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The Ish arrangement was introduced by Armstrong to give a new interpretation of the q, t-Catalan numbers of Garsia and Haiman. Armstrong and Rhoades showed that there are some striking similarities between the Shi arrangement and the Ish arrangement and posed some problems. One of them is whether the Ish arrangement is a free arrangement or not. In this paper, we verify that the Ish arrangement is supersolvable and hence free. Moreover, we give a necessary and sufficient condition for the deleted Ish arrangement to be free.

Introduction

Let K be a field of characteristic 0 and {x 1 , . . . , x } a basis for the dual space (K ) * of the -dimensional vector space K . The Coxeter arrangement Cox( ) of type A -1 (also called the braid arrangement) is Cox( ) := {{x i -

x j = 0} | 1 ≤ i < j ≤ } ,
where {x = k} (x ∈ (K ) * , k ∈ K) is the affine hyperplane {v ∈ K | x(v) = k}. Then the Shi arrangement Shi( ) and the Ish arrangement Ish( ) are defined by

Shi( ) := Cox( ) ∪ {{x i -x j = 1} | 1 ≤ i < j ≤ } , Ish( ) := Cox( ) ∪ {{x 1 -x j = i} | 1 ≤ i < j ≤ } .
The Shi arrangement originally defined over R was introduced by J.Y. [START_REF] Shi | The Kazhdan-Lusztig cells in certain affine Weyl groups[END_REF]] in the study of the Kazhdan-Lusztig representation theory of the affine Weyl groups. The Ish arrangement also originally defined over R was introduced by Armstrong in [START_REF] Armstrong | Hyperplane arrangements and diagonal harmonics[END_REF]]. He gave a new interpretation of the q, t-Catalan numbers of Garsia and Haiman by using these two arrangements. Armstrong and Rhoades showed that there are some striking similarities between the Shi arrangement and the Ish arrangement in [START_REF] Armstrong | Hyperplane arrangements and diagonal harmonics[END_REF]; [START_REF] Armstrong | The Shi arrangement and the Ish arrangement[END_REF]].

Let A be an arrangement in K . Let L(A) be the set of nonempty intersections of hyperplanes in A, which is partially ordered by the reverse inclusion of subspaces. Define the Möbius function µ : L(A) → Z as follows:

µ(K ) = 1, µ(X) = - K ≤Y <X µ(Y ) (X = K ).
Then the characteristic polynomial χ(A, t) ∈ Z[t] of A is defined by

χ(A, t) = X∈L(A) µ(X)t dim X .
The following theorem is one of the similarities pointed out by Armstrong.

Theorem 1.1 [START_REF] Armstrong | Hyperplane arrangements and diagonal harmonics[END_REF]; [START_REF] Headley | On a family of hyperplane arrangements related to the affine Weyl groups[END_REF]]) The characteristic polynomial of the Shi arrangement and the Ish arrangement are given by

χ(Shi( ), t) = χ(Ish( ), t) = t(t -) -1 .
Let {x 1 , . . . , x , z} be a basis for V * of V := K +1 . Then, as in [ [START_REF] Orlik | of Grundlehren der Mathematischen Wissenschaften[END_REF], Definition 1.15)], we have the cone c(Ish( )) over the Ish arrangement which is a central arrangement (Namely, an arrangement whose hyperplanes pass through the origin) in V defined by

Q (c(Ish( ))) = z 1≤i<j≤ (x i -x j )(x 1 -x j -iz) = 0.
Let S be the symmetric algebra of the dual space V * . S can be identified with the polynomial ring K[x 1 , . . . , x , z]. Let Der(S) be the module of derivations of S

Der(S) := {θ : S → S | θ is K-linear, θ(f g) = f θ(g) + θ(f )g for any f, g ∈ S}.
Then, for a central arrangement A in V , the module of logarithmic derivations D(A) of A is defined to be

D(A) := {θ ∈ Der(S) | θ(Q(A)) ∈ Q(A)S} = {θ ∈ Der(S) | θ(α H ) ∈ α H S for any H ∈ A},
where Q(A) is the defining polynomial of A and α H is a linear form such that ker(α H ) = H. We say that A is free if D(A) is a free S-module. Then D(A) has a homogeneous basis {θ 0 , . . . , θ } and the tuple of degrees exp A = (deg θ 0 , . . . , deg θ ) is called the exponents of A.

