lower half of the wiring diagram. Since this never occurs, the descent set does not change under L R . 2

Subwords and Plane Partitions in Type A

We use the background of the previous sections to summarize Theorem 1. The core of L. Serrano and C. Stump's paper [START_REF] Serrano | Generalized triangulations, pipe dreams, and simplicial spheres[END_REF] is a bijective proof of an observation of S. Fomin and A. Kirillov [START_REF] Fomin | Reduced words and plane partitions[END_REF], generalizing work of A. Woo [START_REF] Woo | Catalan numbers and Schubert polynomials for w = 1(n + 1)[END_REF]. See also [START_REF] Billey | Some combinatorial properties of Schubert polynomials[END_REF][START_REF] Lenart | A unified approach to combinatorial formulas for Schubert polynomials[END_REF].

Theorem 1 ( [START_REF] Serrano | Generalized triangulations, pipe dreams, and simplicial spheres[END_REF][START_REF] Woo | Catalan numbers and Schubert polynomials for w = 1(n + 1)[END_REF]) There is an explicit bijection between Tri A (n + 2k + 1, k) and J (A n , k).

This bijection proceeds as follows. Let

N := n•(n+1) 2 = (w • ), a = a 1 a 2 • • • a k•n+N := c k w • (c)
, and let des a (i) be the number of descents in the word a 1 a 2 • • • a i . First, Tri A (n+2k+1, k) is encoded as S(A n , k) using Theorem 8. Next, using Theorem 4, we apply Edelman-Greene insertion to a subword a i1 a i2 • • • a i N of S(A n , k) to produce a linear extension in L(A n ). We modify this linear extension by replacing the letter j by des a (i j ) + 1, and-thinking of Φ + (A n ) as a tableau of staircase shape-subtract r from the rth row to obtain a plane partition of height at most k of staircase shape.

The construction above may be summarized as the "combinatorial lift" of Equation 1.

Remark 20 A recent result of J. Morse and A. Schilling may be phrased to state that for c = s 1 s 2 • • • s n the fixed Coxeter element of type A n and w ∈ A n , the subwords S(c k , w) may be given a crystal graph structure of type A k-1 [START_REF] Morse | Crystal operators and flag Gromov-Witten invariants[END_REF]. For example, in type A n with fundamental weights λ 1 , λ 2 , . . . , λ n , S(c n+1 , w • ) has a structure isomorphic to the crystal

A n (λ 1 + λ 2 + • • • + λ n ).
To connect these two stories, note that the subwords S(c k w • (c), w • ) in type A n are naturally a subset of the subwords S(c n+k , w • ). The bijection that J. Morse and A. Schilling provide between S(c n+k , w • ) and semistandard Young tableaux specializes to the bijection of Theorem 1 when restricted to this subset.

This crystal interpretation gives a second way (different from the theory of brick polytopes) to provide geometric embeddings of certain subword complexes.

Subwords and Plane Partitions for Type B n

Rather than proceed as in Theorem 1, we follow the more direct path of Equation 3 to prove Theorem 2.

Theorem 2 There is an explicit bijection between Tri B (2(n+k), k) and J (A n 2n-1 , k). To define the lifting of the map L R : R(A n 2n-1 ) → R(B n ) to a map L S : S(A n 2n-1 , k) → S(B n , k), we will find it helpful to refer to a subword of S(A

n 2n-1 , k) = S((s 1 s 2 • • • s 2n-1 ) n+k , w {sn} •
) by

a i = a i1 1 a i2 2 • • • a i n 2 n 2 , where i j ∈ [n+k] records from which copy of (s 1 s 2 • • • s 2n-1 ) the simple reflection a i ∈ {s 1 , s 2 , • • • , s 2n-1 } was taken. We use the same notation for subwords of S(B n , k) = S((s 0 s 1 • • • s n-1 ) n+k , w • )-a sub- word is written b i = b i1 1 b i2 2 • • • b i n 2 n 2 , where i j ∈ [n+k] records from which copy of (s 0 s 1 • • • s n-1 ) the simple reflection b i ∈ {s 0 , s 1 , • • • , s n-1 } was taken. Proposition 21 Then the map L S : S(A n 2n-1 , k) → S(B n , k), defined by L S (a i1 1 a i2 2 • • • a i n 2 n 2 ) = b i1 1 b i2 2 . . . b i n 2 n 2 , where L R (a 1 a 2 • • • a n 2 ) = b 1 b 2 • • • b n 2 , is a bijection.
Proof: This follows from Lemma 19-the descent sets of a 1 a 2 • • • a n 2 and b 1 b 2 • • • b n 2 agree, so that increasing sequences in one are taken to increasing sequences in the other. Since the number of copies of c are the same in S(A n 2n-1 , k) and S(B n , k), the map is well-defined. 2