The main purpose of this paper is to settle a problem of whether the Ish arrangements are free or not, which was posed by [START_REF] Armstrong | Hyperplane arrangements and diagonal harmonics[END_REF][START_REF] Armstrong | The Shi arrangement and the Ish arrangement[END_REF]Rhoades, 2012, p. 1527, (3))]. We define a new class of arrangements which is a generalization of the Ish arrangements and will characterize free arrangements in this class.

Definition 1.2 Let N = (N 2 , N 3 , . . . , N ) be a tuple of finite subsets N j in K. Define the N -Ish arrangement Ish(N ) by

Ish(N ) := {{x 1 -x j = a} | 2 ≤ j ≤ , a ∈ N j } ∪ {{x i -x j = 0} | 2 ≤ i < j ≤ } .
We say that N is a nest if there exists a permutation w of {2, . . . , } such that

N w(2) ⊆ N w(3) ⊆ • • • ⊆ N w( ) .
In particular, when N j = {0, 1, . . . , j -1} for each j, the N -Ish arrangement Ish(N ) is the Ish arrangement Ish( ). We denote the cone over the N -Ish arrangement c(Ish(N )) by I = I N . The defining polynomial of I can be expressed as

Q(I) = z   j=2 a∈Nj (x 1 -x j -az)     2≤i<j≤ (x i -x j )   .
Our main results are as follows:

Theorem 1.3 The following four conditions are equivalent:

(1) N is a nest.

(2) I N is supersolvable.

(3) I N is inductively free.

(4) I N is free.

The definitions of supersolvable and inductively free arrangements will be mentioned in Section 2. Note that the implications (2) ⇒ (3) ⇒ (4) are general properties for arrangements [START_REF] Orlik | of Grundlehren der Mathematischen Wissenschaften[END_REF]]. This theorem asserts that there are no differences among these properties for N -Ish arrangements.

Theorem 1.4 Let N = (N 2 , N 3 , . . . , N j ) with N 2 ⊆ N 3 ⊆ • • • ⊆ N j . Define homogeneous derivations θ 0 , θ 1 , . . . , θ by θ 0 := i=1 ∂ ∂x i , θ 1 = i=1 x i ∂ ∂x i + z ∂ ∂z , θ k := k s=2 a∈N k (x 1 -x s -az) t=k+1 (x s -x t ) ∂ ∂x s (2 ≤ k ≤ ).
Then θ 0 , θ 1 , . . . , θ form a basis for D(I N ). In particular, the exponents are given by

exp I N = (0, 1, |N 2 | + -2, |N 3 | + -3, . . . , |N |),
where |N j | denotes the cardinality of N j .

Corollary 1.5 The cone over the Ish arrangement c(Ish( )) is free with exponents exp(c(Ish( ))) = (0, 1, , , . . . , ( -1) times

). Moreover the homogeneous derivations

θ 0 = i=1 ∂ ∂x i , θ 1 = i=1 x i ∂ ∂x i + z ∂ ∂z , θ k = k s=2 k-1 i=0 (x 1 -x s -iz) t=k+1 (x s -x t ) ∂ ∂x s (2 ≤ k ≤ )
form a basis for D(c(Ish( ))).

If an arrangement A is a free arrangement, then the characteristic polynomial of A can be expressed by using its exponents: [START_REF] Terao | Generalized exponents of a free arrangement of hyperplanes and Shepherd-Todd-Brieskorn formula[END_REF]]) If an arrangement A is free with exponents (d 1 , . . . , d ), then the characteristic polynomial of A splits as

Theorem 1.6 ([
χ(A, t) = i=1 (t -d i ).
Since we have the relation between the characteristic polynomials of A and cA

χ(cA, t) = (t -1)χ(A, t),
we obtain a new proof of Theorem 1.1 from Corollary 1.5 and Theorem 1.6.

The complement M (A) := K \ ∪ H∈A H of a supersolvable arrangement A has very interesting properties: If K = C, the complement M (A) is fiber type [START_REF] Terao | Modular elements of lattices and topological fibration[END_REF]]. In particular, M (A) is a K(π, 1) space, i.e., the homotopy groups π i (M (A)) = 0 for i ≥ 2. When K = R, the complement M (A) is a disjoint union of chambers. For chambers C, C , define d(C, C ) by the number of hyperplanes in A separating C from C . Björner, Edelman, and Ziegler [START_REF] Björner | Hyperplane arrangements with a lattice of regions[END_REF]] gave the wall-crossing formula as follows: There exists a base chamber B of A such that

C∈Ch(A) t d(B,C) = i=1 (1 + t + • • • + t di ),
where (d 1 , . . . , d ) is the exponents of A and Ch(A) denotes the set of all chambers of A. Therefore, we derive the following corollary from our main theorems 1.3 and 1.4.

Corollary 1.7 Let N = (N 2 , N 3 , . . . , N j ) with N 2 ⊆ N 3 ⊆ • • • ⊆ N j .
(1) If K = C, then the complement M (I N ) of the cone over the N -Ish arrangement I N is K(π, 1).

(2) If K = R, then there exists a base chamber B ∈ Ch(I N ) such that

C∈Ch(I N ) t d(B,C) = t i=2 (1 + t + • • • + t |Ni|+ -i ).
The organization of this paper is as follows. In Section 2, we review the theory of supersolvable arrangements and prove Theorem 1.3. In Section 3, we verify Theorem 1.4 applying Saito's criterion. In Section 4, we recall the deleted arrangement Shi(G) and Ish(G) defined by Armstrong and Rhoades in [START_REF] Armstrong | The Shi arrangement and the Ish arrangement[END_REF]] and prove that Shi(G) and Ish(G) share the freeness.

2 Supersolvability and freeness of I For an arrangement A, let L(A) be the set of nonempty intersections of hyperplanes in A. If A is central, then L(A) is a geometric lattice with the order by reverse inclusion: X ≤ Y ⇔ Y ⊆ X. In the rest of this section, "arrangement" means "central arrangement". The rank of an arrangement A, denoted by rank(A), is the codimension of ∩ H∈A H. We say that A is essential if rank(A) is equal to the dimension of the ambient space of A.

An arrangement A is supersolvable if the intersection lattice L(A) is supersolvable as defined by Stanley [START_REF] Stanley | Supersolvable lattices[END_REF]]. The following lemma is widely known.

Lemma 2.1 [START_REF] Terao | Modular elements of lattices and topological fibration[END_REF]]) An arrangement A is supersolvable if and only if there exists a filtration

A = A ⊇ A -1 ⊇ • • • ⊇ A 1 such that (1) rank(A i ) = i (i = 1, 2, . . . , ).
(2) For any H, H ∈ A i with H = H , there exists some

H ∈ A i-1 such that H ∩ H ⊆ H .
Let A be an arrangement. For a hyperplane H ∈ A, define arrangements

A := A \ {H} and A := {H ∩ H | H ∈ A } .
The tuple (A, A , A ) is called the triple of arrangements with respect to H. For a triple (A, A , A ), the Addition Theorem [Terao (1980a,b)] asserts that if A and A are free and exp A ⊂ exp A , then A is free.

Definition 2.2 Define the inductive freeness by the following:

(1) The empty arrangement is inductively free.

(2) A is inductively free if there exists H ∈ A such that A and A are inductively free and exp A ⊂ exp A .

Thanks to the Addition Theorem, the inductive freeness implies the freeness. Moreover, it is also known that the the supersolvability implies the inductive freeness (see [ [START_REF] Orlik | of Grundlehren der Mathematischen Wissenschaften[END_REF], Theorem 4.58)] for example). We will use the following lemma which is a part of the Addition-Deletion Theorem:

Lemma 2.3 ([ [START_REF] Orlik | of Grundlehren der Mathematischen Wissenschaften[END_REF], Theorem 4.46)]) Let (A, A , A ) be a triple. Suppose that A is an essential arrangement of rank 3 and that arrangements A and A are free with exp(A ) = (1, a, b) and exp(A ) = (1, c). If c ∈ {a, b} then A is not free.