The proof of Theorem 2 now follows from Corollary 14 and Proposition 21. We now phrase this bijection similarly to the bijection given in Section 5. Let N :

= n 2 = (w • ) and a = a 1 a 2 • • • a k•n+N := c k+n . First, Tri B (2(n+k), k
) is encoded as S(B n , k) using Theorem 8. Next, using Theorem 4, we apply Kraśkiewicz insertion K to a subword a i1 a i2 • • • a i N of S(B n , k) to produce a linear extension in L(B n ). At this point, rather than modify the linear extension of L(B n ), we next apply rectification R L to produce a linear extension in L(A n 2n-1 ), and only then do we modify the linear extension of L(A n 2n-1 ) by replacing the letter j by des a (i j ) + 1. Thinking of Φ + (A n 2n ) as a tableau of square shape, we subtract r from the rth row to obtain a plane partition of height at most k of square shape.

As in type A n , the construction above may be summarized as the "combinatorial lift" of Theorem 4 to Theorem 3 given in Equation 2. We can prove that KR = LC using the maps discussed in Section 4.1.

Remark 22

The verbatim analogue of the map in type A n given in Equation 1 does not work as before. Although we may lift a subword to a linear extension and then modify the linear extension of L(B n ) by replacing the letter j by des a (i j ) + 1, we do not have a bijection from the resulting tableaux to J (B n , k).
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Fig. 4: From left to right, we have TriB(6, 1), S(B2, 1), and J (A n 2n-1 , 1). The graph structure is given by flips.

Extensions

We close with some extensions and future directions. First, Proposition 21 can be adapted to give a bijection between S((s 0 s 1 ) in type A m+n-1 , from which we can then easily pass to plane partitions in an n × m × k box. Second, using the natural flip structure on S(B n , k) and our main theorem, we obtain a poset structure on plane partitions. It would be interesting to describe the flips directly on the plane partitions-this is open (and accessible) even for k = 1 (see also Figure 3 for a remark about this in type A, where the Tamari lattice on Dyck paths is recovered). Third, we do not have a good understanding of why the exact analogue of L. Serrano and C. Stump's type A n bijection does not work in type B n . Fourth, one can draw similar cubes to the one in Figure 2 in type A n , H 3 , and I 2 (m)-it would be interesting to provide analogues of all the edges of Figure 2 in those types. Fifth, the most obvious open problem is to complete either of the two edges in Figure 2 marked "No known bijection" (note that for k = 1 we know of several bijections and that some work has been done for k = 2). One approach towards this would be to extend the crystal structure of J. Morse and A. Schilling to subword complexes of other types as a first step towards a bijectivization of R. Proctor's proof that | J (B n , k)| = | J (A n 2n-1 , k)|.
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2 Fig. 1 :

 21 Fig.1: An example of the bijection in Theorem 2 for n = 3 and k = 2. On the left is a 2-triangulation of a 10-gon; on the right is the corresponding plane partition of height 2 in a square of size 3.

Definition 7

 7 -sorting word w(c) of w is the lexicographically first (in position) reduced subword for w of the word c ∞[START_REF] Reading | Sortable elements and Cambrian lattices[END_REF]. Given w ∈ W and a possibly non-reduced word a = a 1 • • • a r with a i ∈ S, let S(a, w) be the set of subwords for w in a. Define S(W, k) := S(c k w • (c), w • ).

Theorem 17 (

 17 [START_REF] Billey | Coxeter-Knuth graphs and a signed Little map for type B reduced words[END_REF]) Type B Little bumps preserve the Kraśkiewicz recording tableau Q , and two reduced words have the same Kraśkiewicz recording tableau iff they differ by a sequence of type B Little bumps.We now recall type B Little bumps. Using the usual (signed) permutation realization of the Coxeter group B n , reflections may be specified as pairs (i, j)such that i ∈ [-n] ∪ [n], j ∈ [n] and |i| ≤ j. For w ∈ B n let s b1 • • • s b ∈ R(w) with corresponding word b = b 1 • • • b with b i ∈ {0,1, . . . , n-1}we abuse notation by associating b with s b1 • • • s b . Let w (m) = s b1 • • • s bm with w (0) the identity. The wiring diagram of b is the diagram on {0, 1, . . . , } × Z \ {0} where

  • • • s n-1 ) m+k , (s 0 s 1 • • • s n-1 ) m ) in type B n and S((s 1 • • • s m+n-1 ) m+k , w
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