We are now prepared to prove Theorem 1.3.

Proof of Theorem 1.3: (1) ⇒ (2) Without loss of generality, we may assume that

N 2 ⊇ N 3 ⊇ • • • ⊇ N .
For each i ∈ {1, 2, . . . , }, define X i ∈ L(I) by

X i := {z = x 1 -x 2 = • • • = x 1 -x i = 0} .
Then the rank of the localization I i := I Xi = {H ∈ I | H ⊇ X} is equal to i and we have

I i = {{x 1 -x j = az} | 1 < j ≤ i and a ∈ N j } ∪ {{x j -x k = 0} | 2 ≤ j < k ≤ i} ∪ {{z = 0}}
Hence there exists a filtration

I = I ⊇ I -1 ⊇ • • • ⊇ I 1 .
By Lemma 2.1, we have only to verify that for any H, H ∈ I i with H = H there exists some H ∈ I i-1 such that H ∩ H ⊆ H for each i ∈ {2, . . . , }. We may assume that both H and H do not belong to I i-1 . Then H and H belong to

I i \ I i-1 = {{x 1 -x i = az} | a ∈ N i } ∪ {{x j -x i = 0} | 2 ≤ j < i} .
First, let a and b be distinct elements in

N i . Suppose that H = {x 1 -x i = az} and H = {x 1 -x i = bz}. Then H ∩ H ⊆ {z = 0} ∈ I i-1 . Second, let j and k be distinct integers in {2, . . . , i -1}. Assume that H = {x j -x i = 0} and H = {x k -x i = 0}. Then H ∩ H ⊆ {x j -x k = 0} ∈ I i-1 . Finally, let H = {x 1 -x i = az} and H = {x j -x i = 0} with a ∈ N i and 2 ≤ j < i. Then H ∩ H ⊆ {x 1 -x j = az} ∈ I i-1
by the assumption a ∈ N i ⊆ N j . Thus the cone over the N -Ish arrangement I is supersolvable.

(2) ⇒ (3) ⇒ (4) We have nothing to prove as mentioned before.

(4) ⇒ (1) When = 2, the tuple N = (N 2 ) is a nest. For ≥ 3, we will prove that if N is not a nest then I is not free by induction on . First, let = 3. Then we have N = (N 2 , N 3 ). Let H ∈ I be the hyperplane {x 2 -x 3 = 0} and (I, I , I ) the triple with respect to H. One can verify easily that the homogeneous derivations

3 i=1 x i ∂ ∂x i + z ∂ ∂z , a∈N2 (x 1 -x 2 -az) ∂ ∂x 2 , a∈N3 (x 1 -x 3 -az) ∂ ∂x 3
form a basis for D(I ) (with the non-essential derivation

3 i=1 ∂ ∂xi + ∂ ∂z ). Hence the arrangement I is free with exponents (1, |N 2 |, |N 3 |). The arrangement I is also free with exponents (1, |N 2 ∪ N 3 |) since rank(I ) = 2 and |I | = 1+|N 2 ∪N 3 |. By the assumption, N is not a nest, i.e., N 2 ⊆ N 3 and N 2 ⊇ N 3 , hence we have that |N 2 ∪ N 3 | is strictly larger than both of |N 2 | and |N 3 |.
Therefore, by Lemma 2.3, we have concluded that I is not free. Now suppose that > 3. Since N is not a nest, there exist integers i, j such that N i ⊆ N j and N i ⊇ N j . Define X ∈ L(I) by

X := {z = x 1 -x i = x 1 -x j = 0} .
Then we have

I X = {{x 1 -x k = az} | k ∈ {i, j} and a ∈ N k } ∪ {{x i -x j = 0}, {z = 0}} .
Hence I X is equivalent to c(Ish(N i , N j )) discussed in the above paragraph. Therefore the localization I X is not free, neither is I. 2

3 A basis for D(I)

In this section, we will prove Theorem 1.4. First, we verify that θ 0 , θ 1 , . . . , θ belong to D(I).

Lemma 3.1 Let N = (N 2 , N 3 , . . . , N j ) with N 2 ⊆ N 3 ⊆ • • • ⊆ N j . Then θ 0 = i=1 ∂ ∂x i , θ 1 = i=1 x i ∂ ∂x i + z ∂ ∂z , θ k = k s=2 a∈N k (x 1 -x s -az) t=k+1 (x s -x t ) ∂ ∂x s (2 ≤ k ≤ )
belong to D(I).

Proof: Since θ 0 (α H ) = 0 for any H ∈ I, it belongs to D(I). The Euler derivation θ 1 belongs to D(A) for any central arrangement A, thus θ 1 ∈ D(I). We will show that

θ k ∈ D(I) for 2 ≤ k ≤ . It is obvious that θ k (z) = 0 ∈ zS. Let 2 ≤ i < j ≤ . Case 1. If i < j ≤ k, then θ k (x i -x j ) = a∈N k (x 1 -x i -az) t=k+1 (x i -x t ) - a∈N k (x 1 -x j -az) t=k+1 (x j -x t ) ≡ a∈N k (x 1 -x i -az) t=k+1 (x i -x t ) - a∈N k (x 1 -x i -az) t=k+1 (x i -x t ) (mod x i -x j ) = 0, thus θ k (x i -x j ) ∈ (x i -x j )S. Case 2. If i ≤ k < j, then θ k (x i -x j ) = a∈N k (x 1 -x i -az) t=k+1 (x i -x t ) ∈ (x i -x j )S.
Case 3. If k < i < j, then

θ k (x i -x j ) = 0 ∈ (x i -x j )S. Hence θ k (x i -x j ) ∈ (x i -x j )S for 2 ≤ i < j ≤ . Let 2 ≤ j ≤ and b ∈ N j . Case 1. If j ≤ k, then b ∈ N j ⊆ N k , thus θ k (x 1 -x j -bz) = a∈N k (x 1 -x j -az) t=k+1 (x j -x t ) ∈ (x 1 -x j -bz)S.
Case 2. If k < j, then

θ k (x 1 -x j -bz) = 0 ∈ (x 1 -x j -bz)S.
Hence θ k (x 1 -x j -bz) ∈ (x 1 -x j -bz)S for 2 ≤ j ≤ and b ∈ N j . Therefore we obtain that θ k ∈ D(I). 2

Proof of Theorem 1.4.

First, note that if s = 1, k ≥ 2 then θ k (x s ) = θ k (x 1 ) = 0, and if 2 ≤ k < s then θ k (x s ) = 0.
Thus the determinant of the coefficient matrix of θ 0 , θ 1 , . . . , θ can be calculated as follows:

θ 0 (x 1 ) θ 1 (x 1 ) • • • θ (x 1 ) . . . . . . • • • . . . θ 0 (x ) θ 1 (x ) • • • θ (x ) θ 0 (z) θ 1 (z) • • • θ (z) = 1 x 1 0 • • • 0 1 x 2 θ 2 (x 2 ) • • • θ (x 2 ) . . . . . . 0 . . . . . . 1 x . . . . . . θ (x ) 0 z 0 • • • 0 . = z 1 0 0 • • • 0 1 θ 2 (x 2 ) θ 3 (x 2 ) • • • θ (x 2 ) 1 θ 3 (x 3 ) • • • θ (x 3 ) . . . . . . . . . 1 0 θ (x ) = z k=2 θ k (x k ) = z k=2 a∈N k (x 1 -x k -az) t=k+1 (x k -x t ) = z k=2 a∈N k (x 1 -x k -az) k=2 t=k+1 (x k -x t ) = z k=2 a∈N k (x 1 -x k -az)   2≤k<t≤ (x k -x t )   = Q(I),
where .

= denotes that they are equal up to a nonzero constant multiple. Combining this calculation and Lemma 3.1, we can apply Saito's criterion [START_REF] Saito | Theory of logarithmic differential forms and logarithmic vector fields[END_REF]] and see that θ 0 , θ 1 , . . . , θ form a basis for D(I).

Freeness of the deleted Ish arrangements

Let K be the complete graph on vertices. We can regard K as the set of directed edges (i, j) (i < j), namely K = {(i, j) | 1 ≤ i < j ≤ }. For a subgraph G ⊆ K , Armstrong and Rhoades [START_REF] Armstrong | The Shi arrangement and the Ish arrangement[END_REF]] defined the deleted arrangements Shi(G) and Ish(G) and showed that they share many properties. In particular, it was proven that Shi(G) and Ish(G) have the same characteristic polynomials by their explicit expressions. The deleted Shi and Ish arrangements are defined by Shi(G) := Cox( ) ∪ {{x i -x j = 1} | (i, j) ∈ G} ⊆ Shi( ), Ish(G) := Cox( ) ∪ {{x 1 -x j = i} | (i, j) ∈ G} ⊆ Ish( ).

Athanasiadis gave a necessary and sufficient condition for the freeness of c(Shi(G)).

second property of (3) implies (w -1 (i), w -1 (k)) ∈ w -1 G, i.e., (i, k) ∈ G. Hence (i) holds. Similarly, if w -1 (j) > w -1 (k) then (ii) holds.

(4) ⇒ (2) For any j, k ∈ {2, . . . , }, it is clear that (i) holds if and only if N j ⊆ N k and (ii) holds if and only if N k ⊆ N j . Therefore every element in N G is comparable. Thus N G is a nest.

2

Combining Theorem 4.1 and Theorem 4.2, we can prove that the following corollary:

Corollary 4.3 The deleted arrangements Shi(G) and Ish(G) share the freeness.
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Theorem 4.1 [START_REF] Athanasiadis | On free deformations of the braid arrangement[END_REF] Theorem 4.1) Let G ⊆ K be a subgraph. The cone over the deleted Shi arrangement c(Shi(G)) is free if and only if there exists a permutation w of {1, . . . , } such that w -1 G is contained in K , i.e., (i, j) ∈ w -1 G implies i < j, and has the following property:

In this section, we will prove that the property of G in the Theorem 4.1 is also a necessary and sufficient condition for the freeness of c(Ish(G)) by making use of the terminology of the N -Ish arrangements. The problem of whether the cone of the deleted Ish arrangement c(Ish(G)) is free or not is posed by [START_REF] Armstrong | Hyperplane arrangements and diagonal harmonics[END_REF][START_REF] Armstrong | The Shi arrangement and the Ish arrangement[END_REF]Rhoades, 2012, p. 1517)] together with the problem for c(Ish( )).

For a subgraph G ⊆ K , define a tuple of sets N G = (N 2 , . . . , N ) by

It is easy to show that Ish(N G ) = Ish(G).

Theorem 4.2 Let G ⊆ K be a subgraph. Then the following are equivalent:

(1) c(Ish(G)) is free.

(2) N G is a nest.

(3) G has the property in Theorem 4.1.

(4) For any j, k ∈ {2, . . . , }, either of the following two conditions holds:

(ii) If (i, k) ∈ G then (i, j) ∈ G for any i ≤ min{j, k}.

Proof: (1) ⇔ (2) It is obvious from Theorem 1.3.

(2) ⇒ (3) Assume that N G is a nest. Then there exists a permutation w of {1, . . . , } with w(1) = 1 such that

Now, we will prove that w -1 G ⊆ K i.e., (i, j) ∈ w -1 G implies i < j. For any (i, j) ∈ w -1 G, we have (w(i), w(j)) ∈ G. Hence w(i) ∈ N w(j) . Then N w(j) ⊆ N w(i) since w(i) ∈ N w(i) . Since N G is a nest, we have N w(i) ⊆ N w(j) . Therefore i < j, namely (i, j) ∈ K . Thus we have showed that w -1 G ⊆ K .

Suppose that 1 ≤ i < j < k ≤ . Then we have a chain of implications:

This proves that G satisfies the second condition.

(3) ⇒ (4) Fix elements j, k ∈ {2, . . . , } and assume that w -1 (j) < w -1 (k). For any (i, j) ∈ G, we have that (w -1 (i), w -1 (j)) ∈ w -1 G. Since w -1 G ⊆ K , we have w -1 (i) < w -1 (j). Then the